1
|
Cates ME, Nardini C. Active phase separation: new phenomenology from non-equilibrium physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2025; 88:056601. [PMID: 40306295 DOI: 10.1088/1361-6633/add278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/30/2025] [Indexed: 05/02/2025]
Abstract
In active systems, whose constituents have non-equilibrium dynamics at local level, fluid-fluid phase separation is widely observed. Examples include the formation of membraneless organelles within cells; the clustering of self-propelled colloidal particles in the absence of attractive forces, and some types of ecological segregation. A schematic understanding of such active phase separation was initially borrowed from what is known for the equilibrium case, in which detailed balance holds at microscopic level. However it has recently become clear that in active systems the absence of detailed balance, although it leave phase separation qualitatively unchanged in some regimes (for example domain growth driven by interfacial tension via Ostwald ripening), can in other regimes radically alter its phenomenology at mechanistic level. For example, microphase separation can be caused by reverse Ostwald ripening, a process that is hard to imagine from an equilibrium perspective. This and other new phenomena arise because, instead of having a single, positive interfacial tension like their equilibrium counterparts, the fluid-fluid interfaces created by active phase separation can have several distinct interfacial tensions governing different properties, some of which can be negative. These phenomena can be broadly understood by studying continuum field theories for a single conserved scalar order parameter (the fluid density), supplemented with a velocity field in cases where momentum conservation is also present. More complex regimes arise in systems described by multiple scalar order parameters (especially with nonreciprocal interactions between these); or when an order parameter undergoes both conserved and non-conserved dynamics (such that the combination breaks detailed balance); or in systems that support orientational long-range order in one or more of the coexisting phases. In this Review, we survey recent progress in understanding the specific role of activity in phase separation, drawing attention to many open questions. We focus primarily on continuum theories, especially those with a single scalar order parameter, reviewing both analytical and numerical work. We compare their predictions with particle-based models, which have mostly been studied numerically although a few have been explicitly coarse-grained to continuum level. We also compare, where possible, with experimental results. In the latter case, qualitative comparisons are broadly encouraging whereas quantitative ones are hindered by the dynamical complexity of most experimental systems relative that of simplified (particle-level or continuum) models of active matter.
Collapse
Affiliation(s)
- M E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - C Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
2
|
Shenoy SA, Chaithanya K, Dayal P. Shear-induced dynamics of an active Belousov-Zhabotinsky droplet. SOFT MATTER 2025; 21:1957-1969. [PMID: 39967401 DOI: 10.1039/d4sm01464b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Controlled navigation of self-propelled active matter in complex biological environments has remained a significant challenge in engineering owing to a multitude of interactions that persist in the process. Active droplets, being some of the several synthetic active matters, have garnered significant attention owing to their ability to exhibit dynamic shape changes, self-sustained motion, interact with external stimuli such as flows, and mimic biological active matter. Here, we explore the dynamics of a self-propelled active droplet powered by the oscillatory Belousov-Zhabotinsky (BZ) reaction in the presence of a shear flow. We adapt a multicomponent lattice Boltzmann method (LBM) in conjunction with the phase-field model to simulate the droplet's interaction with the surrounding fluid. We unravel the collective effect of droplet deformation, reaction kinetics, and strength of the surrounding shear flow on droplet dynamics. Our findings depict that the shear flow disrupts the initial isotropic surface tension, and produces concentration nucleation spots in the droplet. The asymmetry thus generated produces Marangoni flow that ultimately propels the droplet. Our findings provide valuable insights into the mechanisms governing active droplet behavior and open new avenues for designing controllable synthetic active matter systems with potential applications in microfluidics, targeted delivery, and biomimetic technologies. In addition, our framework can potentially be integrated with the physics-informed machine learning framework to develop more efficient mesh-free methods.
Collapse
Affiliation(s)
- Shreyas A Shenoy
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| | - Kvs Chaithanya
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| | - Pratyush Dayal
- Polymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India.
| |
Collapse
|
3
|
Daddi-Moussa-Ider A, Vilfan A, Hosaka Y. Analytical solution for the hydrodynamic resistance of a disk in a compressible fluid layer with odd viscosity on a rigid substrate. J Chem Phys 2025; 162:064103. [PMID: 39927530 DOI: 10.1063/5.0249623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Chiral active fluids can exhibit odd viscosity, a property that breaks the time-reversal and parity symmetries. Here, we examine the hydrodynamic flows of a rigid disk moving in a compressible 2D fluid layer with odd viscosity, supported by a thin lubrication layer of a conventional fluid. Using the 2D Green's function in Fourier space, we derive an exact analytical solution for the flow around a disk of arbitrary size, as well as its resistance matrix. The resulting resistance coefficients break the Onsager reciprocity, but satisfy the Onsager-Casimir reciprocity to any order in odd viscosity.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | | | - Yuto Hosaka
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Am Faßberg 17, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Negro G, Head LC, Carenza LN, Shendruk TN, Marenduzzo D, Gonnella G, Tiribocchi A. Topology controls flow patterns in active double emulsions. Nat Commun 2025; 16:1412. [PMID: 39915471 PMCID: PMC11802772 DOI: 10.1038/s41467-025-56236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Active emulsions and liquid crystalline shells are intriguing and experimentally realisable types of topological matter. Here we numerically study the morphology and spatiotemporal dynamics of a double emulsion, where one or two passive small droplets are embedded in a larger active droplet. We find activity introduces a variety of rich and nontrivial nonequilibrium states in the system. First, a double emulsion with a single active droplet becomes self-motile, and there is a transition between translational and rotational motion: both of these regimes remain defect-free, hence topologically trivial. Second, a pair of particles nucleate one or more disclination loops, with conformational dynamics resembling a rotor or chaotic oscillator, accessed by tuning activity. In the first state a single, topologically charged, disclination loop powers the rotation. In the latter state, this disclination stretches and writhes in 3D, continuously undergoing recombination to yield an example of an active living polymer. These emulsions can be self-assembled in the lab, and provide a pathway to form flow and topological patterns in active matter in a controlled way, as opposed to bulk systems that typically yield active turbulence.
Collapse
Affiliation(s)
- Giuseppe Negro
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
| | - Louise C Head
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.
| | - Livio N Carenza
- Physics Department, College of Sciences, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye
| | - Tyler N Shendruk
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, Italy
| | - Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, via dei Taurini 19, Roma, Italy
- INFN "Tor Vergata", Via della Ricerca Scientifica 1, Roma, Italy
| |
Collapse
|
5
|
Kang C, Chen P, Yi X, Li D, Hu Y, Yang Y, Cai H, Li B, Wu C. Amoeboid cells undergo durotaxis with soft end polarized NMIIA. eLife 2024; 13:RP96821. [PMID: 39671466 PMCID: PMC11643633 DOI: 10.7554/elife.96821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient. By tracking live cell trajectory and analyzing the directionality of T cells and neutrophils, we observe that amoeboid cells can durotax. We further delineate the underlying mechanism to involve non-muscle myosin IIA (NMIIA) polarization towards the soft-matrix-side but may not require differential actin flow up- or down-stiffness gradient. Using the protista Dictyostelium, we demonstrate the evolutionary conservation of amoeboid durotaxis. Finally, these experimental phenomena are theoretically captured by an active gel model capable of mechanosensing. Collectively, these results may shed new lights on immune surveillance and recently identified confined migration of cancer cells, within the mechanically inhomogeneous tumor microenvironment or the inflamed fibrotic tissues.
