1
|
Meyerolbersleben LS, Sirota A, Busse L. Anatomically resolved oscillatory bursts reveal dynamic motifs of thalamocortical activity during naturalistic stimulus viewing. Neuron 2025:S0896-6273(25)00250-8. [PMID: 40252643 DOI: 10.1016/j.neuron.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/02/2025] [Accepted: 03/25/2025] [Indexed: 04/21/2025]
Abstract
Natural vision requires circuit mechanisms which process complex spatiotemporal stimulus features in parallel. In the mammalian forebrain, one signature of circuit activation is fast oscillatory dynamics, reflected in the local field potential (LFP). Using data from the Allen Neuropixels Visual Coding project, we show that local visual features in naturalistic stimuli induce in mouse primary visual cortex (V1) retinotopically specific oscillations in various frequency bands and V1 layers. Specifically, layer 4 (L4) narrowband gamma was linked to luminance, low-gamma to optic flow, and L4/L5 epsilon oscillations to contrast. These feature-specific oscillations were associated with distinct translaminar spike-phase coupling patterns, which were conserved across a range of stimuli containing the relevant visual features, suggesting that they might constitute feature-specific circuit motifs. Our findings highlight visually induced fast oscillations as markers of dynamic circuit motifs, which may support differential and multiplexed coding of complex visual input and thalamocortical information propagation.
Collapse
Affiliation(s)
- Lukas Sebastian Meyerolbersleben
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anton Sirota
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience, 82152 Planegg-Martinsried, Germany.
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Vinck M, Uran C, Dowdall JR, Rummell B, Canales-Johnson A. Large-scale interactions in predictive processing: oscillatory versus transient dynamics. Trends Cogn Sci 2025; 29:133-148. [PMID: 39424521 PMCID: PMC7616854 DOI: 10.1016/j.tics.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
How do the two main types of neural dynamics, aperiodic transients and oscillations, contribute to the interactions between feedforward (FF) and feedback (FB) pathways in sensory inference and predictive processing? We discuss three theoretical perspectives. First, we critically evaluate the theory that gamma and alpha/beta rhythms play a role in classic hierarchical predictive coding (HPC) by mediating FF and FB communication, respectively. Second, we outline an alternative functional model in which rapid sensory inference is mediated by aperiodic transients, whereas oscillations contribute to the stabilization of neural representations over time and plasticity processes. Third, we propose that the strong dependence of oscillations on predictability can be explained based on a biologically plausible alternative to classic HPC, namely dendritic HPC.
Collapse
Affiliation(s)
- Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Jarrod R Dowdall
- Robarts Research Institute, Western University, London, ON, Canada
| | - Brian Rummell
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Andres Canales-Johnson
- Facultad de Ciencias de la Salud, Universidad Catolica del Maule, 3480122 Talca, Chile; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
3
|
Ivanova M, Germanova K, Petelin DS, Ragimova A, Kopytin G, Volel BA, Nikulin VV, Herrojo Ruiz M. Frequency-specific changes in prefrontal activity associated with maladaptive belief updating in volatile environments in euthymic bipolar disorder. Transl Psychiatry 2025; 15:13. [PMID: 39824803 PMCID: PMC11742065 DOI: 10.1038/s41398-025-03225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of environmental changes. Additionally, we examined if this increased expectation speeds up belief updating in decision-making, associated with modulation of rhythmic neural activity within the prefrontal, orbitofrontal, and anterior cingulate cortex (PFC, OFC, ACC). Twenty-two euthymic BD and 27 healthy control (HC) participants completed a reward-based motor decision-making task in a volatile setting. Hierarchical Bayesian modelling revealed BD participants anticipated greater environmental volatility, resulting in a more stochastic mapping from beliefs to actions and paralleled by lower win rates and a reduced tendency to repeat rewarded actions than HC. Despite this, BD individuals adjusted their expectations of action-outcome contingencies more slowly, but both groups invigorated their actions similarly. On a neural level, while healthy individuals exhibited an alpha-beta suppression and gamma increase during belief updating, BD participants showed dampened effects, extending across the PFC, OFC, and ACC regions. This was accompanied by an abnormally increased beta-band directed information flow in BD. Overall, the results suggest euthymic BD individuals anticipate environmental change without adequately learning from it, contributing to maladaptive belief updating. Alterations in frequency-domain amplitude and functional connectivity within the PFC, OFC, and ACC during belief updating underlie the computational effects and could serve as potential indicators for predicting relapse in future research.
Collapse
Affiliation(s)
- Marina Ivanova
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Ksenia Germanova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Aynur Ragimova
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Grigory Kopytin
- Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | | | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | |
Collapse
|
4
|
Drebitz E, Rausch LP, Domingo Gil E, Kreiter AK. Three distinct gamma oscillatory networks within cortical columns in macaque monkeys' area V1. Front Neural Circuits 2024; 18:1490638. [PMID: 39735419 PMCID: PMC11671273 DOI: 10.3389/fncir.2024.1490638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction A fundamental property of the neocortex is its columnar organization in many species. Generally, neurons of the same column share stimulus preferences and have strong anatomical connections across layers. These features suggest that neurons within a column operate as one unified network. Other features, like the different patterns of input and output connections of neurons located in separate layers and systematic differences in feature tuning, hint at a more segregated and possibly flexible functional organization of neurons within a column. Methods To distinguish between these views of columnar processing, we conducted laminar recordings in macaques' area V1 while they performed a demanding attention task. We identified three separate regions with strong gamma oscillatory activity, located in the supragranular, granular, and infragranular laminar domains, based on the current source density (CSD). Results and Discussion Their characteristics differed significantly in their dominant gamma frequency and attention-dependent modulation of their gramma power and gamma frequency. In line, spiking activity in the supragranular, infragranular, and upper part of the granular domain exhibited strong phase coherence with the CSD signals of their domain but showed much weaker coherence with the CSD signals of other domains. Conclusion These results indicate that columnar processing involves a certain degree of independence between neurons in the three laminar domains, consistent with the assumption of multiple, separate intracolumnar ensembles. Such a functional organization offers various possibilities for dynamic network configuration, indicating that neurons in a column are not restricted to operate as one unified network. Thus, the findings open interesting new possibilities for future concepts and investigations on flexible, dynamic cortical ensemble formation and selective information processing.
Collapse
Affiliation(s)
- Eric Drebitz
- Cognitive Neurophysiology, Brain Research Institute, University of Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
5
|
Ichim AM, Barzan H, Moca VV, Nagy-Dabacan A, Ciuparu A, Hapca A, Vervaeke K, Muresan RC. The gamma rhythm as a guardian of brain health. eLife 2024; 13:e100238. [PMID: 39565646 DOI: 10.7554/elife.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
Gamma oscillations in brain activity (30-150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a 'servicing' rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.
Collapse
Grants
- RO-NO-2019-0504 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERA-NET-FLAG-ERA-ModelDXConsciousness Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-UnscrAMBLY Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-FLAG-ERA-MONAD Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-IBRAA Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-RESIST-D Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-IV-P8-8.1-PRE-HE-ORG-2024-0185 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- 952096 NEUROTWIN European Commission
- INSPIRE POC 488/1/1/2014+/127725 Ministerul Investițiilor și Proiectelor Europene
Collapse
Affiliation(s)
- Ana Maria Ichim
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Preclinical MRI Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Harald Barzan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Vasile Vlad Moca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adriana Nagy-Dabacan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adela Hapca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Koen Vervaeke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raul Cristian Muresan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space. Cereb Cortex 2024; 34:bhae405. [PMID: 39462814 PMCID: PMC11513197 DOI: 10.1093/cercor/bhae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Multi-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Multi-layer spiking neuron network models of local cortical circuits covering about $1\,{\text{mm}^{2}}$ have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials can be computed from the simulated spiking activity. We here extend a local network and local field potential model to an area of $4\times 4\,{\text{mm}^{2}}$, preserving the neuron density and introducing distance-dependent connection probabilities and conduction delays. We find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike-train correlations in agreement with experimental recordings from sensory cortex. Also compatible with experimental observations, the correlation of local field potential signals is strong and decays over a distance of several hundred micrometers. Enhanced spatial coherence in the low-gamma band around $50\,\text{Hz}$ may explain the recent report of an apparent band-pass filter effect in the spatial reach of the local field potential.
