1
|
Frosch M, Prinz M. Niche-specific therapeutic targeting of myeloid cells in the central nervous system. Immunity 2025; 58:1101-1119. [PMID: 40324377 DOI: 10.1016/j.immuni.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
The central nervous system (CNS) can be subdivided into distinct anatomical and functional compartments, including the parenchyma, perivascular space, leptomeninges, and dura mater, etc. Each compartment hosts distinct immune cell populations, such as monocytes and diverse macrophages, which play critical roles in local tissue homeostasis and regional disease pathogenesis. Advances in single-cell technologies have revealed complex immune cell compositions and functions in these anatomical regions. This review summarizes the latest approaches for modulating myeloid cell subsets in a compartment-specific manner, including cellular strategies such as stem cell therapy, ex vivo gene treatment, bone marrow transplantation, as well as non-cellular strategies like antibodies, small molecules, and viral gene delivery to augment CNS immune responses and improve disease outcomes. We also discuss the challenges and requirements of translating targeting strategies from mice to humans.
Collapse
Affiliation(s)
- Maximilian Frosch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Chen D, Wang C, Chen X, Li J, Chen S, Li Y, Ma F, Li T, Zou M, Li X, Huang X, Zhang YW, Zhao Y, Bu G, Zheng H, Chen XF, Zhang J, Zhong L. Brain-wide microglia replacement using a nonconditioning strategy ameliorates pathology in mouse models of neurological disorders. Sci Transl Med 2025; 17:eads6111. [PMID: 40305572 DOI: 10.1126/scitranslmed.ads6111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 05/02/2025]
Abstract
Growing genetic and pathological evidence has identified microglial dysfunction as a key contributor to the pathogenesis and progression of various neurological disorders, positioning microglia replacement as a promising therapeutic strategy. Traditional bone marrow transplantation (BMT) methods for replenishing brain microglia have limitations, including low efficiency and the potential for brain injury because of preconditioning regimens, such as irradiation or chemotherapy. Moreover, BM-derived cells that migrate to the brain do not recapitulate the phenotypic and functional properties of resident microglia. Here, we present a microglia transplantation strategy devoid of any conditioning, termed "tricyclic microglial depletion for transplantation" (TCMDT). This approach leverages three cycles of microglial depletion using the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, creating an optimal window for efficient engraftment of exogenous microglia. Transplantation of primary cultured microglia by TCMDT successfully restored the identity and functions of endogenous microglia. To evaluate the therapeutic potential of TCMDT, we applied this strategy to two distinct mouse models of neurologic disorder. In a Sandhoff disease model, a neurodegenerative lysosomal storage disorder caused by hexosaminidase subunit beta (Hexb) deficiency, TCMDT effectively replaced deficient microglia, attenuating neurodegeneration and improving motor performance. Similarly, in an Alzheimer's disease (AD)-related amyloid mouse model carrying the triggering receptor expressed on myeloid cells 2 (Trem2) R47H mutation, our transplantation strategy rescued microglial dysfunction and mitigated AD-related pathology. Overall, our study introduces TCMDT as a practical, efficient, and safe approach for microglia replacement, suggesting therapeutic potential for treating neurological disorders associated with microglial dysfunction.
Collapse
Affiliation(s)
- Dadian Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, Xiamen Medical Quality Control Center for Neurology, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xi Chen
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiayu Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanzhong Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fangling Ma
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengling Zou
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingjun Zhao
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Guojun Bu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Honghua Zheng
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Fen Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Jie Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Zhong
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
3
|
Montepeloso A, Mattioli D, Pellin D, Peviani M, Genovese P, Biffi A. Haploinsufficiency at the CX3CR1 locus of hematopoietic stem cells favors the appearance of microglia-like cells in the central nervous system of transplant recipients. Nat Commun 2024; 15:10192. [PMID: 39587072 PMCID: PMC11589136 DOI: 10.1038/s41467-024-54515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Transplantation of engineered hematopoietic stem/progenitor cells (HSPCs) showed curative potential in patients affected by neurometabolic diseases treated in early stage. Favoring the engraftment and maturation of the engineered HSPCs in the central nervous system (CNS) could allow enhancing further the therapeutic potential of this approach. Here we unveil that HSPCs haplo-insufficient at the Cx3cr1 (Cx3cr1-/+) locus are favored in central nervous system (CNS) engraftment and generation of microglia-like progeny cells (MLCs) as compared to wild type (Cx3cr1+/+) HSPCs upon transplantation in mice. Based on this evidence, we have developed a CRISPR-based targeted gene addition strategy at the human CX3CR1 locus resulting in an enhanced ability of the edited human HSPCs to generate mature MLCs upon transplantation in immunodeficient mice, and in lineage specific, regulated and robust transgene expression. This approach, which benefits from the modulation of pathways involved in microglia maturation and migration in haplo-insufficient cells, may broaden the application of HSPC gene therapy to a larger spectrum of neurometabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Annita Montepeloso
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Gene Therapy Consulting, Padua, Italy
| | - Davide Mattioli
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy
| | - Danilo Pellin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Marco Peviani
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy.
| |
Collapse
|
4
|
Pham V, Tricoli L, Hong X, Wongkittichote P, Castruccio Castracani C, Guerra A, Schlotawa L, Adang LA, Kuhs A, Cassidy MM, Kane O, Tsai E, Presa M, Lutz C, Rivella SB, Ahrens-Nicklas RC. Hematopoietic stem cell gene therapy improves outcomes in a clinically relevant mouse model of multiple sulfatase deficiency. Mol Ther 2024; 32:3829-3846. [PMID: 39169621 PMCID: PMC11573602 DOI: 10.1016/j.ymthe.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplantation with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.