Collapse
Affiliation(s)
- Chenlu Kang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular OncologyBeijingChina
- International Cancer Institute, Peking UniversityBeijingChina
| | - Pengcheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua UniversityBeijingChina
| | - Xin Yi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular OncologyBeijingChina
- International Cancer Institute, Peking UniversityBeijingChina
| | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- School of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Yiping Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular OncologyBeijingChina
- International Cancer Institute, Peking UniversityBeijingChina
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua UniversityBeijingChina
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular OncologyBeijingChina
- International Cancer Institute, Peking UniversityBeijingChina
| |
Collapse
|
6
|
Carlsson C, Gao T. Active droplet driven by collective chemotaxis. SOFT MATTER 2024; 20:9562-9571. [PMID: 39576104 DOI: 10.1039/d4sm00717d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Surfactant-laden fluid interfaces of soft colloids, such as bubbles and droplets, are ubiquitously seen in various natural phenomena and industrial settings. In canonical systems where microparticles are driven in hydrodynamic flows, convection of the surfactant changes local surface tension. Subsequently, the interplay of Marangoni and hydrodynamic stresses leads to rich interfacial dynamics that directly impact the particle motions. Here we introduce a new mechanism for self-propelled droplets, driven by a thin layer of chemically active microparticles situated at the interface of a suspended droplet, which is a direct extension of the planar collective surfing model by Masoud and Shelley (H. Masoud and M. J. Shelley, Phys. Rev. Lett., 2014, 112, 128304). These particles can generate chemicals locally, leading to spontaneous Marangoni flows that drive the self-aggregation of microparticles. This process, in turn, creates a polarized surfactant distribution, which induces collective chemotaxis and dipolar bulk flows, ultimately breaking the symmetry. By assuming the local surfactant production to be either proportional to particle density or saturated at a high particle density, we observe that the system can be chemotactically diverging or approach a steady state with constant migration velocity. The system is studied analytically in the linear region for the initial transient dynamics, yielding critical numbers and familiar patterns, as well as numerically for larger amplitudes and over a long time using spectral methods.
Collapse
Affiliation(s)
- Christian Carlsson
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48864, USA.
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48864, USA.
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48864, USA
| |
Collapse
|
7
|
Fausti G, Cates ME, Nardini C. Statistical properties of microphase and bubbly phase-separated active fluids. Phys Rev E 2024; 110:L042103. [PMID: 39562979 DOI: 10.1103/physreve.110.l042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024]
Abstract
In phase-separated active fluids, the Ostwald process can go into reverse, leading to either microphase separation or bubbly phase separation. We show that the latter is formed of two macroscopic regions that are occupied by the homogeneous fluid and by the microphase separated one. Within the microphase-separated fluid, the relative rate of the Ostwald process, coalescence, and nucleation determines whether the size distribution of mesoscopic domains is narrowly peaked or displays a broad range of sizes before attaining a cutoff independent of system size. Our results are obtained via large-scale simulations of a minimal field theory for active phase separation and reproduced by an effective model in which the degrees of freedom are the locations and sizes of the microphase-separated domains.
Collapse
Affiliation(s)
- Giordano Fausti
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Cesare Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| |
Collapse
|
8
|
Paoluzzi M, Levis D, Crisanti A, Pagonabarraga I. Noise-Induced Phase Separation and Time Reversal Symmetry Breaking in Active Field Theories Driven by Persistent Noise. PHYSICAL REVIEW LETTERS 2024; 133:118301. [PMID: 39332006 DOI: 10.1103/physrevlett.133.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/23/2024] [Accepted: 07/25/2024] [Indexed: 09/29/2024]
Abstract
Within the Landau-Ginzburg picture of phase transitions, scalar field theories develop phase separation because of a spontaneous symmetry-breaking mechanism. This picture works in thermodynamics but also in the dynamics of phase separation. Here we show that scalar nonequilibrium field theories undergo phase separation just because of nonequilibrium fluctuations driven by a persistent noise. The mechanism is similar to what happens in motility-induced phase separation where persistent motion introduces an effective attractive force. We observe that noise-induced phase separation occurs in a region of the phase diagram where disordered field configurations would otherwise be stable at equilibrium. Measuring the local entropy production rate to quantify the time-reversal symmetry breaking, we find that such breaking is concentrated on the boundary between the two phases.
Collapse
|
9
|
Heyn JCJ, Rädler JO, Falcke M. Mesenchymal cell migration on one-dimensional micropatterns. Front Cell Dev Biol 2024; 12:1352279. [PMID: 38694822 PMCID: PMC11062138 DOI: 10.3389/fcell.2024.1352279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Quantitative studies of mesenchymal cell motion are important to elucidate cytoskeleton function and mechanisms of cell migration. To this end, confinement of cell motion to one dimension (1D) significantly simplifies the problem of cell shape in experimental and theoretical investigations. Here we review 1D migration assays employing micro-fabricated lanes and reflect on the advantages of such platforms. Data are analyzed using biophysical models of cell migration that reproduce the rich scenario of morphodynamic behavior found in 1D. We describe basic model assumptions and model behavior. It appears that mechanical models explain the occurrence of universal relations conserved across different cell lines such as the adhesion-velocity relation and the universal correlation between speed and persistence (UCSP). We highlight the unique opportunity of reproducible and standardized 1D assays to validate theory based on statistical measures from large data of trajectories and discuss the potential of experimental settings embedding controlled perturbations to probe response in migratory behavior.
Collapse
Affiliation(s)
- Johannes C. J. Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O. Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
10
|
Son K, Choe Y, Kwon E, Rigon LG, Baek Y, Kim HY. Dynamics of self-propelled particles in vibrated dense granular media. SOFT MATTER 2024; 20:2777-2788. [PMID: 38444300 DOI: 10.1039/d3sm01596c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
We study a system consisting of a few self-propelled particles (SPPs) placed among a crowd of densely packed granular particles that are vertically vibrated in a two-dimensional circular confinement. Our experiments reveal two important findings. First, an SPP exhibits a fractal renewal process within the dense granular medium, which induces a superdiffusive behavior whose diffusion exponent increases with its aspect ratio. Second, the SPPs eventually reach the boundary and form a moving cluster, which transitions from the moving state to the static state as the number of SPPs is increased. These results suggest a simple and effective method of modulating the fluidity and directionality of granular systems via controlling the shape and the number of SPPs.
Collapse
Affiliation(s)
- Kyungmin Son
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.
| | - Yunsik Choe
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea.
| | - Euijoon Kwon
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea.
| | - Leonardo Garibaldi Rigon
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea.
| | - Yongjoo Baek
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea.
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Kim KW, Choe Y, Baek Y. Symmetry-breaking motility of penetrable objects in active fluids. Phys Rev E 2024; 109:014614. [PMID: 38366510 DOI: 10.1103/physreve.109.014614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
We investigate how a symmetric penetrable object immersed in an active fluid becomes motile due to a negative drag acting in the direction of its velocity. While similar phenomena have been reported only for active fluids that possess polar or nematic order, we demonstrate that such motility can occur even in active fluids without any preexisting order. The emergence of object motility is characterized by both continuous and discontinuous transitions associated with the symmetry-breaking bifurcation of the object's steady-state velocity. Furthermore, we also discuss the relevance of the transitions to the nonmonotonic particle-size dependence of the object's diffusion coefficient.
Collapse
Affiliation(s)
- Ki-Won Kim
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunsik Choe
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongjoo Baek
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Chen S, Markovich T, MacKintosh FC. Motor-free contractility of active biopolymer networks. Phys Rev E 2023; 108:044405. [PMID: 37978629 DOI: 10.1103/physreve.108.044405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
Contractility in animal cells is often generated by molecular motors such as myosin, which require polar substrates for their function. Motivated by recent experimental evidence of motor-independent contractility, we propose a robust motor-free mechanism that can generate contraction in biopolymer networks without the need for substrate polarity. We show that contractility is a natural consequence of active binding-unbinding of crosslinkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We have extended our earlier work to discuss the motor-free contraction of viscoelastic biopolymer networks. We calculate the resulting contractile velocity using a microscopic model and show that it can be reduced to a simple coarse-grained model under certain limits. Our model may provide an explanation of recent reports of motor-independent contractility in cells. Our results also suggest a mechanism for generating contractile forces in synthetic active materials.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
13
|
Tiribocchi A, Durve M, Lauricella M, Montessori A, Succi S. Spontaneous motion of a passive fluid droplet in an active microchannel. SOFT MATTER 2023; 19:6556-6568. [PMID: 37599649 PMCID: PMC10467333 DOI: 10.1039/d3sm00561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
We numerically study the dynamics of a passive fluid droplet confined within a microchannel whose walls are covered with a thin layer of active gel. The latter represents a fluid of extensile material modelling, for example, a suspension of cytoskeletal filaments and molecular motors. Our results show that the layer is capable of producing a spontaneous flow triggering a rectilinear motion of the passive droplet. For a hybrid design (a single wall covered by the active layer), at the steady state the droplet attains an elliptical shape, resulting from an asymmetric saw-toothed structure of the velocity field. In contrast, if the active gel covers both walls, the velocity field exhibits a fully symmetric pattern considerably mitigating morphological deformations. We further show that the structure of the spontaneous flow in the microchannel can be controlled by the anchoring conditions of the active gel at the wall. These findings are also confirmed by selected 3D simulations. Our results may stimulate further research addressed to design novel microfludic devices whose functioning relies on the collective properties of active gels.