Collapse
Affiliation(s)
- Johanna Senk
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Sussex AI, School of Engineering and Informatics, University of Sussex, Chichester, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Espen Hagen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Markus Diesmann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr., 52074 Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
| |
Collapse
|
7
|
Kajikawa Y, Mackey CA, O’Connell MN. Laminar pattern of sensory-evoked dynamic high-frequency oscillatory activity in the macaque auditory cortex. Cereb Cortex 2024; 34:bhae338. [PMID: 39128941 PMCID: PMC11317206 DOI: 10.1093/cercor/bhae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
High-frequency (>60 Hz) neuroelectric signals likely have functional roles distinct from low-frequency (<30 Hz) signals. While high-gamma activity (>60 Hz) does not simply equate to neuronal spiking, they are highly correlated, having similar information encoding. High-gamma activity is typically considered broadband and poorly phase-locked to sensory stimuli and thus is typically analyzed after transformations into absolute amplitude or spectral power. However, those analyses discard signal polarity, compromising the interpretation of neuroelectric events that are essentially dipolar. In the spectrotemporal profiles of field potentials in auditory cortex, we show high-frequency spectral peaks not phase-locked to sound onset, which follow the broadband peak of phase-locked onset responses. Isolating the signal components comprising the high-frequency peaks reveals narrow-band high-frequency oscillatory events, whose instantaneous frequency changes rapidly from >150 to 60 Hz, which may underlie broadband high-frequency spectral peaks in previous reports. The laminar amplitude distributions of the isolated activity had two peak positions, while the laminar phase patterns showed a counterphase relationship between those peaks, indicating the formation of dipoles. Our findings suggest that nonphase-locked HGA arises in part from oscillatory or recurring activity of supragranular-layer neuronal ensembles in auditory cortex.
Collapse
Affiliation(s)
- Yoshinao Kajikawa
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Chase A Mackey
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
| | - Monica Noelle O’Connell
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
8
|
Lichtenfeld MJ, Mulvey AG, Nejat H, Xiong YS, Carlson BM, Mitchell BA, Mendoza-Halliday D, Westerberg JA, Desimone R, Maier A, Kaas JH, Bastos AM. The laminar organization of cell types in macaque cortex and its relationship to neuronal oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587084. [PMID: 38585801 PMCID: PMC10996711 DOI: 10.1101/2024.03.27.587084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The canonical microcircuit (CMC) has been hypothesized to be the fundamental unit of information processing in cortex. Each CMC unit is thought to be an interconnected column of neurons with specific connections between excitatory and inhibitory neurons across layers. Recently, we identified a conserved spectrolaminar motif of oscillatory activity across the primate cortex that may be the physiological consequence of the CMC. The spectrolaminar motif consists of local field potential (LFP) gamma-band power (40-150 Hz) peaking in superficial layers 2 and 3 and alpha/beta-band power (8-30 Hz) peaking in deep layers 5 and 6. Here, we investigate whether specific conserved cell types may produce the spectrolaminar motif. We collected laminar histological and electrophysiological data in 11 distinct cortical areas spanning the visual hierarchy: V1, V2, V3, V4, TEO, MT, MST, LIP, 8A/FEF, PMD, and LPFC (area 46), and anatomical data in DP and 7A. We stained representative slices for the three main inhibitory subtypes, Parvalbumin (PV), Calbindin (CB), and Calretinin (CR) positive neurons, as well as pyramidal cells marked with Neurogranin (NRGN). We found a conserved laminar structure of PV, CB, CR, and pyramidal cells. We also found a consistent relationship between the laminar distribution of inhibitory subtypes with power in the local field potential. PV interneuron density positively correlated with gamma (40-150 Hz) power. CR and CB density negatively correlated with alpha (8-12 Hz) and beta (13-30 Hz) oscillations. The conserved, layer-specific pattern of inhibition and excitation across layers is therefore likely the anatomical substrate of the spectrolaminar motif. Significance Statement Neuronal oscillations emerge as an interplay between excitatory and inhibitory neurons and underlie cognitive functions and conscious states. These oscillations have distinct expression patterns across cortical layers. Does cellular anatomy enable these oscillations to emerge in specific cortical layers? We present a comprehensive analysis of the laminar distribution of the three main inhibitory cell types in primate cortex (Parvalbumin, Calbindin, and Calretinin positive) and excitatory pyramidal cells. We found a canonical relationship between the laminar anatomy and electrophysiology in 11 distinct primate areas spanning from primary visual to prefrontal cortex. The laminar anatomy explained the expression patterns of neuronal oscillations in different frequencies. Our work provides insight into the cortex-wide cellular mechanisms that generate neuronal oscillations in primates.
Collapse
|
9
|
Arab F, Rostami S, Dehghani-Habibabadi M, Mateos DM, Braddell R, Scholkmann F, Ismail Zibaii M, Rodrigues S, Salari V, Safari MS. Effects of optogenetic and visual stimulation on gamma activity in the visual cortex. Neurosci Lett 2023; 816:137474. [PMID: 37690497 DOI: 10.1016/j.neulet.2023.137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Studying brain functions and activity during gamma oscillations can be a challenge because it requires careful planning to create the necessary conditions for a controlled experiment. Such an experiment consists of placing the brain into a gamma state and investigating cognitive processing with a careful design. Cortical oscillations in the gamma frequency range (30-80 Hz) play an essential role in a variety of cognitive processes, including visual processing and cognition. The present study aims to investigate the effects of a visual stimulus on the primary visual cortex under gamma oscillations. Specifically, we sought to explore the behavior of gamma oscillations triggered by optogenetic stimulation in the II and IV layers of the visual cortex, both with and without concurrent visual stimulation. Our results show that optogenetic stimulation increases the power of gamma oscillation in both layers of the visual cortex. However, the combined stimuli resulted in a reduction of gamma power in layer II and an increase and reinforcement in gamma power in layer IV. Modelling the results with the Wilson-Cowan model suggests changes in the input of the excitatory population due to the combined stimuli. In addition, our analysis of the data using the Lempel-Ziv complexity method supports our interpretations from the modeling. Thus, our results suggest that optogenetic stimulation enhances low gamma power in both layers of the visual cortex, while simultaneous visual stimulation has differing effects on the two layers, reducing gamma power in layer II and increasing it in layer IV.
Collapse
Affiliation(s)
- Fereshteh Arab
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
| | - Sareh Rostami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Diego M Mateos
- Consejo Nacional de Investigaciones Cientıficas y Tecnicas (CONICET), Argentina; Facultad de Ciencia y Tecnologıa. Universidad Aut ́onoma de Entre Ŕıos (UADER), Oro Verde, Entre Ŕıos, Argentina; Instituto de Matem ́atica Aplicada del Litoral (IMAL-CONICET-UNL), CCT CONICET, Santa Fe, Argentina
| | - Roisin Braddell
- BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo, Bilbao, Basque Country, Spain
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Serafim Rodrigues
- BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo, Bilbao, Basque Country, Spain
| | - Vahid Salari
- BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo, Bilbao, Basque Country, Spain; Department of Physics and Astronomy, University of Calgary, Calgary T2N 1N4, AB, Canada.
| | - Mir-Shahram Safari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, Valk SL. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity. PLoS Biol 2023; 21:e3002365. [PMID: 37943873 PMCID: PMC10684102 DOI: 10.1371/journal.pbio.3002365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.
Collapse
Affiliation(s)
- Amin Saberi
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Meike D. Hettwer
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Arutiunian V, Arcara G, Buyanova I, Buivolova O, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Event-Related Desynchronization of MEG Alpha-Band Oscillations during Simultaneous Presentation of Audio and Visual Stimuli in Children with Autism Spectrum Disorder. Brain Sci 2023; 13:1313. [PMID: 37759914 PMCID: PMC10526124 DOI: 10.3390/brainsci13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Alpha-band (8-12 Hz) event-related desynchronization (ERD) or a decrease in alpha power in electro- and magnetoencephalography (EEG and MEG) reflects the involvement of a neural tissue in information processing. It is known that most children with autism spectrum disorder (ASD) have difficulties in information processing, and, thus, investigation of alpha oscillations is of particular interest in this population. Previous studies have demonstrated alterations in this neural activity in individuals with ASD; however, little is known about alpha ERD during simultaneous presentation of auditory and visual stimuli in children with and without ASD. As alpha oscillations are intimately related to attention, and attention deficit is one of the common co-occurring conditions of ASD, we predict that children with ASD can have altered alpha ERD in one of the sensory domains. In the present study, we used MEG to investigate alpha ERD in groups of 20 children with ASD and 20 age-matched typically developing controls. Simple amplitude-modulated tones were presented together with a fixation cross appearing on the screen. The results showed that children with ASD had a bilateral reduction in alpha-band ERD in the auditory but not visual cortex. Moreover, alterations in the auditory cortex were associated with a higher presence of autistic traits measured in behavioral assessment.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, 1920 Terry Ave., Seattle, WA 98101, USA
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, 70 Via Alberoni, Lido, 30126 Venice, Italy;
| | - Irina Buyanova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Olga Buivolova
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, 2A Shelepikhinaskaya Naberezhnaya, 123290 Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Haskins Laboratories, 300 George St., New Haven, CT 06511, USA
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, 19 Architectora Vlasova Str., 117335 Moscow, Russia; (E.D.); (D.P.); (A.S.); (S.T.); (U.M.); (K.D.)
