1
|
Neikirk K, Vue Z, Vue N, Barongan T, Vang C, Beasley HK, Marshall AG, Kirabo A, Wanajalla CN, Smith N, Morton D, Shuler HD, Hinton A. Disparities in funding for Nobel Prize awards in medicine and physiology across nationalities, races, and gender. J Cell Physiol 2024; 239:e31157. [PMID: 38225913 PMCID: PMC11247138 DOI: 10.1002/jcp.31157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024]
Abstract
Since 1901, the Nobel Prize in Physiology and Medicine has been awarded to numerous individuals for their outstanding contributions. This article presents a comprehensive analysis of the Nobel Prize recipients, focusing on gender, race, and nationality. We observe that an alarming disparity emerges when we examine the underrepresentation of Black scientists among Nobel laureates. Furthermore, trends in nationalities show how Americans make up the majority of Nobel Prize winners, while there is a noticeable lack of gender and racial minority winners of the Nobel Prize in Physiology and Medicine. Together, this highlights the importance of diversity and inclusion in scientific achievement. We offer suggestions and techniques, including funding opportunities and expanding nominators, to improve the gender, racial, and geographical diversity of Nobel Prizes.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Neng Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Taylor Barongan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Nathan Smith
- Del Monte Institute for Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Derrick Morton
- Department of Biomedical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Haysetta D Shuler
- Department of Biological Sciences, Winston-Salem State University, Winston-Salem, North Carolina, USA
- Shuler Consulting, Winston-Salem, North Carolina, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Tomoda K, Kime C. Synthetic embryology: Early mammalian embryo modeling systems from cell cultures. Dev Growth Differ 2021; 63:116-126. [PMID: 33540477 DOI: 10.1111/dgd.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
Recently, the fields of embryology, developmental biology, stem cell biology, and cell reprogramming, have intersected with synthetic embryo systems (SESs) from cultured cells. Among such SESs, several approaches have engaged early-embryo-like cells, cells with atypical potency, or assembled traditional in vitro stem cell populations with synergy, to advance life discovery systems that may yield emergent knowledge and biotechnical advance. Such models center on the competent generation of blastocyst-like and post-implantation embryo-like forms. Our group, and several others have recently pioneered unique SES strategies covering a broad spectrum of key early embryo-like developmental stages and features to seed an emerging SES field. Herein, we provide a comprehensive perspective of synthetic embryology and the powerful promise that excites us.
Collapse
Affiliation(s)
- Kiichiro Tomoda
- Gladstone Institutes, San Francisco, CA, USA.,Center for iPS Cell Research and Application, Kyoto, Japan.,Osaka Medical College, Osaka, Japan
| | - Cody Kime
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|