Collapse
Affiliation(s)
- Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Mihir Durve
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| | - Marco Lauricella
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Andrea Montessori
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche (DICITA), Università degli studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
| | - Sauro Succi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
14
|
Radisson B, Kanso E. Elastic Snap-Through Instabilities Are Governed by Geometric Symmetries. PHYSICAL REVIEW LETTERS 2023; 130:236102. [PMID: 37354412 DOI: 10.1103/physrevlett.130.236102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/24/2022] [Accepted: 04/13/2023] [Indexed: 06/26/2023]
Abstract
Many elastic structures exhibit rapid shape transitions between two possible equilibrium states: umbrellas become inverted in strong wind and hopper popper toys jump when turned inside out. This snap through is a general motif for the storage and rapid release of elastic energy, and it is exploited by many biological and engineered systems from the Venus flytrap to mechanical metamaterials. Shape transitions are known to be related to the type of bifurcation the system undergoes, however, to date, there is no general understanding of the mechanisms that select these bifurcations. Here we analyze numerically and analytically two systems proposed in recent literature in which an elastic strip, initially in a buckled state, is driven through shape transitions by either rotating or translating its boundaries. We show that the two systems are mathematically equivalent, and identify three cases that illustrate the entire range of transitions described by previous authors. Importantly, using reduction order methods, we establish the nature of the underlying bifurcations and explain how these bifurcations can be predicted from geometric symmetries and symmetry-breaking mechanisms, thus providing universal design rules for elastic shape transitions.
Collapse
Affiliation(s)
- Basile Radisson
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1191, USA
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089-1191, USA
| |
Collapse
|
15
|
Hoffmann LA, Carenza LN, Giomi L. Tuneable defect-curvature coupling and topological transitions in active shells. SOFT MATTER 2023; 19:3423-3435. [PMID: 37129899 DOI: 10.1039/d2sm01370c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent experimental observations have suggested that topological defects can facilitate the creation of sharp features in developing embryos. Whereas these observations echo established knowledge about the interplay between geometry and topology in two-dimensional passive liquid crystals, the role of activity has mostly remained unexplored. In this article we focus on deformable shells consisting of either polar or nematic active liquid crystals and demonstrate that activity renders the mechanical coupling between defects and curvature much more involved and versatile than previously thought. Using a combination of linear stability analysis and three-dimensional computational fluid dynamics, we demonstrate that such a coupling can in fact be tuned, depending on the type of liquid crystal order, the specific structure of the defect (i.e. asters or vortices) and the nature of the active forces. In polar systems, this can drive a spectacular transition from spherical to toroidal topology, in the presence of large extensile activity. Our analysis strengthens the idea that defects could serve as topological morphogens and provides a number of predictions that could be tested in in vitro studies, for instance in the context of organoids.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
16
|
Amiri B, Heyn JCJ, Schreiber C, Rädler JO, Falcke M. On multistability and constitutive relations of cell motion on fibronectin lanes. Biophys J 2023; 122:753-766. [PMID: 36739476 PMCID: PMC10027452 DOI: 10.1016/j.bpj.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.
Collapse
Affiliation(s)
- Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes C J Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Christoph Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
| |
Collapse
|
17
|
Cates ME, Nardini C. Classical Nucleation Theory for Active Fluid Phase Separation. PHYSICAL REVIEW LETTERS 2023; 130:098203. [PMID: 36930897 DOI: 10.1103/physrevlett.130.098203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Classical Nucleation Theory (CNT), linking rare nucleation events to the free-energy landscape of a growing nucleus, is central to understanding phase-change kinetics in passive fluids. Nucleation in nonequilibrium systems is much harder to describe because there is no free energy, but instead a dynamics-dependent quasipotential that typically must be found numerically. Here we extend CNT to a class of active phase-separating systems governed by a minimal field-theoretic model (Active Model B+). In the small noise and supersaturation limits that CNT assumes, we compute analytically the quasipotential, and hence, nucleation barrier, for liquid-vapor phase separation. Crucial to our results, detailed balance, although broken microscopically by activity, is restored along the instanton trajectory, which in CNT involves the nuclear radius as the sole reaction coordinate.
Collapse
Affiliation(s)
- M E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - C Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
18
|
The crucial role of adhesion in the transmigration of active droplets through interstitial orifices. Nat Commun 2023; 14:1096. [PMID: 36841803 PMCID: PMC9968312 DOI: 10.1038/s41467-023-36656-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Active fluid droplets are a class of soft materials exhibiting autonomous motion sustained by an energy supply. Such systems have been shown to capture motility regimes typical of biological cells and are ideal candidates as building-block for the fabrication of soft biomimetic materials of interest in pharmacology, tissue engineering and lab on chip devices. While their behavior is well established in unconstrained environments, much less is known about their dynamics under strong confinement. Here, we numerically study the physics of a droplet of active polar fluid migrating within a microchannel hosting a constriction with adhesive properties, and report evidence of a striking variety of dynamic regimes and morphological features, whose properties crucially depend upon droplet speed and elasticity, degree of confinement within the constriction and adhesiveness to the pore. Our results suggest that non-uniform adhesion forces are instrumental in enabling the crossing through narrow orifices, in contrast to larger gaps where a careful balance between speed and elasticity is sufficient to guarantee the transition. These observations may be useful for improving the design of artificial micro-swimmers, of interest in material science and pharmaceutics, and potentially for cell sorting in microfluidic devices.
Collapse
|
19
|
Floyd C, Vaikuntanathan S, Dinner AR. Simulating structured fluids with tensorial viscoelasticity. J Chem Phys 2023; 158:054906. [PMID: 36754798 DOI: 10.1063/5.0123470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We consider an immersed elastic body that is actively driven through a structured fluid by a motor or an external force. The behavior of such a system generally cannot be solved analytically, necessitating the use of numerical methods. However, current numerical methods omit important details of the microscopic structure and dynamics of the fluid, which can modulate the magnitudes and directions of viscoelastic restoring forces. To address this issue, we develop a simulation platform for modeling viscoelastic media with tensorial elasticity. We build on the lattice Boltzmann algorithm and incorporate viscoelastic forces, elastic immersed objects, a microscopic orientation field, and coupling between viscoelasticity and the orientation field. We demonstrate our method by characterizing how the viscoelastic restoring force on a driven immersed object depends on various key parameters as well as the tensorial character of the elastic response. We find that the restoring force depends non-monotonically on the rate of diffusion of the stress and the size of the object. We further show how the restoring force depends on the relative orientation of the microscopic structure and the pulling direction. These results imply that accounting for previously neglected physical features, such as stress diffusion and the microscopic orientation field, can improve the realism of viscoelastic simulations. We discuss possible applications and extensions to the method.
Collapse
Affiliation(s)
- Carlos Floyd
- Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Aaron R Dinner
- Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
Ioratim-Uba A, Loisy A, Henkes S, Liverpool TB. The nonlinear motion of cells subject to external forces. SOFT MATTER 2022; 18:9008-9016. [PMID: 36399136 PMCID: PMC10141577 DOI: 10.1039/d2sm00934j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
To develop a minimal model for a cell moving in a crowded environment such as in tissue, we investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and treadmilling polymerisation, and we investigate how the active drop motion is altered by these surface forces. We find a highly non-linear response to forces that we characterise using drop velocity, drop shape, and the traction between the drop and the substrate. Each self-propulsion mechanism gives rise to two main modes of motion: a long thin drop with zero traction in the bulk, mostly occurring under strong stretching forces, and a parabolic drop with finite traction in the bulk, mostly occurring under strong squeezing forces. In each case there is a sharp transition between parabolic, and long thin drops as a function of the applied forces and indications of drop break-up where large forces stretch the drop.