- Scientific Research and Practical Center of Pediatric Psychoneurology, 74 Michurinskiy Prospekt, 119602 Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, 3 Krivokolenny Pereulok, 101000 Moscow, Russia; (I.B.); (O.B.); (O.D.)
- Institute of Linguistics, Russian Academy of Sciences, 1/1 Bolshoy Kislovsky Ln, 125009 Moscow, Russia
| |
Collapse
|
12
|
Liu ZQ, Shafiei G, Baillet S, Misic B. Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks. Neuroimage 2023; 278:120276. [PMID: 37451374 DOI: 10.1016/j.neuroimage.2023.120276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.
Collapse
Affiliation(s)
- Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
13
|
Akella S, Bastos AM, Miller EK, Principe JC. Measurable fields-to-spike causality and its dependence on cortical layer and area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524451. [PMID: 37577637 PMCID: PMC10418085 DOI: 10.1101/2023.01.17.524451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Distinct dynamics in different cortical layers are apparent in neuronal and local field potential (LFP) patterns, yet their associations in the context of laminar processing have been sparingly analyzed. Here, we study the laminar organization of spike-field causal flow within and across visual (V4) and frontal areas (PFC) of monkeys performing a visual task. Using an event-based quantification of LFPs and a directed information estimator, we found area and frequency specificity in the laminar organization of spike-field causal connectivity. Gamma bursts (40-80 Hz) in the superficial layers of V4 largely drove intralaminar spiking. These gamma influences also fed forward up the cortical hierarchy to modulate laminar spiking in PFC. In PFC, the direction of intralaminar information flow was from spikes → fields where these influences dually controlled top-down and bottom-up processing. Our results, enabled by innovative methodologies, emphasize the complexities of spike-field causal interactions amongst multiple brain areas and behavior.
Collapse
Affiliation(s)
- Shailaja Akella
- Allen Institute, Seattle, WA, United States
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, United States
| | - André M. Bastos
- Department of Psychology and Vanderbilt Brain Institute,Vanderbilt University, Nashville, TN, United States
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Jose C. Principe
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, United States
| |
Collapse
|
14
|
Sanchez-Todo R, Bastos AM, Lopez-Sola E, Mercadal B, Santarnecchi E, Miller EK, Deco G, Ruffini G. A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings. Neuroimage 2023; 270:119938. [PMID: 36775081 DOI: 10.1016/j.neuroimage.2023.119938] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.
Collapse
Affiliation(s)
- Roser Sanchez-Todo
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain; Center of Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - André M Bastos
- Department of Psychology and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Edmundo Lopez-Sola
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - Borja Mercadal
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gustavo Deco
- Center of Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Instituci'o Catalana de la Recerca i Estudis Avan,ats (ICREA), Passeig Llu's Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800, Australia
| | - Giulio Ruffini
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain; Starlab Barcelona, Av. Tibidabo 47b, 08035 Barcelona, Spain; Haskins Laboratories, 300 George Street, New Haven, CT, 06511, USA.
| |
Collapse
|
15
|
Han C, Zhao X, Li M, Haihambo N, Teng J, Li S, Qiu J, Feng X, Gao M. Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region. Cogn Neurodyn 2023; 17:399-410. [PMID: 37007205 PMCID: PMC10050539 DOI: 10.1007/s11571-022-09834-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Gamma-band activity was thought to be related to several high-level cognitive functions, and Gamma ENtrainment Using Sensory stimulation (GENUS, 40 Hz sensory combined visual and auditory stimulation) was found to have positive effects on patients with Alzheimer's dementia. Other studies found, however, that neural responses induced by single 40 Hz auditory stimulation were relatively weak. To address this, we included several new experimental conditions (sounds with sinusoidal or square wave; open-eye and closed-eye state) combined with auditory stimulation with the aim of investigating which of these induces a stronger 40 Hz neural response. We found that when participant´s eyes were closed, sounds with 40 Hz sinusoidal wave induced the strongest 40 Hz neural response in the prefrontal region compared to responses in other conditions. More interestingly, we also found there is a suppression of alpha rhythms with 40 Hz square wave sounds. Our results provide potential new methods when using auditory entrainment, which may result in a better effect in preventing cerebral atrophy and improving cognitive performance. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09834-x.
Collapse
Affiliation(s)
- Chuanliang Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100191 China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jiayi Teng
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Psychology, Philosophy and Language Science, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Sixiao Li
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Music, Faculty of Arts, Humanities and Cultures, University of Leeds, Leeds, LS2 9JT UK
| | - Jinyi Qiu
- School of Artificial Intelligence, Beijing Normal University, Beijing, 100875 China
| | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Michel Gao
- WM Therapeutics Ltd, Beijing, 100013 China
| |
Collapse
|
16
|
Hein TP, Gong Z, Ivanova M, Fedele T, Nikulin V, Herrojo Ruiz M. Anterior cingulate and medial prefrontal cortex oscillations underlie learning alterations in trait anxiety in humans. Commun Biol 2023; 6:271. [PMID: 36922553 PMCID: PMC10017780 DOI: 10.1038/s42003-023-04628-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Anxiety has been linked to altered belief formation and uncertainty estimation, impacting learning. Identifying the neural processes underlying these changes is important for understanding brain pathology. Here, we show that oscillatory activity in the medial prefrontal, anterior cingulate and orbitofrontal cortex (mPFC, ACC, OFC) explains anxiety-related learning alterations. In a magnetoencephalography experiment, two groups of human participants pre-screened with high and low trait anxiety (HTA, LTA: 39) performed a probabilistic reward-based learning task. HTA undermined learning through an overestimation of volatility, leading to faster belief updating, more stochastic decisions and pronounced lose-shift tendencies. On a neural level, we observed increased gamma activity in the ACC, dmPFC, and OFC during encoding of precision-weighted prediction errors in HTA, accompanied by suppressed ACC alpha/beta activity. Our findings support the association between altered learning and belief updating in anxiety and changes in gamma and alpha/beta activity in the ACC, dmPFC, and OFC.
Collapse
Affiliation(s)
- Thomas P Hein
- Goldsmiths, University of London, Psychology Department, Whitehead Building New Cross, London, SE14 6NW, UK
| | - Zheng Gong
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Marina Ivanova
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Tommaso Fedele
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maria Herrojo Ruiz
- Goldsmiths, University of London, Psychology Department, Whitehead Building New Cross, London, SE14 6NW, UK.
| |
Collapse
|
17
|
Zhang S, Morrison J, Wang W, Greene E. Recognition of letters displayed as successive contour fragments. AIMS Neurosci 2022; 9:491-515. [PMID: 36660071 PMCID: PMC9826752 DOI: 10.3934/neuroscience.2022028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Shapes can be displayed as parts but perceived as a whole through feedforward and feedback mechanisms in the visual system, though the exact spatiotemporal relationships for this process are still unclear. Our experiments examined the integration of letter fragments that were displayed as a rapid sequence. We examined the effects of timing and masking on integration, hypothesizing that increasing the timing interval between frames would impair recognition by disrupting contour linkage. We further used different mask types, a full-field pattern mask and a smaller strip mask, to examine the effects of global vs local masking on integration. We found that varying mask types and contrast produced a greater decline in recognition than was found when persistence or mask density was manipulated. The study supports prior work on letter recognition and provides greater insight into the spatiotemporal factors that contribute to the identification of shapes.
Collapse
Affiliation(s)
- Sherry Zhang
- Department of Psychology, University of Southern California, Los Angeles, CA 90007, United States of America,* Correspondence:
| | - Jack Morrison
- Neuropsychology Foundation, Sun Valley, CA 91353, United States of America
| | - Wei Wang
- Departments of Medicine and Neurology, Brigham and Women's Hospital. Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States of America
| | - Ernest Greene
- Department of Psychology, University of Southern California, Los Angeles, CA 90007, United States of America
| |
Collapse
|
18
|
Wu Y, Wang T, Zhou T, Li Y, Yang Y, Dai W, Zhang Y, Han C, Xing D. V1-bypassing suppression leads to direction-specific microsaccade modulation in visual coding and perception. Nat Commun 2022; 13:6366. [PMID: 36289224 PMCID: PMC9606005 DOI: 10.1038/s41467-022-34057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Microsaccades play a critical role in refreshing visual information and have been shown to have direction-specific influences on human perception. However, the neural mechanisms underlying such direction-specific effects remains unknown. Here, we report the emergence of direction-specific microsaccade modulation in the middle layer of V2 but not in V1: responses of V2 neurons after microsaccades moved toward their receptive fields were stronger than those when microsaccades moved away. The decreased responses from V1 to V2, which are correlated with the amplitude of microsaccades away from receptive fields, suggest topographically location-specific suppression from an oculomotor source. Consistent with directional effects in V2, microsaccades function as a guide for monkeys' behavior in a peripheral detection task; both can be explained by a dynamic neural network. Our findings suggest a V1-bypassing suppressive circuit for direction-specific microsaccade modulation in V2 and its functional influence on visual sensitivity, which highlights the optimal sampling nature of microsaccades.