Collapse
Affiliation(s)
| | - Aurore Loisy
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
| | - Silke Henkes
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
- Lorentz Institute for Theoretical Physics, Leiden University, Leiden 2333 CA, The Netherlands
| | | |
Collapse
|
21
|
Chen L, Lee CF, Maitra A, Toner J. Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d>2. PHYSICAL REVIEW LETTERS 2022; 129:198001. [PMID: 36399725 DOI: 10.1103/physrevlett.129.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We present a hydrodynamic theory of incompressible polar active fluids with quenched random field disorder. This theory shows that such fluids can overcome the disruption caused by the quenched disorder and move coherently, in the sense of having a nonzero mean velocity in the hydrodynamic limit. However, the scaling behavior of this class of active systems cannot be described by linearized hydrodynamics in spatial dimensions between 2 and 5. Nonetheless, we obtain the exact dimension-dependent scaling exponents in these dimensions.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95302 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
22
|
Callan-Jones A. Self-organization in amoeboid motility. Front Cell Dev Biol 2022; 10:1000071. [PMID: 36313569 PMCID: PMC9614430 DOI: 10.3389/fcell.2022.1000071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Amoeboid motility has come to refer to a spectrum of cell migration modes enabling a cell to move in the absence of strong, specific adhesion. To do so, cells have evolved a range of motile surface movements whose physical principles are now coming into view. In response to external cues, many cells—and some single-celled-organisms—have the capacity to turn off their default migration mode. and switch to an amoeboid mode. This implies a restructuring of the migration machinery at the cell scale and suggests a close link between cell polarization and migration mediated by self-organizing mechanisms. Here, I review recent theoretical models with the aim of providing an integrative, physical picture of amoeboid migration.
Collapse
|
23
|
Stegemerten F, John K, Thiele U. Symmetry-breaking, motion and bistability of active drops through polarization-surface coupling. SOFT MATTER 2022; 18:5823-5832. [PMID: 35899866 DOI: 10.1039/d2sm00648k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell crawling crucially depends on the collective dynamics of the acto-myosin cytoskeleton. However, it remains an open question to what extent cell polarization and persistent motion depend on continuous regulatory mechanisms and autonomous physical mechanisms. Experiments on cell fragments and theoretical considerations for active polar liquids have highlighted that physical mechanisms induce motility through splay and bend configurations in a nematic director field. Here, we employ a simple model, derived from basic thermodynamic principles, for active polar free-surface droplets to identify a different mechanism of motility. Namely, active stresses drive drop motion through spatial variations of polarization strength. This robustly induces parity-symmetry breaking and motility even for liquid ridges (2D drops) and adds to splay- and bend-driven pumping in 3D geometries. Intriguingly, then, stable polar moving and axisymmetric resting states may coexist, reminiscent of the interconversion of moving and resting keratocytes by external stimuli. The identified additional motility mode originates from a competition between the elastic bulk energy and the polarity control exerted by the drop surface. As it already breaks parity-symmetry for passive drops, the resulting back-forth asymmetry enables active stresses to effectively pump liquid and drop motion ensues.
Collapse
Affiliation(s)
- Fenna Stegemerten
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
| | - Karin John
- Université Grenoble-Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, 38000 Grenoble, France
| | - Uwe Thiele
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstr. 2, 48149 Münster, Germany.
| |
Collapse
|
24
|
Chelly H, Recho P. Cell motility as an energy minimization process. Phys Rev E 2022; 105:064401. [PMID: 35854577 DOI: 10.1103/physreve.105.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The dynamics of active matter driven by interacting molecular motors has a nonpotential structure at the local scale. However, we show that there exists a quasipotential effectively describing the collective self-organization of the motors propelling a cell at a continuum active gel level. Such a model allows us to understand cell motility as an active phase transition problem between the static and motile steady-state configurations that minimize the quasipotential. In particular, both configurations can coexist in a metastable fashion and a small stochastic disorder in the gel is sufficient to trigger an intermittent cell dynamics where either static or motile phases are more probable, depending on which state is the global minimum of the quasipotential.
Collapse
Affiliation(s)
- H Chelly
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - P Recho
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
25
|
Gsell S, Merkel M. Phase separation dynamics in deformable droplets. SOFT MATTER 2022; 18:2672-2683. [PMID: 35311835 DOI: 10.1039/d1sm01647d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phase separation can drive spatial organization of multicomponent mixtures. For instance in developing animal embryos, effective phase separation descriptions have been used to account for the spatial organization of different tissue types. Similarly, separation of different tissue types is also observed in stem cell aggregates, where the emergence of a polar organization can mimic early embryonic axis formation. Here, we describe such aggregates as deformable two-phase fluid droplets, which are suspended in a fluid environment (third phase). Using hybrid finite-volume Lattice-Boltzmann simulations, we numerically explore the out-of-equilibrium routes that can lead to the polar equilibrium state of such a droplet. We focus on the interplay between spinodal decomposition and advection with hydrodynamic flows driven by interface tensions, which we characterize by a Peclet number Pe. Consistent with previous work, for large Pe the coarsening process is generally accelerated. However, for intermediate Pe we observe long-lived, strongly elongated droplets, where both phases form an alternating stripe pattern. We show that these "croissant" states are close to mechanical equilibrium and coarsen only slowly through diffusive fluxes in an Ostwald-ripening-like process. Finally, we show that a surface tension asymmetry between both droplet phases leads to transient, rotationally symmetric states whose resolution leads to flows reminiscent of Marangoni flows. Our work highlights the importance of advection for the phase separation process in finite, deformable systems.
Collapse
Affiliation(s)
- Simon Gsell
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
26
|
Krause V, Voigt A. Deformable active nematic particles and emerging edge currents in circular confinements. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:14. [PMID: 35175445 PMCID: PMC8854302 DOI: 10.1140/epje/s10189-022-00162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
We consider a microscopic field theoretical approach for interacting active nematic particles. With only steric interactions the self-propulsion strength in such systems can lead to different collective behaviour, e.g. synchronized self-spinning and collective translation. The different behaviour results from the delicate interplay between internal nematic structure, particle shape deformation and particle-particle interaction. For intermediate active strength an asymmetric particle shape emerges and leads to chirality and self-spinning crystals. For larger active strength the shape is symmetric and translational collective motion emerges. Within circular confinements, depending on the packing fraction, the self-spinning regime either stabilizes positional and orientational order or can lead to edge currents and global rotation which destroys the synchronized self-spinning crystalline structure.
Collapse
Affiliation(s)
- Veit Krause
- Institut für Wissenschaftliches Rechnen, TU Dresden, 01062, Dresden, Germany
| | - Axel Voigt
- Institut für Wissenschaftliches Rechnen, TU Dresden, 01062, Dresden, Germany.
- Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307, Dresden, Germany.
- Cluster of Excellence, Physics of Life, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
27
|
Cates ME, Fodor É, Markovich T, Nardini C, Tjhung E. Stochastic Hydrodynamics of Complex Fluids: Discretisation and Entropy Production. ENTROPY 2022; 24:e24020254. [PMID: 35205548 PMCID: PMC8870959 DOI: 10.3390/e24020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
Many complex fluids can be described by continuum hydrodynamic field equations, to which noise must be added in order to capture thermal fluctuations. In almost all cases, the resulting coarse-grained stochastic partial differential equations carry a short-scale cutoff, which is also reflected in numerical discretisation schemes. We draw together our recent findings concerning the construction of such schemes and the interpretation of their continuum limits, focusing, for simplicity, on models with a purely diffusive scalar field, such as ‘Model B’ which describes phase separation in binary fluid mixtures. We address the requirement that the steady-state entropy production rate (EPR) must vanish for any stochastic hydrodynamic model in a thermal equilibrium. Only if this is achieved can the given discretisation scheme be relied upon to correctly calculate the nonvanishing EPR for ‘active field theories’ in which new terms are deliberately added to the fluctuating hydrodynamic equations that break detailed balance. To compute the correct probabilities of forward and time-reversed paths (whose ratio determines the EPR), we must make a careful treatment of so-called ‘spurious drift’ and other closely related terms that depend on the discretisation scheme. We show that such subtleties can arise not only in the temporal discretisation (as is well documented for stochastic ODEs with multiplicative noise) but also from spatial discretisation, even when noise is additive, as most active field theories assume. We then review how such noise can become multiplicative via off-diagonal couplings to additional fields that thermodynamically encode the underlying chemical processes responsible for activity. In this case, the spurious drift terms need careful accounting, not just to evaluate correctly the EPR but also to numerically implement the Langevin dynamics itself.
Collapse
Affiliation(s)
- Michael E. Cates
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK;
| | - Étienne Fodor
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg;
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Correspondence:
| | - Cesare Nardini
- Service de Physique de l’Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France;
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, 75005 Paris, France
| | - Elsen Tjhung
- Department of Physics, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, UK;
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
28
|
Wenzel D, Voigt A. Multiphase field models for collective cell migration. Phys Rev E 2021; 104:054410. [PMID: 34942697 DOI: 10.1103/physreve.104.054410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 01/23/2023]
Abstract
Confluent cell monolayers and epithelia tissues show remarkable patterns and correlations in structural arrangements and actively driven collective flows. We simulate these properties using multiphase field models. The models are based on cell deformations and cell-cell interactions and we investigate the influence of microscopic details to incorporate active forces on emerging phenomena. We compare four different approaches, one in which the activity is determined by a random orientation, one where the activity is related to the deformation of the cells, and two models with subcellular details to resolve the mechanochemical interactions underlying cell migration. The models are compared with respect to generic features, such as coordination number distribution, cell shape variability, emerging nematic properties, as well as vorticity correlations and flow patterns in large confluent monolayers and confinements. All results are compared with experimental data for a large variety of cell cultures. The appearing qualitative differences of the models show the importance of microscopic details and provide a route towards predictive simulations of patterns and correlations in cell colonies.
Collapse
Affiliation(s)
- D Wenzel
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - A Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany.,Cluster of Excellence-Physics of Life, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
29
|
Peterson MSE, Baskaran A, Hagan MF. Vesicle shape transformations driven by confined active filaments. Nat Commun 2021; 12:7247. [PMID: 34903731 PMCID: PMC8668962 DOI: 10.1038/s41467-021-27310-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
In active matter systems, deformable boundaries provide a mechanism to organize internal active stresses. To study a minimal model of such a system, we perform particle-based simulations of an elastic vesicle containing a collection of polar active filaments. The interplay between the active stress organization due to interparticle interactions and that due to the deformability of the confinement leads to a variety of filament spatiotemporal organizations that have not been observed in bulk systems or under rigid confinement, including highly-aligned rings and caps. In turn, these filament assemblies drive dramatic and tunable transformations of the vesicle shape and its dynamics. We present simple scaling models that reveal the mechanisms underlying these emergent behaviors and yield design principles for engineering active materials with targeted shape dynamics.
Collapse
Affiliation(s)
- Matthew S E Peterson
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States
| | - Aparna Baskaran
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States.
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States.
| |
Collapse
|
30
|
Fausti G, Tjhung E, Cates ME, Nardini C. Capillary Interfacial Tension in Active Phase Separation. PHYSICAL REVIEW LETTERS 2021; 127:068001. [PMID: 34420338 DOI: 10.1103/physrevlett.127.068001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In passive fluid-fluid phase separation, a single interfacial tension sets both the capillary fluctuations of the interface and the rate of Ostwald ripening. We show that these phenomena are governed by two different tensions in active systems, and compute the capillary tension σ_{cw} which sets the relaxation rate of interfacial fluctuations in accordance with capillary wave theory. We discover that strong enough activity can cause negative σ_{cw}. In this regime, depending on the global composition, the system self-organizes, either into a microphase-separated state in which coalescence is highly inhibited, or into an "active foam" state. Our results are obtained for Active Model B+, a minimal continuum model which, although generic, admits significant analytical progress.
Collapse
Affiliation(s)
- G Fausti
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - E Tjhung
- Department of Physics, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - M E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - C Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
31
|
Chen YC, Jolicoeur B, Chueh CC, Wu KT. Flow coupling between active and passive fluids across water-oil interfaces. Sci Rep 2021; 11:13965. [PMID: 34234195 PMCID: PMC8263611 DOI: 10.1038/s41598-021-93310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023] Open
Abstract
Active fluid droplets surrounded by oil can spontaneously develop circulatory flows. However, the dynamics of the surrounding oil and their influence on the active fluid remain poorly understood. To investigate interactions between the active fluid and the passive oil across their interface, kinesin-driven microtubule-based active fluid droplets were immersed in oil and compressed into a cylinder-like shape. The droplet geometry supported intradroplet circulatory flows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self-elongating rods demonstrated that the flow transition resulted from flow coupling across the interface between active fluid and oil, with a millimeter-scale coupling length. In addition, two novel millifluidic devices were developed that could trigger and suppress intradroplet circulatory flows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fluid droplet system and shows that circulatory flows within droplets can be affected by millimeter-scale flow coupling across the interface between the active fluid and the oil.
Collapse
Affiliation(s)
- Yen-Chen Chen
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Brock Jolicoeur
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Chih-Che Chueh
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kun-Ta Wu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
32
|
Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. LIQUID CRYSTALS REVIEWS 2021; 8:59-129. [PMID: 34956738 PMCID: PMC8698256 DOI: 10.1080/21680396.2021.1919576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 05/25/2023]
Abstract
The dynamics of small particles, both living such as swimming bacteria and inanimate, such as colloidal spheres, has fascinated scientists for centuries. If one could learn how to control and streamline their chaotic motion, that would open technological opportunities in the transformation of stored or environmental energy into systematic motion, with applications in micro-robotics, transport of matter, guided morphogenesis. This review presents an approach to command microscale dynamics by replacing an isotropic medium with a liquid crystal. Orientational order and associated properties, such as elasticity, surface anchoring, and bulk anisotropy, enable new dynamic effects, ranging from the appearance and propagation of particle-like solitary waves to self-locomotion of an active droplet. By using photoalignment, the liquid crystal can be patterned into predesigned structures. In the presence of the electric field, these patterns enable the transport of solid and fluid particles through nonlinear electrokinetics rooted in anisotropy of conductivity and permittivity. Director patterns command the dynamics of swimming bacteria, guiding their trajectories, polarity of swimming, and distribution in space. This guidance is of a higher level of complexity than a simple following of the director by rod-like microorganisms. Namely, the director gradients mediate hydrodynamic interactions of bacteria to produce an active force and collective polar modes of swimming. The patterned director could also be engraved in a liquid crystal elastomer. When an elastomer coating is activated by heat or light, these patterns produce a deterministic surface topography. The director gradients define an activation force that shapes the elastomer in a manner similar to the active stresses triggering flows in active nematics. The patterned elastomer substrates could be used to define the orientation of cells in living tissues. The liquid-crystal guidance holds a major promise in achieving the goal of commanding microscale active flows.