Collapse
Affiliation(s)
- Yujie Wu
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China ,grid.20513.350000 0004 1789 9964College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Tingting Zhou
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yang Li
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yi Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Weifeng Dai
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yange Zhang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Chuanliang Han
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
19
|
Liu TT, Fu JZ, Chai Y, Japee S, Chen G, Ungerleider LG, Merriam EP. Layer-specific, retinotopically-diffuse modulation in human visual cortex in response to viewing emotionally expressive faces. Nat Commun 2022; 13:6302. [PMID: 36273204 PMCID: PMC9588045 DOI: 10.1038/s41467-022-33580-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
Viewing faces that are perceived as emotionally expressive evokes enhanced neural responses in multiple brain regions, a phenomenon thought to depend critically on the amygdala. This emotion-related modulation is evident even in primary visual cortex (V1), providing a potential neural substrate by which emotionally salient stimuli can affect perception. How does emotional valence information, computed in the amygdala, reach V1? Here we use high-resolution functional MRI to investigate the layer profile and retinotopic distribution of neural activity specific to emotional facial expressions. Across three experiments, human participants viewed centrally presented face stimuli varying in emotional expression and performed a gender judgment task. We found that facial valence sensitivity was evident only in superficial cortical layers and was not restricted to the retinotopic location of the stimuli, consistent with diffuse feedback-like projections from the amygdala. Together, our results provide a feedback mechanism by which the amygdala directly modulates activity at the earliest stage of visual processing.
Collapse
Affiliation(s)
- Tina T Liu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA.
| | - Jason Z Fu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Yuhui Chai
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Shruti Japee
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, 20892, MD, USA
| |
Collapse
|
20
|
Li Y, Wang T, Yang Y, Dai W, Wu Y, Li L, Han C, Zhong L, Li L, Wang G, Dou F, Xing D. Cascaded normalizations for spatial integration in the primary visual cortex of primates. Cell Rep 2022; 40:111221. [PMID: 35977486 DOI: 10.1016/j.celrep.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Spatial integration of visual information is an important function in the brain. However, neural computation for spatial integration in the visual cortex remains unclear. In this study, we recorded laminar responses in V1 of awake monkeys driven by visual stimuli with grating patches and annuli of different sizes. We find three important response properties related to spatial integration that are significantly different between input and output layers: neurons in output layers have stronger surround suppression, smaller receptive field (RF), and higher sensitivity to grating annuli partially covering their RFs. These interlaminar differences can be explained by a descriptive model composed of two global divisions (normalization) and a local subtraction. Our results suggest suppressions with cascaded normalizations (CNs) are essential for spatial integration and laminar processing in the visual cortex. Interestingly, the features of spatial integration in convolutional neural networks, especially in lower layers, are different from our findings in V1.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lianfeng Li
- China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lvyan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Dual counterstream architecture may support separation between vision and predictions. Conscious Cogn 2022; 103:103375. [DOI: 10.1016/j.concog.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/03/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
22
|
Han C, Shapley R, Xing D. Gamma rhythms in the visual cortex: functions and mechanisms. Cogn Neurodyn 2022; 16:745-756. [PMID: 35847544 PMCID: PMC9279528 DOI: 10.1007/s11571-021-09767-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 01/18/2023] Open
Abstract
Gamma-band activity, peaking around 30-100 Hz in the local field potential's power spectrum, has been found and intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies showed that gamma rhythms are stochastic in time and vary with visual stimuli. Recent studies further showed that multiple rhythms coexist in V1 with distinct origins in different species. While all these experimental facts are a challenge for understanding the functions of gamma in the visual cortex, there are many signs of progress in computational studies. This review summarizes and discusses studies on gamma in the visual cortex from multiple perspectives and concludes that gamma rhythms are still a mystery. Combining experimental and computational studies seems the best way forward in the future.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Robert Shapley
- Center for Neural Science, New York University, New York, NY USA
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
23
|
Ray S. Spike-Gamma Phase Relationship in the Visual Cortex. Annu Rev Vis Sci 2022; 8:361-381. [PMID: 35667158 DOI: 10.1146/annurev-vision-100419-104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to modulation of spike timing relative to the rhythm. I first show that the gamma band could be more privileged than other frequencies in observing spike-field interactions even in the absence of genuine gamma rhythmicity and discuss several biases in spike-gamma phase estimation. I then discuss the expected spike-gamma phase according to several hypotheses. Inconsistent with the phase-coding hypothesis (but not with others), the spike-gamma phase does not change with changes in stimulus intensity or attentional state, with spikes preferentially occurring 2-4 ms before the trough, but with substantial variability. However, this phase relationship is expected even when gamma is a byproduct of excitatory-inhibitory interactions. Given that gamma occurs in short bursts, I argue that the debate over the role of gamma is a matter of semantics. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India 560012;
| |
Collapse
|
24
|
Uran C, Peter A, Lazar A, Barnes W, Klon-Lipok J, Shapcott KA, Roese R, Fries P, Singer W, Vinck M. Predictive coding of natural images by V1 firing rates and rhythmic synchronization. Neuron 2022; 110:1240-1257.e8. [PMID: 35120628 PMCID: PMC8992798 DOI: 10.1016/j.neuron.2022.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 01/12/2023]
Abstract
Predictive coding is an important candidate theory of self-supervised learning in the brain. Its central idea is that sensory responses result from comparisons between bottom-up inputs and contextual predictions, a process in which rates and synchronization may play distinct roles. We recorded from awake macaque V1 and developed a technique to quantify stimulus predictability for natural images based on self-supervised, generative neural networks. We find that neuronal firing rates were mainly modulated by the contextual predictability of higher-order image features, which correlated strongly with human perceptual similarity judgments. By contrast, V1 gamma (γ)-synchronization increased monotonically with the contextual predictability of low-level image features and emerged exclusively for larger stimuli. Consequently, γ-synchronization was induced by natural images that are highly compressible and low-dimensional. Natural stimuli with low predictability induced prominent, late-onset beta (β)-synchronization, likely reflecting cortical feedback. Our findings reveal distinct roles of synchronization and firing rates in the predictive coding of natural images.
Collapse
Affiliation(s)
- Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 AJ Nijmegen, the Netherlands.
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Andreea Lazar
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - William Barnes
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Katharine A Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Rasmus Roese
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Department of Biophysics, Radboud University Nijmegen, 6525 AJ Nijmegen, the Netherlands
| | - Wolf Singer
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Gieselmann MA, Thiele A. Stimulus dependence of directed information exchange between cortical layers in macaque V1. eLife 2022; 11:62949. [PMID: 35274614 PMCID: PMC8916775 DOI: 10.7554/elife.62949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Perception and cognition require the integration of feedforward sensory information with feedback signals. Using different sized stimuli, we isolate spectral signatures of feedforward and feedback signals, and their effect on communication between layers in primary visual cortex of male macaque monkeys. Small stimuli elicited gamma frequency oscillations predominantly in the superficial layers. These Granger-causally originated in upper layer 4 and lower supragranular layers. Unexpectedly, large stimuli generated strong narrow band gamma oscillatory activity across cortical layers. They Granger-causally arose in layer 5, were conveyed through layer six to superficial layers, and violated existing models of feedback spectral signatures. Equally surprising, with large stimuli, alpha band oscillatory activity arose predominantly in granular and supragranular layers and communicated in a feedforward direction. Thus, oscillations in specific frequency bands are dynamically modulated to serve feedback and feedforward communication and are not restricted to specific cortical layers in V1.
Collapse
Affiliation(s)
| | - Alexander Thiele
- Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
26
|
A systematic exploration of local network state space in neocortical mouse brain slices. Brain Res 2022; 1779:147784. [DOI: 10.1016/j.brainres.2022.147784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/22/2022]
|
27
|
Dalla Porta L, Castro DM, Copelli M, Carelli PV, Matias FS. Feedforward and feedback influences through distinct frequency bands between two spiking-neuron networks. Phys Rev E 2021; 104:054404. [PMID: 34942789 DOI: 10.1103/physreve.104.054404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
Several studies on brain signals suggested that bottom-up and top-down influences are exerted through distinct frequency bands among visual cortical areas. It was recently shown that theta and gamma rhythms subserve feedforward, whereas the feedback influence is dominated by the alpha-beta rhythm in primates. A few theoretical models for reproducing these effects have been proposed so far. Here we show that a simple but biophysically plausible two-network motif composed of spiking-neuron models and chemical synapses can exhibit feedforward and feedback influences through distinct frequency bands. Different from previous studies, this kind of model allows us to study directed influences not only at the population level, by using a proxy for the local field potential, but also at the cellular level, by using the neuronal spiking series.