Collapse
Affiliation(s)
- Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
33
|
Wang H, Qian T, Xu X. Onsager's variational principle in active soft matter. SOFT MATTER 2021; 17:3634-3653. [PMID: 33480912 DOI: 10.1039/d0sm02076a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Onsagers variational principle (OVP) was originally proposed by Lars Onsager in 1931 [L. Onsager, Phys. Rev., 1931, 37, 405]. This fundamental principle provides a very powerful tool for formulating thermodynamically consistent models. It can also be employed to find approximate solutions, especially in the study of soft matter dynamics. In this work, OVP is extended and applied to the dynamic modeling of active soft matter such as suspensions of bacteria and aggregates of animal cells. We first extend the general formulation of OVP to active matter dynamics where active forces are included as external non-conservative forces. We then use OVP to analyze the directional motion of individual active units: a molecular motor walking on a stiff biofilament and a toy two-sphere microswimmer. Next we use OVP to formulate a diffuse-interface model for an active polar droplet on a solid substrate. In addition to the generalized hydrodynamic equations for active polar fluids in the bulk region, we have also derived thermodynamically consistent boundary conditions. Finally, we consider the dynamics of a thin active polar droplet under the lubrication approximation. We use OVP to derive a generalized thin film equation and then employ OVP as an approximation tool to find the spreading laws for the thin active polar droplet. By incorporating the activity of biological systems into OVP, we develop a general approach to construct thermodynamically consistent models for better understanding the emergent behaviors of individual animal cells and cell aggregates or tissues.
Collapse
Affiliation(s)
- Haiqin Wang
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | | |
Collapse
|
34
|
-N Young Y, J Shelley M, B Stein D. The many behaviors of deformable active droplets. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2849-2881. [PMID: 33892575 DOI: 10.3934/mbe.2021145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Active fluids consume fuel at the microscopic scale, converting this energy into forces that can drive macroscopic motions over scales far larger than their microscopic constituents. In some cases, the mechanisms that give rise to this phenomenon have been well characterized, and can explain experimentally observed behaviors in both bulk fluids and those confined in simple stationary geometries. More recently, active fluids have been encapsulated in viscous drops or elastic shells so as to interact with an outer environment or a deformable boundary. Such systems are not as well understood. In this work, we examine the behavior of droplets of an active nematic fluid. We study their linear stability about the isotropic equilibrium over a wide range of parameters, identifying regions in which different modes of instability dominate. Simulations of their full dynamics are used to identify their nonlinear behavior within each region. When a single mode dominates, the droplets behave simply: as rotors, swimmers, or extensors. When parameters are tuned so that multiple modes have nearly the same growth rate, a pantheon of modes appears, including zigzaggers, washing machines, wanderers, and pulsators.
Collapse
Affiliation(s)
- Y -N Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Michael J Shelley
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
- Courant Institute, New York University, New York, New York 10012, USA
| | - David B Stein
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|
35
|
Tiribocchi A, Montessori A, Lauricella M, Bonaccorso F, Succi S, Aime S, Milani M, Weitz DA. The vortex-driven dynamics of droplets within droplets. Nat Commun 2021; 12:82. [PMID: 33398018 PMCID: PMC7782531 DOI: 10.1038/s41467-020-20364-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
Understanding the fluid-structure interaction is crucial for an optimal design and manufacturing of soft mesoscale materials. Multi-core emulsions are a class of soft fluids assembled from cluster configurations of deformable oil-water double droplets (cores), often employed as building-blocks for the realisation of devices of interest in bio-technology, such as drug-delivery, tissue engineering and regenerative medicine. Here, we study the physics of multi-core emulsions flowing in microfluidic channels and report numerical evidence of a surprisingly rich variety of driven non-equilibrium states (NES), whose formation is caused by a dipolar fluid vortex triggered by the sheared structure of the flow carrier within the microchannel. The observed dynamic regimes range from long-lived NES at low core-area fraction, characterised by a planetary-like motion of the internal drops, to short-lived ones at high core-area fraction, in which a pre-chaotic motion results from multi-body collisions of inner drops, as combined with self-consistent hydrodynamic interactions. The onset of pre-chaotic behavior is marked by transitions of the cores from one vortex to another, a process that we interpret as manifestations of the system to maximize its entropy by filling voids, as they arise dynamically within the capsule.
Collapse
Affiliation(s)
- A. Tiribocchi
- grid.25786.3e0000 0004 1764 2907Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Roma, 00161 Italy ,grid.5326.20000 0001 1940 4177Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, 00185 Italy
| | - A. Montessori
- grid.5326.20000 0001 1940 4177Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, 00185 Italy
| | - M. Lauricella
- grid.5326.20000 0001 1940 4177Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, 00185 Italy
| | - F. Bonaccorso
- grid.25786.3e0000 0004 1764 2907Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Roma, 00161 Italy ,grid.5326.20000 0001 1940 4177Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, 00185 Italy
| | - S. Succi
- grid.25786.3e0000 0004 1764 2907Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Roma, 00161 Italy ,grid.5326.20000 0001 1940 4177Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, 00185 Italy ,grid.38142.3c000000041936754XInstitute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
| | - S. Aime
- grid.38142.3c000000041936754XInstitute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA ,grid.15736.360000 0001 1882 0021Matiére Molle et Chimie, Ecole Supérieure de Physique et Chimie Industrielles, Paris, 75005 France
| | - M. Milani
- grid.4708.b0000 0004 1757 2822Universitá degli Studi di Milano, via Celoria 16, Milano, 20133 Italy
| | - D. A. Weitz
- grid.38142.3c000000041936754XInstitute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA ,grid.38142.3c000000041936754XDepartment of Physics, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
36
|
Chen S, Markovich T, MacKintosh FC. Motor-Free Contractility in Active Gels. PHYSICAL REVIEW LETTERS 2020; 125:208101. [PMID: 33258614 DOI: 10.1103/physrevlett.125.208101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Animal cells form contractile structures to promote various functions, from cell motility to cell division. Force generation in these structures is often due to molecular motors such as myosin that require polar substrates for their function. Here, we propose a motor-free mechanism that can generate contraction in biopolymer networks without the need for polarity. This mechanism is based on active binding and unbinding of cross-linkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We find that these two ingredients can generate steady state contraction via a nonthermal, ratchetlike process. We calculate the resulting force-velocity relation using both coarse-grained and microscopic models.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
37
|
Hardoüin J, Laurent J, Lopez-Leon T, Ignés-Mullol J, Sagués F. Active microfluidic transport in two-dimensional handlebodies. SOFT MATTER 2020; 16:9230-9241. [PMID: 32926045 DOI: 10.1039/d0sm00610f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unlike traditional nematic liquid crystals, which adopt ordered equilibrium configurations compatible with the topological constraints imposed by the boundaries, active nematics are intrinsically disordered because of their self-sustained internal flows. Controlling the flow patterns of active nematics remains a limiting step towards their use as functional materials. Here we show that confining a tubulin-kinesin active nematic to a network of connected annular microfluidic channels enables controlled directional flows and autonomous transport. In single annular channels, for narrow widths, the typically chaotic streams transform into well-defined circulating flows, whose direction or handedness can be controlled by introducing asymmetric corrugations on the channel walls. The dynamics is altered when two or three annular channels are interconnected. These more complex topologies lead to scenarios of synchronization, anti-correlation, and frustration of the active flows, and to the stabilisation of high topological singularities in both the flow field and the orientational field of the material. Controlling textures and flows in these microfluidic platforms opens unexplored perspectives towards their application in biotechnology and materials science.
Collapse
Affiliation(s)
- Jérôme Hardoüin
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Justine Laurent
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Teresa Lopez-Leon
- Laboratoire de Physique et Mécanique des Milieux hétérogènes (PMMH), CNRS, ESPCI Paris, PSL Research University, Paris, France and Laboratoire Gulliver, UMR CNRS 7083, ESPCI Paris, PSL Research University, Paris, France
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain. and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling. Proc Natl Acad Sci U S A 2020; 117:24670-24678. [PMID: 32958682 DOI: 10.1073/pnas.2011785117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell crawling requires the generation of intracellular forces by the cytoskeleton and their transmission to an extracellular substrate through specific adhesion molecules. Crawling cells show many features of excitable systems, such as spontaneous symmetry breaking and crawling in the absence of external cues, and periodic and propagating waves of activity. Mechanical instabilities in the active cytoskeleton network and feedback loops in the biochemical network of activators and repressors of cytoskeleton dynamics have been invoked to explain these dynamical features. Here, I show that the interplay between the dynamics of cell-substrate adhesion and linear cellular mechanics is sufficient to reproduce many nonlinear dynamical patterns observed in spreading and crawling cells. Using an analytical formalism of the molecular clutch model of cell adhesion, regulated by local mechanical forces, I show that cellular traction forces exhibit stick-slip dynamics resulting in periodic waves of protrusion/retraction and propagating waves along the cell edge. This can explain spontaneous symmetry breaking and polarization of spreading cells, leading to steady crawling or bipedal motion, and bistability, where persistent cell motion requires a sufficiently strong transient external stimulus. The model also highlights the role of membrane tension in providing the long-range mechanical communication across the cell required for symmetry breaking.
Collapse
|
39
|
Carenza LN, Gonnella G, Lamura A, Marenduzzo D, Negro G, Tiribocchi A. Soft channel formation and symmetry breaking in exotic active emulsions. Sci Rep 2020; 10:15936. [PMID: 32985576 PMCID: PMC7522284 DOI: 10.1038/s41598-020-72742-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/22/2020] [Indexed: 11/09/2022] Open
Abstract
We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emulsification of the two phases. By varying the intensity of the contractile activity and of an externally imposed shear flow, we find three possible morphologies. For low shear rates, a simple lamellar state is obtained. For intermediate activity and shear rate, an asymmetric state emerges, which is characterized by shear and concentration banding at the polar/isotropic interface. A further increment in the active forcing leads to the self-assembly of a soft channel where an isotropic fluid flows between two layers of active material. We characterize the stability of this state by performing a dynamical test varying the intensity of the active forcing and shear rate. Finally, we address the rheological properties of the system by measuring the effective shear viscosity, finding that this increases as active forcing is increased-so that the fluid thickens with activity.
Collapse
Affiliation(s)
- L N Carenza
- Dipartimento di Fisica, Università degli Srudi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - G Gonnella
- Dipartimento di Fisica, Università degli Srudi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - A Lamura
- IAC - CNR, Via Amendola, 122/D, 70126, Bari, Italy
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK
| | - G Negro
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK.
| | - A Tiribocchi
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy.,IAC - CNR, Via dei Taurini 19, Rome, Italy
| |
Collapse
|
40
|
Sebtosheikh M, Naji A. Effective interactions mediated between two permeable disks in an active fluid. Sci Rep 2020; 10:15570. [PMID: 32968107 PMCID: PMC7511345 DOI: 10.1038/s41598-020-71209-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsion) strengths for the ABPs. We show that such a discontinuous motility field strongly affects spatial distribution of ABPs and thus also the effective interaction mediated between the inclusions through the active bath. Such net interactions arise from soft interfacial repulsions between ABPs that sterically interact with and/or pass through permeable membranes assumed to enclose the inclusions. Both regimes of repulsion and attractive (albeit with different mechanisms) are reported and summarized in overall phase diagrams.
Collapse
Affiliation(s)
- Mahmoud Sebtosheikh
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
41
|
Le Goff T, Liebchen B, Marenduzzo D. Actomyosin Contraction Induces In-Bulk Motility of Cells and Droplets. Biophys J 2020; 119:1025-1032. [PMID: 32795395 DOI: 10.1016/j.bpj.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/29/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Cell crawling on two-dimensional surfaces is a relatively well-understood phenomenon that is based on actin polymerization at a cell's front edge and anchoring on a substrate, allowing the cell to pull itself forward. However, some cells, such as cancer cells invading a three-dimensional matrigel, can also swim in the bulk, where surface adhesion is impossible. Although there is strong evidence that the self-organized engine that drives cells forward in the bulk involves myosin, the specific propulsion mechanism remains largely unclear. Here, we propose a minimal model for in-bulk self-motility of a droplet containing an isotropic and compressible contractile gel, representing a cell extract containing a disordered actomyosin network. In our model, contraction mediates a feedback loop between myosin-induced flow and advection-induced myosin accumulation, which leads to clustering and locally enhanced flow. The symmetry of such flow is then spontaneously broken through actomyosin-membrane interactions, leading to self-organized droplet motility relative to the underlying solvent. Depending on the balance between contraction, diffusion, detachment rate of myosin, and effective surface tension, this motion can be either straight or circular. Our simulations and analytical results shed new light on in-bulk myosin-driven cell motility in living cells and provide a framework to design a novel type of synthetic active matter droplet potentially resembling the motility mechanism of biological cells.
Collapse
Affiliation(s)
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
42
|
Zhang G, Mueller R, Doostmohammadi A, Yeomans JM. Active inter-cellular forces in collective cell motility. J R Soc Interface 2020; 17:20200312. [PMID: 32781933 DOI: 10.1098/rsif.2020.0312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The collective behaviour of confluent cell sheets is strongly influenced both by polar forces, arising through cytoskeletal propulsion, and by active inter-cellular forces, which are mediated by interactions across cell-cell junctions. We use a phase-field model to explore the interplay between these two contributions and compare the dynamics of a cell sheet when the polarity of the cells aligns to (i) their main axis of elongation, (ii) their velocity and (iii) when the polarity direction executes a persistent random walk. In all three cases, we observe a sharp transition from a jammed state (where cell rearrangements are strongly suppressed) to a liquid state (where the cells can move freely relative to each other) when either the polar or the inter-cellular forces are increased. In addition, for case (ii) only, we observe an additional dynamical state, flocking (solid or liquid), where the majority of the cells move in the same direction. The flocking state is seen for strong polar forces, but is destroyed as the strength of the inter-cellular activity is increased.
Collapse
Affiliation(s)
- Guanming Zhang
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Amin Doostmohammadi
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, DK
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
43
|
Li M, Hosseinzadeh M, Pagonabarraga I, Seemann R, Brinkmann M, Fleury JB. Kinetics of active water/ethanol Janus droplets. SOFT MATTER 2020; 16:6803-6811. [PMID: 32627799 DOI: 10.1039/d0sm00460j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Droplets made of a water/ethanol mixture spontaneously self-propel in an oil/surfactant solution and, depending on the initial ethanol concentration at the time of production, may evolve in up to three stages. Upon self-propulsion the droplets absorb surfactant molecules during their continuous motion in the oily phase. In combination with the continuous loss of ethanol this mass exchange with the ambient phase may lead to a spontaneous phase separation of the water/ethanol mixture, and eventually to the formation of characteristic Janus droplets. Supported by experimental evidence, we propose a simple model that is able to explain the propulsion velocity and its scaling with the droplet radius in the last stage of the droplet evolution.
Collapse
Affiliation(s)
- Menglin Li
- Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | | | - Ignacio Pagonabarraga
- Department of Condensed Matter Physics, University of Barcelona, Carrer de Marti i Franques 1, Barcelona, Spain
| | - Ralf Seemann
- Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | - Martin Brinkmann
- Experimental Physics, Saarland University, 66123 Saarbrücken, Germany. and Smart Materials & Surfaces Laboratory, Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | |
Collapse
|
44
|
Trinschek S, Stegemerten F, John K, Thiele U. Thin-film modeling of resting and moving active droplets. Phys Rev E 2020; 101:062802. [PMID: 32688574 DOI: 10.1103/physreve.101.062802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
We propose a generic model for thin films and shallow drops of a polar active liquid that have a free surface and are in contact with a solid substrate. The model couples evolution equations for the film height and the local polarization in the form of a gradient dynamics supplemented with active stresses and fluxes. A wetting energy for a partially wetting liquid is incorporated allowing for motion of the liquid-solid-gas contact line. This gives a consistent basis for the description of drops of dense bacterial suspensions or compact aggregates of living cells on solid substrates. As example, we analyze the dynamics of two-dimensional active drops (i.e., ridges) and demonstrate how active forces compete with passive surface forces to shape droplets and drive their motion. In our simple two-dimensional scenario we find that defect structures within the polarization profile drastically influence the shape and motility of active droplets. Thus, we can observe a transition from resting to motile droplets via the elimination of defects in the polarization profile. Furthermore, droplet motility is modulated by strong active stresses. Contractile stresses even lead to topological changes, i.e., drop splitting, which is naturally encoded in the evolution equations.