Collapse
Affiliation(s)
- Leonardo Dalla Porta
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Daniel M Castro
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| |
Collapse
|
28
|
Engel TA, Schölvinck ML, Lewis CM. The diversity and specificity of functional connectivity across spatial and temporal scales. Neuroimage 2021; 245:118692. [PMID: 34751153 PMCID: PMC9531047 DOI: 10.1016/j.neuroimage.2021.118692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Macroscopic neuroimaging modalities in humans have revealed the organization of brain-wide activity into distributed functional networks that re-organize according to behavioral demands. However, the inherent coarse-graining of macroscopic measurements conceals the diversity and specificity in responses and connectivity of many individual neurons contained in each local region. New invasive approaches in animals enable recording and manipulating neural activity at meso- and microscale resolution, with cell-type specificity and temporal precision down to milliseconds. Determining how brain-wide activity patterns emerge from interactions across spatial and temporal scales will allow us to identify the key circuit mechanisms contributing to global brain states and how the dynamic activity of these states enables adaptive behavior.
Collapse
Affiliation(s)
- Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States.
| | - Marieke L Schölvinck
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany.
| | - Christopher M Lewis
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Zürich 8057, Switzerland.
| |
Collapse
|
29
|
Peter A, Stauch BJ, Shapcott K, Kouroupaki K, Schmiedt JT, Klein L, Klon-Lipok J, Dowdall JR, Schölvinck ML, Vinck M, Schmid MC, Fries P. Stimulus-specific plasticity of macaque V1 spike rates and gamma. Cell Rep 2021; 37:110086. [PMID: 34879273 PMCID: PMC8674536 DOI: 10.1016/j.celrep.2021.110086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/28/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022] Open
Abstract
When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.
Collapse
Affiliation(s)
- Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany.
| | - Benjamin Johannes Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Kleopatra Kouroupaki
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Joscha Tapani Schmiedt
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Liane Klein
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Jarrod Robert Dowdall
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany
| | - Marieke Louise Schölvinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michael Christoph Schmid
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; University of Fribourg, Faculty of Science and Medicine, Chemin du Musée 5, 1700 Fribourg, Switzerland; Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle NE2 4HH, UK
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, 60438 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
30
|
Han C, Wang T, Yang Y, Wu Y, Li Y, Dai W, Zhang Y, Wang B, Yang G, Cao Z, Kang J, Wang G, Li L, Yu H, Yeh CI, Xing D. Multiple gamma rhythms carry distinct spatial frequency information in primary visual cortex. PLoS Biol 2021; 19:e3001466. [PMID: 34932558 PMCID: PMC8691622 DOI: 10.1371/journal.pbio.3001466] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Gamma rhythms in many brain regions, including the primary visual cortex (V1), are thought to play a role in information processing. Here, we report a surprising finding of 3 narrowband gamma rhythms in V1 that processed distinct spatial frequency (SF) signals and had different neural origins. The low gamma (LG; 25 to 40 Hz) rhythm was generated at the V1 superficial layer and preferred a higher SF compared with spike activity, whereas both the medium gamma (MG; 40 to 65 Hz), generated at the cortical level, and the high gamma HG; (65 to 85 Hz), originated precortically, preferred lower SF information. Furthermore, compared with the rates of spike activity, the powers of the 3 gammas had better performance in discriminating the edge and surface of simple objects. These findings suggest that gamma rhythms reflect the neural dynamics of neural circuitries that process different SF information in the visual system, which may be crucial for multiplexing SF information and synchronizing different features of an object.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Guanzhong Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ziqi Cao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jian Kang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hongbo Yu
- Vision Research Laboratory, Center for Brain Science Research and School of Life Sciences, Fudan University, Shanghai, China
| | - Chun-I Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Narrow and Broad γ Bands Process Complementary Visual Information in Mouse Primary Visual Cortex. eNeuro 2021; 8:ENEURO.0106-21.2021. [PMID: 34663617 PMCID: PMC8570688 DOI: 10.1523/eneuro.0106-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
γ Band plays a key role in the encoding of visual features in the primary visual cortex (V1). In rodents V1 two ranges within the γ band are sensitive to contrast: a broad γ band (BB) increasing with contrast, and a narrow γ band (NB), peaking at ∼60 Hz, decreasing with contrast. The functional roles of the two bands and the neural circuits originating them are not completely clear yet. Here, we show, combining experimental and simulated data, that in mice V1 (1) BB carries information about high contrast and NB about low contrast; (2) BB modulation depends on excitatory-inhibitory interplay in the cortex, while NB modulation is because of entrainment to the thalamic drive. In awake mice presented with alternating gratings, NB power progressively decreased from low to intermediate levels of contrast where it reached a plateau. Conversely, BB power was constant across low levels of contrast, but it progressively increased from intermediate to high levels of contrast. Furthermore, BB response was stronger immediately after contrast reversal, while the opposite held for NB. These complementary modulations were reproduced by a recurrent excitatory-inhibitory leaky integrate-and-fire network provided that the thalamic inputs were composed of a sustained and a periodic component having complementary sensitivity ranges. These results show that in rodents the thalamic-driven NB plays a specific key role in encoding visual contrast. Moreover, we propose a simple and effective network model of response to visual stimuli in rodents that might help in investigating network dysfunctions of pathologic visual information processing.
Collapse
|
32
|
Shaw AD, Chandler HL, Hamandi K, Muthukumaraswamy SD, Hammers A, Singh KD. Tiagabine induced modulation of oscillatory connectivity and activity match PET-derived, canonical GABA-A receptor distributions. Eur Neuropsychopharmacol 2021; 50:34-45. [PMID: 33957336 PMCID: PMC8415204 DOI: 10.1016/j.euroneuro.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/04/2022]
Abstract
As the most abundant inhibitory neurotransmitter in the mammalian brain, γ-aminobutyric acid (GABA) plays a crucial role in shaping the frequency and amplitude of oscillations, which suggests a role for GABA in shaping the topography of functional connectivity and activity. This study explored the effects of pharmacologically blocking the reuptake of GABA (increasing local concentrations) using the GABA transporter 1 (GAT1) blocker, tiagabine (15 mg). In a placebo-controlled crossover design, we collected resting magnetoencephalography (MEG) recordings from 15 healthy individuals prior to, and at 1-, 3- and 5- hours post, administration of tiagabine and placebo. We quantified whole brain activity and functional connectivity in discrete frequency bands. Drug-by-session (2 × 4) analysis of variance in connectivity revealed interaction and main effects. Post-hoc permutation testing of each post-drug recording vs. respective pre-drug baseline revealed consistent reductions of a bilateral occipital network spanning theta, alpha and beta frequencies, across 1- 3- and 5- hour recordings following tiagabine only. The same analysis applied to activity revealed significant increases across frontal regions, coupled with reductions in posterior regions, across delta, theta, alpha and beta frequencies. Crucially, the spatial distribution of tiagabine-induced changes overlap with group-averaged maps of the distribution of GABAA receptors, from flumazenil (FMZ-VT) PET, demonstrating a link between GABA availability, GABAA receptor distribution, and low-frequency network oscillations. Our results indicate that the relationship between PET receptor distributions and MEG effects warrants further exploration, since elucidating the nature of this relationship may uncover electrophysiologically-derived maps of oscillatory activity as sensitive, time-resolved, and targeted receptor-mapping tools for pharmacological imaging.
Collapse
Affiliation(s)
- Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales.
| | - Hannah L Chandler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London SE1 7EH, United States
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, CF24 4HQ, Wales
| |
Collapse
|
33
|
Oguchi M, Jiasen J, Yoshioka TW, Tanaka YR, Inoue K, Takada M, Kikusui T, Nomoto K, Sakagami M. Microendoscopic calcium imaging of the primary visual cortex of behaving macaques. Sci Rep 2021; 11:17021. [PMID: 34426639 PMCID: PMC8382832 DOI: 10.1038/s41598-021-96532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
In vivo calcium imaging with genetically encoded indicators has recently been applied to macaque brains to monitor neural activities from a large population of cells simultaneously. Microendoscopic calcium imaging combined with implantable gradient index lenses captures neural activities from deep brain areas with a compact and convenient setup; however, this has been limited to rodents and marmosets. Here, we developed miniature fluorescent microscopy to image neural activities from the primary visual cortex of behaving macaques. We found tens of clear fluorescent signals from three of the six brain hemispheres. A subset of these neurons showed clear retinotopy and orientation tuning. Moreover, we successfully decoded the stimulus orientation and tracked the cells across days. These results indicate that microendoscopic calcium imaging is feasible and reasonable for investigating neural circuits in the macaque brain by monitoring fluorescent signals from a large number of neurons.