Collapse
Affiliation(s)
- Sarah Trinschek
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Université Grenoble-Alpes, CNRS, Laboratoire Interdisciplinaire de Physique 38000 Grenoble, France
| | - Fenna Stegemerten
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Karin John
- Université Grenoble-Alpes, CNRS, Laboratoire Interdisciplinaire de Physique 38000 Grenoble, France
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| |
Collapse
|
45
|
Berman SA, Mitchell KA. Trapping of swimmers in a vortex lattice. CHAOS (WOODBURY, N.Y.) 2020; 30:063121. [PMID: 32611071 DOI: 10.1063/5.0005542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
We examine the motion of rigid, ellipsoidal swimmers subjected to a steady vortex flow in two dimensions. Numerical simulations of swimmers in a spatially periodic array of vortices reveal a range of possible behaviors, including trapping inside a single vortex and motility-induced diffusion across many vortices. While the trapping probability vanishes at a sufficiently high swimming speed, we find that it exhibits surprisingly large oscillations as this critical swimming speed is approached. Strikingly, at even higher swimming speeds, we find swimmers that swim perpendicular to their elongation direction can again become trapped. To explain this complex behavior, we investigate the underlying swimmer phase-space geometry. We identify the fixed points and periodic orbits of the swimmer equations of motion that regulate swimmer trapping inside a single vortex cell. For low to intermediate swimming speeds, we find that a stable periodic orbit surrounded by invariant tori forms a transport barrier to swimmers and can trap them inside individual vortices. For swimming speeds approaching the maximum fluid speed, we find instead that perpendicular swimmers can be trapped by asymptotically stable fixed points. A bifurcation analysis of the stable periodic orbit and the fixed points explains the complex and non-monotonic breakdown and re-emergence of swimmer trapping as the swimmer speed and shape are varied.
Collapse
Affiliation(s)
- Simon A Berman
- Department of Physics, University of California, Merced, Merced, California 95344, USA
| | - Kevin A Mitchell
- Department of Physics, University of California, Merced, Merced, California 95344, USA
| |
Collapse
|
46
|
Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles. Nat Commun 2020; 11:2210. [PMID: 32372005 PMCID: PMC7200706 DOI: 10.1038/s41467-020-15713-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/20/2020] [Indexed: 12/03/2022] Open
Abstract
Symmetry breaking and the emergence of self-organized patterns is the hallmark of complexity. Here, we demonstrate that a sessile drop, containing titania powder particles with negligible self-propulsion, exhibits a transition to collective motion leading to self-organized flow patterns. This phenomenology emerges through a novel mechanism involving the interplay between the chemical activity of the photocatalytic particles, which induces Marangoni stresses at the liquid–liquid interface, and the geometrical confinement provided by the drop. The response of the interface to the chemical activity of the particles is the source of a significantly amplified hydrodynamic flow within the drop, which moves the particles. Furthermore, in ensembles of such active drops long-ranged ordering of the flow patterns within the drops is observed. We show that the ordering is dictated by a chemical communication between drops, i.e., an alignment of the flow patterns is induced by the gradients of the chemicals emanating from the active particles, rather than by hydrodynamic interactions. Complex systems exhibit unique properties like spontaneous symmetry breaking and self-organization. Singh et al. show that catalytically active, non-propelling particles can induce steady vortical flows within a drop, as well as flow alignment between neighboring drops.
Collapse
|
47
|
Loisy A, Eggers J, Liverpool TB. How many ways a cell can move: the modes of self-propulsion of an active drop. SOFT MATTER 2020; 16:3106-3124. [PMID: 32154549 DOI: 10.1039/d0sm00070a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous physical models have been proposed to explain how cell motility emerges from internal activity, mostly focused on how crawling motion arises from internal processes. Here we offer a classification of self-propulsion mechanisms based on general physical principles, showing that crawling is not the only way for cells to move on a substrate. We consider a thin drop of active matter on a planar substrate and fully characterize its autonomous motion for all three possible sources of driving: (i) the stresses induced in the bulk by active components, which allow in particular tractionless motion, (ii) the self-propulsion of active components at the substrate, which gives rise to crawling motion, and (iii) a net capillary force, possibly self-generated, and coupled to internal activity. We determine travelling-wave solutions to the lubrication equations as a function of a dimensionless activity parameter for each mode of motion. Numerical simulations are used to characterize the drop motion over a wide range of activity magnitudes, and explicit analytical solutions in excellent agreement with the simulations are derived in the weak-activity regime.
Collapse
Affiliation(s)
- Aurore Loisy
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
48
|
Lavi I, Meunier N, Voituriez R, Casademunt J. Motility and morphodynamics of confined cells. Phys Rev E 2020; 101:022404. [PMID: 32168566 DOI: 10.1103/physreve.101.022404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We introduce a minimal hydrodynamic model of polarization, migration, and deformation of a biological cell confined between two parallel surfaces. In our model, the cell is driven out of equilibrium by an active cytsokeleton force that acts on the membrane. The cell cytoplasm, described as a viscous droplet in the Darcy flow regime, contains a diffusive solute that actively transduces the applied cytoskeleton force. While fairly simple and analytically tractable, this quasi-two-dimensional model predicts a range of compelling dynamic behaviours. A linear stability analysis of the system reveals that solute activity first destabilizes a global polarization-translation mode, prompting cell motility through spontaneous symmetry breaking. At higher activity, the system crosses a series of Hopf bifurcations leading to coupled oscillations of droplet shape and solute concentration profiles. At the nonlinear level, we find traveling-wave solutions associated with unique polarized shapes that resemble experimental observations. Altogether, this model offers an analytical paradigm of active deformable systems in which viscous hydrodynamics are coupled to diffusive force transducers.
Collapse
Affiliation(s)
- Ido Lavi
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | | | - Raphael Voituriez
- Laboratoire Jean Perrin, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Jaume Casademunt
- Departament de Fsica de la Matria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
49
|
Loisy A, Eggers J, Liverpool TB. Tractionless Self-Propulsion of Active Drops. PHYSICAL REVIEW LETTERS 2019; 123:248006. [PMID: 31922859 DOI: 10.1103/physrevlett.123.248006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 06/10/2023]
Abstract
We report on a new mode of self-propulsion exhibited by compact drops of active liquids on a substrate which, remarkably, is tractionless, i.e., which imparts no mechanical stress locally on the surface. We show, both analytically and by numerical simulation, that the equations of motion for an active nematic drop possess a simple self-propelling solution, with no traction on the solid surface and in which the direction of motion is controlled by the winding of the nematic director field across the drop height. The physics underlying this mode of motion has the same origins as that giving rise to the zero viscosity observed in bacterial suspensions. This topologically protected tractionless self-propusion provides a robust physical mechanism for efficient cell migration in crowded environments like tissues.
Collapse
Affiliation(s)
- Aurore Loisy
- School of Mathematics, University of Bristol, Bristol BS8 1UG, United Kingdom
| | - Jens Eggers
- School of Mathematics, University of Bristol, Bristol BS8 1UG, United Kingdom
| | | |
Collapse
|
50
|
Abstract
Chirality is a recurrent theme in the study of biological systems, in which active processes are driven by the internal conversion of chemical energy into work. Bacterial flagella, actomyosin filaments, and microtubule bundles are active systems that are also intrinsically chiral. Despite some exploratory attempt to capture the relations between chirality and motility, many features of intrinsically chiral systems still need to be explored and explained. To address this gap in knowledge, here we study the effects of internal active forces and torques on a 3-dimensional (3D) droplet of cholesteric liquid crystal (CLC) embedded in an isotropic liquid. We consider tangential anchoring of the liquid crystal director at the droplet surface. Contrary to what happens in nematics, where moderate extensile activity leads to droplet rotation, cholesteric active droplets exhibit more complex and variegated behaviors. We find that extensile force dipole activity stabilizes complex defect configurations, in which orbiting dynamics couples to thermodynamic chirality to propel screw-like droplet motion. Instead, dipolar torque activity may either tighten or unwind the cholesteric helix and if tuned, can power rotations with an oscillatory angular velocity of 0 mean.
Collapse
|