Collapse
Affiliation(s)
- Mineki Oguchi
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Jiang Jiasen
- Brain Science Institute, Tamagawa University, Machida, Tokyo, Japan
| | | | | | - Kenichi Inoue
- Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Masahiko Takada
- Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Takefumi Kikusui
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kensaku Nomoto
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- Department of Physiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | | |
Collapse
|
34
|
Duecker K, Gutteling TP, Herrmann CS, Jensen O. No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex. J Neurosci 2021; 41:6684-6698. [PMID: 34230106 PMCID: PMC8336697 DOI: 10.1523/jneurosci.3134-20.2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/25/2021] [Accepted: 06/13/2021] [Indexed: 12/02/2022] Open
Abstract
Over the past decades, numerous studies have linked cortical gamma oscillations (∼30-100 Hz) to neurocomputational mechanisms. Their functional relevance, however, is still passionately debated. Here, we asked whether endogenous gamma oscillations in the human brain can be entrained by a rhythmic photic drive >50 Hz. Such a noninvasive modulation of endogenous brain rhythms would allow conclusions about their causal involvement in neurocognition. To this end, we systematically investigated oscillatory responses to a rapid sinusoidal flicker in the absence and presence of endogenous gamma oscillations using magnetoencephalography (MEG) in combination with a high-frequency projector. The photic drive produced a robust response over visual cortex to stimulation frequencies of up to 80 Hz. Strong, endogenous gamma oscillations were induced using moving grating stimuli as repeatedly done in previous research. When superimposing the flicker and the gratings, there was no evidence for phase or frequency entrainment of the endogenous gamma oscillations by the photic drive. Unexpectedly, we did not observe an amplification of the flicker response around participants' individual gamma frequencies (IGFs); rather, the magnitude of the response decreased monotonically with increasing frequency. Source reconstruction suggests that the flicker response and the gamma oscillations were produced by separate, coexistent generators in visual cortex. The presented findings challenge the notion that cortical gamma oscillations can be entrained by rhythmic visual stimulation. Instead, the mechanism generating endogenous gamma oscillations seems to be resilient to external perturbation.SIGNIFICANCE STATEMENT We aimed to investigate to what extent ongoing, high-frequency oscillations in the gamma-band (30-100 Hz) in the human brain can be entrained by a visual flicker. Gamma oscillations have long been suggested to coordinate neuronal firing and enable interregional communication. Our results demonstrate that rhythmic visual stimulation cannot hijack the dynamics of ongoing gamma oscillations; rather, the flicker response and the endogenous gamma oscillations coexist in different visual areas. Therefore, while a visual flicker evokes a strong neuronal response even at high frequencies in the gamma-band, it does not entrain endogenous gamma oscillations in visual cortex. This has important implications for interpreting studies investigating the causal and neuroprotective effects of rhythmic sensory stimulation in the gamma-band.
Collapse
Affiliation(s)
- Katharina Duecker
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Tjerk P Gutteling
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Christoph S Herrmann
- Department of Psychology, Faculty VI-Medicine and Health Sciences, Carl-von-Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
35
|
Lantz CL, Quinlan EM. High-Frequency Visual Stimulation Primes Gamma Oscillations for Visually Evoked Phase Reset and Enhances Spatial Acuity. Cereb Cortex Commun 2021; 2:tgab016. [PMID: 33997786 PMCID: PMC8110461 DOI: 10.1093/texcom/tgab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022] Open
Abstract
The temporal frequency of sensory stimulation is a decisive factor in the plasticity of perceptual detection thresholds. However, surprisingly little is known about how distinct temporal parameters of sensory input differentially recruit activity of neuronal circuits in sensory cortices. Here we demonstrate that brief repetitive visual stimulation induces long-term plasticity of visual responses revealed 24 h after stimulation and that the location and generalization of visual response plasticity is determined by the temporal frequency of the visual stimulation. Brief repetitive low-frequency stimulation (2 Hz) is sufficient to induce a visual response potentiation that is expressed exclusively in visual cortex layer 4 and in response to a familiar stimulus. In contrast, brief, repetitive high-frequency stimulation (HFS, 20 Hz) is sufficient to induce a visual response potentiation that is expressed in all cortical layers and transfers to novel stimuli. HFS induces a long-term suppression of the activity of fast-spiking interneurons and primes ongoing gamma oscillatory rhythms for phase reset by subsequent visual stimulation. This novel form of generalized visual response enhancement induced by HFS is paralleled by an increase in visual acuity, measured as improved performance in a visual detection task.
Collapse
Affiliation(s)
- Crystal L Lantz
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
36
|
O'Reilly RC, Russin JL, Zolfaghar M, Rohrlich J. Deep Predictive Learning in Neocortex and Pulvinar. J Cogn Neurosci 2021; 33:1158-1196. [PMID: 34428793 PMCID: PMC10164227 DOI: 10.1162/jocn_a_01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
How do humans learn from raw sensory experience? Throughout life, but most obviously in infancy, we learn without explicit instruction. We propose a detailed biological mechanism for the widely embraced idea that learning is driven by the differences between predictions and actual outcomes (i.e., predictive error-driven learning). Specifically, numerous weak projections into the pulvinar nucleus of the thalamus generate top-down predictions, and sparse driver inputs from lower areas supply the actual outcome, originating in Layer 5 intrinsic bursting neurons. Thus, the outcome representation is only briefly activated, roughly every 100 msec (i.e., 10 Hz, alpha), resulting in a temporal difference error signal, which drives local synaptic changes throughout the neocortex. This results in a biologically plausible form of error backpropagation learning. We implemented these mechanisms in a large-scale model of the visual system and found that the simulated inferotemporal pathway learns to systematically categorize 3-D objects according to invariant shape properties, based solely on predictive learning from raw visual inputs. These categories match human judgments on the same stimuli and are consistent with neural representations in inferotemporal cortex in primates.
Collapse
|
37
|
Ferro D, van Kempen J, Boyd M, Panzeri S, Thiele A. Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention. Proc Natl Acad Sci U S A 2021; 118:e2022097118. [PMID: 33723059 PMCID: PMC8000025 DOI: 10.1073/pnas.2022097118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Achieving behavioral goals requires integration of sensory and cognitive information across cortical laminae and cortical regions. How this computation is performed remains unknown. Using local field potential recordings and spectrally resolved conditional Granger causality (cGC) analysis, we mapped visual information flow, and its attentional modulation, between cortical layers within and between macaque brain areas V1 and V4. Stimulus-induced interlaminar information flow within V1 dominated upwardly, channeling information toward supragranular corticocortical output layers. Within V4, information flow dominated from granular to supragranular layers, but interactions between supragranular and infragranular layers dominated downwardly. Low-frequency across-area communication was stronger from V4 to V1, with little layer specificity. Gamma-band communication was stronger in the feedforward V1-to-V4 direction. Attention to the receptive field of V1 decreased communication between all V1 layers, except for granular-to-supragranular layer interactions. Communication within V4, and from V1 to V4, increased with attention across all frequencies. While communication from V4 to V1 was stronger in lower-frequency bands (4 to 25 Hz), attention modulated cGCs from V4 to V1 across all investigated frequencies. Our data show that top-down cognitive processes result in reduced communication within cortical areas, increased feedforward communication across all frequency bands, and increased gamma-band feedback communication.
Collapse
Affiliation(s)
- Demetrio Ferro
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, 38068 Rovereto, Italy
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Michael Boyd
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy;
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| |
Collapse
|
38
|
Markuerkiaga I, Marques JP, Gallagher TE, Norris DG. Estimation of laminar BOLD activation profiles using deconvolution with a physiological point spread function. J Neurosci Methods 2021; 353:109095. [PMID: 33549635 DOI: 10.1016/j.jneumeth.2021.109095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/30/2020] [Accepted: 01/31/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The specificity of gradient echo (GE)-BOLD laminar fMRI activation profiles is degraded by intracortical veins that drain blood from lower to upper cortical layers, propagating activation signal in the same direction. This work describes an approach to obtain layer specific profiles by deconvolving the measured profiles with a physiological Point Spread Function (PSF). NEW METHOD It is shown that the PSF can be characterised by a TE-dependent peak to tail (p2t) value that is independent of cortical depth and can be estimated by simulation. An experimental estimation of individual p2t values and the sensitivity of the deconvolved profiles to variations in p2t is obtained using laminar data measured with a multi-echo 3D-FLASH sequence. These profiles are echo time dependent, but the underlying neuronal response is the same, allowing a data-based estimation of the PSF. RESULTS The deconvolved profiles are highly similar to the gold-standard obtained from extremely high resolution 3D-EPI data, for a range of p2t values of 5-9, which covers both the empirically determined value (6.8) and the value obtained by simulation (6.3). -Comparison with Existing Method(s) Corrected profiles show a flatter shape across the cortex and a high level of similarity with the gold-standard, defined as a subset of profiles that are unaffected by intracortical veins. CONCLUSIONS We conclude that deconvolution is a robust approach for removing the effect of signal propagation through intracortical veins. This makes it possible to obtain profiles with high laminar specificity while benefitting from the higher efficiency of GE-BOLD sequences.
Collapse
Affiliation(s)
- Irati Markuerkiaga
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - José P Marques
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Tara E Gallagher
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA
| | - David G Norris
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, 45141, Essen, Germany.
| |
Collapse
|
39
|
Han C, Wang T, Wu Y, Li Y, Yang Y, Li L, Wang Y, Xing D. The Generation and Modulation of Distinct Gamma Oscillations with Local, Horizontal, and Feedback Connections in the Primary Visual Cortex: A Model Study on Large-Scale Networks. Neural Plast 2021; 2021:8874516. [PMID: 33531893 PMCID: PMC7834828 DOI: 10.1155/2021/8874516] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 11/23/2022] Open
Abstract
Gamma oscillation (GAMMA) in the local field potential (LFP) is a synchronized activity commonly found in many brain regions, and it has been thought as a functional signature of network connectivity in the brain, which plays important roles in information processing. Studies have shown that the response property of GAMMA is related to neural interaction through local recurrent connections (RC), feed-forward (FF), and feedback (FB) connections. However, the relationship between GAMMA and long-range horizontal connections (HC) in the brain remains unclear. Here, we aimed to understand this question in a large-scale network model for the primary visual cortex (V1). We created a computational model composed of multiple excitatory and inhibitory units with biologically plausible connectivity patterns for RC, FF, FB, and HC in V1; then, we quantitated GAMMA in network models at different strength levels of HC and other connection types. Surprisingly, we found that HC and FB, the two types of large-scale connections, play very different roles in generating and modulating GAMMA. While both FB and HC modulate a fast gamma oscillation (around 50-60 Hz) generated by FF and RC, HC generates a new GAMMA oscillating around 30 Hz, whose power and peak frequency can also be modulated by FB. Furthermore, response properties of the two GAMMAs in a network with both HC and FB are different in a way that is highly consistent with a recent experimental finding for distinct GAMMAs in macaque V1. The results suggest that distinct GAMMAs are signatures for neural connections in different spatial scales and they might be related to different functions for information integration. Our study, for the first time, pinpoints the underlying circuits for distinct GAMMAs in a mechanistic model for macaque V1, which might provide a new framework to study multiple gamma oscillations in other cortical regions.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yizheng Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Validating Linear Systems Analysis for Laminar fMRI: Temporal Additivity for Stimulus Duration Manipulations. Brain Topogr 2021; 34:88-101. [PMID: 33210193 PMCID: PMC7803719 DOI: 10.1007/s10548-020-00808-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/05/2020] [Indexed: 11/26/2022]
Abstract
Advancements in ultra-high field (7 T and higher) magnetic resonance imaging (MRI) scanners have made it possible to investigate both the structure and function of the human brain at a sub-millimeter scale. As neuronal feedforward and feedback information arrives in different layers, sub-millimeter functional MRI has the potential to uncover information processing between cortical micro-circuits across cortical depth, i.e. laminar fMRI. For nearly all conventional fMRI analyses, the main assumption is that the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) signal adheres to the principles of linear systems theory. For laminar fMRI, however, directional blood pooling across cortical depth stemming from the anatomy of the cortical vasculature, potentially violates these linear system assumptions, thereby complicating analysis and interpretation. Here we assess whether the temporal additivity requirement of linear systems theory holds for laminar fMRI. We measured responses elicited by viewing stimuli presented for different durations and evaluated how well the responses to shorter durations predicted those elicited by longer durations. We find that BOLD response predictions are consistently good predictors for observed responses, across all cortical depths, and in all measured visual field maps (V1, V2, and V3). Our results suggest that the temporal additivity assumption for linear systems theory holds for laminar fMRI. We thus show that the temporal additivity assumption holds across cortical depth for sub-millimeter gradient-echo BOLD fMRI in early visual cortex.
Collapse
Affiliation(s)
- Jelle A van Dijk
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands.
| | - Alessio Fracasso
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalia Petridou
- Radiology Department, Imaging Division, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Krishna A, Tanabe S, Kohn A. Decision Signals in the Local Field Potentials of Early and Mid-Level Macaque Visual Cortex. Cereb Cortex 2021; 31:169-183. [PMID: 32852540 PMCID: PMC7727373 DOI: 10.1093/cercor/bhaa218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
The neural basis of perceptual decision making has typically been studied using measurements of single neuron activity, though decisions are likely based on the activity of large neuronal ensembles. Local field potentials (LFPs) may, in some cases, serve as a useful proxy for population activity and thus be useful for understanding the neural basis of perceptual decision making. However, little is known about whether LFPs in sensory areas include decision-related signals. We therefore analyzed LFPs recorded using two 48-electrode arrays implanted in primary visual cortex (V1) and area V4 of macaque monkeys trained to perform a fine orientation discrimination task. We found significant choice information in low (0-30 Hz) and higher (70-500 Hz) frequency components of the LFP, but little information in gamma frequencies (30-70 Hz). Choice information was more robust in V4 than V1 and stronger in LFPs than in simultaneously measured spiking activity. LFP-based choice information included a global component, common across electrodes within an area. Our findings reveal the presence of robust choice-related signals in the LFPs recorded in V1 and V4 and suggest that LFPs may be a useful complement to spike-based analyses of decision making.
Collapse
Affiliation(s)
- Aravind Krishna
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India
| | - Seiji Tanabe
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
42
|
de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, Carroll B, Knott V. Resting-state functional EEG connectivity in salience and default mode networks and their relationship to dissociative symptoms during NMDA receptor antagonism. Pharmacol Biochem Behav 2020; 201:173092. [PMID: 33385439 DOI: 10.1016/j.pbb.2020.173092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023]
Abstract
N-methyl-d-aspartate receptor (NMDAR) antagonists administered to healthy humans results in schizophrenia-like symptoms, which are thought in part to be related to glutamatergically altered electrophysiological connectivity in large-scale intrinsic functional brain networks. Here, we examine resting-state source electroencephalographic (EEG) connectivity within and between the default mode (DMN: for self-related cognitive activity) and salience networks (SN: for detection of salient stimuli in internal and external environments) in 21 healthy volunteers administered a subanesthetic dose of the dissociative anesthetic and NMDAR antagonist, ketamine. In addition to provoking symptoms of dissociation, which are thought to originate from an altered sense of self that is common to schizophrenia, ketamine induces frequency-dependent increases and decreases in connectivity within and between DMN and SN. These altered interactive network couplings together with emergent dissociative symptoms tentatively support an NMDAR-hypofunction hypothesis of disturbed electrophysiologic connectivity in schizophrenia.
Collapse
Affiliation(s)
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Vadim Ilivitsky
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada; Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Brooke Carroll
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada; Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
43
|
Tovar DA, Westerberg JA, Cox MA, Dougherty K, Carlson TA, Wallace MT, Maier A. Stimulus Feature-Specific Information Flow Along the Columnar Cortical Microcircuit Revealed by Multivariate Laminar Spiking Analysis. Front Syst Neurosci 2020; 14:600601. [PMID: 33328912 PMCID: PMC7734135 DOI: 10.3389/fnsys.2020.600601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/04/2020] [Indexed: 11/23/2022] Open
Abstract
Most of the mammalian neocortex is comprised of a highly similar anatomical structure, consisting of a granular cell layer between superficial and deep layers. Even so, different cortical areas process different information. Taken together, this suggests that cortex features a canonical functional microcircuit that supports region-specific information processing. For example, the primate primary visual cortex (V1) combines the two eyes' signals, extracts stimulus orientation, and integrates contextual information such as visual stimulation history. These processes co-occur during the same laminar stimulation sequence that is triggered by the onset of visual stimuli. Yet, we still know little regarding the laminar processing differences that are specific to each of these types of stimulus information. Univariate analysis techniques have provided great insight by examining one electrode at a time or by studying average responses across multiple electrodes. Here we focus on multivariate statistics to examine response patterns across electrodes instead. Specifically, we applied multivariate pattern analysis (MVPA) to linear multielectrode array recordings of laminar spiking responses to decode information regarding the eye-of-origin, stimulus orientation, and stimulus repetition. MVPA differs from conventional univariate approaches in that it examines patterns of neural activity across simultaneously recorded electrode sites. We were curious whether this added dimensionality could reveal neural processes on the population level that are challenging to detect when measuring brain activity without the context of neighboring recording sites. We found that eye-of-origin information was decodable for the entire duration of stimulus presentation, but diminished in the deepest layers of V1. Conversely, orientation information was transient and equally pronounced along all layers. More importantly, using time-resolved MVPA, we were able to evaluate laminar response properties beyond those yielded by univariate analyses. Specifically, we performed a time generalization analysis by training a classifier at one point of the neural response and testing its performance throughout the remaining period of stimulation. Using this technique, we demonstrate repeating (reverberating) patterns of neural activity that have not previously been observed using standard univariate approaches.
Collapse
Affiliation(s)
- David A. Tovar
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Jacob A. Westerberg
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, United States
| | - Michele A. Cox
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Kacie Dougherty
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | | | - Mark T. Wallace
- School of Medicine, Vanderbilt University, Nashville, TN, United States
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, United States
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States
- Department of Psychiatry, Vanderbilt University, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States
| | - Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
44
|
Abstract
An established theoretical model, predictive coding, states that the brain is constantly building models (signifying changing predictions) of the environment. The brain does this by forming predictions and signaling sensory inputs which deviate from predictions (“prediction errors”). Various hypotheses exist about how predictive coding could be implemented in the brain. We recorded neural spiking and oscillations with laminar resolution in a network of cortical areas as monkeys performed a working memory task with changing stimulus predictability. Predictability modulated the patterns of feedforward/feedback flow, cortical layers, and oscillations used to process a visual stimulus. These data support the theory of predictive coding but suggest an alternate model for its neural implementation: predictive routing. In predictive coding, experience generates predictions that attenuate the feeding forward of predicted stimuli while passing forward unpredicted “errors.” Different models have suggested distinct cortical layers, and rhythms implement predictive coding. We recorded spikes and local field potentials from laminar electrodes in five cortical areas (visual area 4 [V4], lateral intraparietal [LIP], posterior parietal area 7A, frontal eye field [FEF], and prefrontal cortex [PFC]) while monkeys performed a task that modulated visual stimulus predictability. During predictable blocks, there was enhanced alpha (8 to 14 Hz) or beta (15 to 30 Hz) power in all areas during stimulus processing and prestimulus beta (15 to 30 Hz) functional connectivity in deep layers of PFC to the other areas. Unpredictable stimuli were associated with increases in spiking and in gamma-band (40 to 90 Hz) power/connectivity that fed forward up the cortical hierarchy via superficial-layer cortex. Power and spiking modulation by predictability was stimulus specific. Alpha/beta power in LIP, FEF, and PFC inhibited spiking in deep layers of V4. Area 7A uniquely showed increases in high-beta (∼22 to 28 Hz) power/connectivity to unpredictable stimuli. These results motivate a conceptual model, predictive routing. It suggests that predictive coding may be implemented via lower-frequency alpha/beta rhythms that “prepare” pathways processing-predicted inputs by inhibiting feedforward gamma rhythms and associated spiking.
Collapse
|
45
|
Shaw AD, Muthukumaraswamy SD, Saxena N, Sumner RL, Adams NE, Moran RJ, Singh KD. Generative modelling of the thalamo-cortical circuit mechanisms underlying the neurophysiological effects of ketamine. Neuroimage 2020; 221:117189. [PMID: 32711064 PMCID: PMC7762824 DOI: 10.1016/j.neuroimage.2020.117189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022] Open
Abstract
Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A.
Collapse
Affiliation(s)
- Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Neeraj Saxena
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, UK
| | - Rachael L Sumner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie E Adams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rosalyn J Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
46
|
Beul SF, Hilgetag CC. Systematic modelling of the development of laminar projection origins in the cerebral cortex: Interactions of spatio-temporal patterns of neurogenesis and cellular heterogeneity. PLoS Comput Biol 2020; 16:e1007991. [PMID: 33048930 PMCID: PMC7553356 DOI: 10.1371/journal.pcbi.1007991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
The architectonic type principle conceptualizes structural connections between brain areas in terms of the relative architectonic differentiation of connected areas. It has previously been shown that spatio-temporal interactions between the time and place of neurogenesis could underlie multiple features of empirical mammalian connectomes, such as projection existence and the distribution of projection strengths. However, so far no mechanistic explanation for the emergence of typically observed laminar patterns of projection origins and terminations has been tested. Here, we expand an in silico model of the developing cortical sheet to explore which factors could potentially constrain the development of laminar projection patterns. We show that manipulations which rely solely on spatio-temporal interactions, namely the relative density of laminar compartments, a delay in the neurogenesis of infragranular layers relative to layer 1, and a delay in the neurogenesis of supragranular layers relative to infragranular layers, do not result in the striking correlation between supragranular contribution to projections and the relative differentiation of areas that is typically observed in the mammalian cortex. In contrast, we find that if we introduce systematic variation in cell-intrinsic properties, coupling them with architectonic differentiation, the resulting laminar projection patterns closely mirror the empirically observed patterns. We also find that the spatio-temporal interactions posited to occur during neurogenesis are necessary for the formation of the characteristic laminar patterns. Hence, our results indicate that the specification of the laminar patterns of projection origins may result from systematic variation in a number of cell-intrinsic properties, superimposed on the previously identified spatio-temporal interactions which are sufficient for the emergence of the architectonic type principle on the level of inter-areal connectivity in silico.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
47
|
Wang T, Li Y, Yang G, Dai W, Yang Y, Han C, Wang X, Zhang Y, Xing D. Laminar Subnetworks of Response Suppression in Macaque Primary Visual Cortex. J Neurosci 2020; 40:7436-7450. [PMID: 32817246 PMCID: PMC7511183 DOI: 10.1523/jneurosci.1129-20.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
Cortical inhibition plays an important role in information processing in the brain. However, the mechanisms by which inhibition and excitation are coordinated to generate functions in the six layers of the cortex remain unclear. Here, we measured laminar-specific responses to stimulus orientations in primary visual cortex (V1) of awake monkeys (male, Macaca mulatta). We distinguished inhibitory effects (suppression) from excitation, by taking advantage of the separability of excitation and inhibition in the orientation and time domains. We found two distinct types of suppression governing different layers. Fast suppression (FS) was strongest in input layers (4C and 6), and slow suppression (SS) was 3 times stronger in output layers (2/3 and 5). Interestingly, the two types of suppression were correlated with different functional properties measured with drifting gratings. FS was primarily correlated with orientation selectivity in input layers (r = -0.65, p < 10-9), whereas SS was primarily correlated with surround suppression in output layers (r = 0.61, p < 10-4). The earliest SS in layer 1 indicates the origin of cortical feedback for SS, in contrast to the feedforward/recurrent origin of FS. Our results reveal two V1 laminar subnetworks with different response suppression that may provide a general framework for laminar processing in other sensory cortices.SIGNIFICANCE STATEMENT This study sought to understand inhibitory effects (suppression) and their relationships with functional properties in the six different layers of the cortex. We found that the diversity of neural responses across layers in primary visual cortex (V1) could be fully explained by one excitatory and two suppressive components (fast and slow suppression). The distinct laminar distributions, origins, and functional roles of the two types of suppression provided a simplified representation of the differences between two V1 subnetworks (input network and output network). These results not only help to elucidate computational principles in macaque V1, but also provide a framework for general computation of cortical laminae in other sensory cortices.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guanzhong Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xingyun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
48
|
Kreiter AK. Synchrony, flexible network configuration, and linking neural events to behavior. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Abouelseoud G, Abouelseoud Y, Shoukry A, Ismail N, Mekky J. On the use of time division multiplexing to improve electrical brain stimulation focality. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Gravel N, Renken RJ, Harvey BM, Deco G, Cornelissen FW, Gilson M. Propagation of BOLD Activity Reveals Task-dependent Directed Interactions Across Human Visual Cortex. Cereb Cortex 2020; 30:5899-5914. [PMID: 32577717 DOI: 10.1093/cercor/bhaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 11/14/2022] Open
Abstract
It has recently been shown that large-scale propagation of blood-oxygen-level-dependent (BOLD) activity is constrained by anatomical connections and reflects transitions between behavioral states. It remains to be seen, however, if the propagation of BOLD activity can also relate to the brain's anatomical structure at a more local scale. Here, we hypothesized that BOLD propagation reflects structured neuronal activity across early visual field maps. To explore this hypothesis, we characterize the propagation of BOLD activity across V1, V2, and V3 using a modeling approach that aims to disentangle the contributions of local activity and directed interactions in shaping BOLD propagation. It does so by estimating the effective connectivity (EC) and the excitability of a noise-diffusion network to reproduce the spatiotemporal covariance structure of the data. We apply our approach to 7T fMRI recordings acquired during resting state (RS) and visual field mapping (VFM). Our results reveal different EC interactions and changes in cortical excitability in RS and VFM, and point to a reconfiguration of feedforward and feedback interactions across the visual system. We conclude that the propagation of BOLD activity has functional relevance, as it reveals directed interactions and changes in cortical excitability in a task-dependent manner.
Collapse
Affiliation(s)
- Nicolás Gravel
- Neural Dynamics of Visual Cognition Group, Department of Education and Psychology, Freie University Berlin, 14195 Berlin, Germany.,Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Remco J Renken
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.,Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.,School of Psychological Sciences, Monash University, VIC 3800 Melbourne, Australia
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Matthieu Gilson
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|