Collapse
Affiliation(s)
- Vi Pham
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucas Tricoli
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Carlo Castruccio Castracani
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, 37075 Goettingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology, 37075 Goettingen, Germany
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amanda Kuhs
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret M Cassidy
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Owen Kane
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Tsai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maximiliano Presa
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Cathleen Lutz
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Stefano B Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Dickson P. Entering the playing field: Therapy for multiple sulfatase deficiency. Mol Ther 2024; 32:3756-3757. [PMID: 39481371 PMCID: PMC11573562 DOI: 10.1016/j.ymthe.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Affiliation(s)
- Patricia Dickson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Presa M, Pham V, Ray S, Piec PA, Ryan J, Billings T, Coombs H, Schlotawa L, Lund T, Ahrens-Nicklas RC, Lutz C. Bone marrow transplantation increases sulfatase activity in somatic tissues in a multiple sulfatase deficiency mouse model. COMMUNICATIONS MEDICINE 2024; 4:215. [PMID: 39448727 PMCID: PMC11502872 DOI: 10.1038/s43856-024-00648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Multiple Sulfatase Deficiency (MSD) is an ultra-rare autosomal recessive disorder characterized by deficient enzymatic activity of all known sulfatases. MSD patients frequently carry two loss of function mutations in the SUMF1 gene, encoding a formylglycine-generating enzyme (FGE) that activates 17 different sulfatases. MSD patients show common features of other lysosomal diseases like mucopolysaccharidosis and metachromatic leukodystrophy, including neurologic impairments, developmental delay, and visceromegaly. There are currently no approved therapies for MSD patients. Hematopoietic stem cell transplant (HSCT) has been applied with success in the treatment of certain lysosomal diseases. In HSCT, donor-derived myeloid cells are a continuous source of active sulfatase enzymes that can be taken up by sulfatase-deficient host cells. Thus, HSCT could be a potential approach for the treatment of MSD. METHODS To test this hypothesis, we used a clinically relevant mouse model for MSD, B6-Sumf1(S153P/S153P) mice, engrafted with bone marrow cells, Sumf1+/+, from B6-PtprcK302E mice (CD45.1 immunoreactive). RESULTS After 10 months post-transplant, flow cytometric analysis shows an average of 90% of circulating leukocytes of donor origin (Sumf1(+/+)). Enzymatic activity for ARSA, ARSB, and SGSH is significantly increased in spleen of B6-Sumf1(S153P/S153P) recipient mice. In non-lymphoid organs, only liver and heart show a significant correction of sulfatase activity and GAG accumulation. Frequency of inflammatory cells and lysosomal pathology is significantly reduced in liver and heart, while no significant improvement is detected in brain. CONCLUSIONS Our results indicate that HSCT could be a suitable approach to treat MSD-pathology affecting peripheral organs, however that benefit to CNS pathology might be limited.
Collapse
Affiliation(s)
- Maximiliano Presa
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Vi Pham
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, Metabolic Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Somdatta Ray
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Jennifer Ryan
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Timothy Billings
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Harold Coombs
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Goettingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology - Tranlational Neuroinflammation and Automated Microscopy, Goettingen, Germany
| | - Troy Lund
- Division of Hematology-Oncology and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, Metabolic Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cathleen Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
8
|
Milazzo R, Montepeloso A, Kumar R, Ferro F, Cavalca E, Rigoni P, Cabras P, Ciervo Y, Das S, Capotondo A, Pellin D, Peviani M, Biffi A. Therapeutic efficacy of intracerebral hematopoietic stem cell gene therapy in an Alzheimer's disease mouse model. Nat Commun 2024; 15:8024. [PMID: 39271711 PMCID: PMC11399302 DOI: 10.1038/s41467-024-52301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show that the CNS environment drives the expansion, distribution and myeloid differentiation of the locally transplanted cells towards a microglia-like phenotype. Intra-CNS transplantation of HSPCs engineered to overexpress TREM2 decreased neuroinflammation, Aβ aggregation and improved memory in 5xFAD female mice. Our proof of concept study demonstrates the therapeutic potential of HSPC gene therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Milazzo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Rajesh Kumar
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Pietro Rigoni
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Paolo Cabras
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Yuri Ciervo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy.
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
9
|
Crippa S, Alberti G, Passerini L, Savoia EO, Mancino M, De Ponti G, Santi L, Berti M, Testa M, Hernandez RJ, Quaranta P, Ceriotti S, Visigalli I, Morrone A, Paoli A, Forni C, Scala S, Degano M, Staiano L, Gregori S, Aiuti A, Bernardo ME. A GLB1 transgene with enhanced therapeutic potential for the preclinical development of ex-vivo gene therapy to treat mucopolysaccharidosis type IVB. Mol Ther Methods Clin Dev 2024; 32:101313. [PMID: 39282079 PMCID: PMC11399592 DOI: 10.1016/j.omtm.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Mucopolysaccharidosis type IVB (MPSIVB) is a lysosomal storage disorder caused by β-galactosidase (β-GAL) deficiency characterized by severe skeletal and neurological alterations without approved treatments. To develop hematopoietic stem progenitor cell (HSPC) gene therapy (GT) for MPSIVB, we designed lentiviral vectors (LVs) encoding human β-GAL to achieve supraphysiological release of the therapeutic enzyme in human HSPCs and metabolic correction of diseased cells. Transduced HSPCs displayed proper colony formation, proliferation, and differentiation capacity, but their progeny failed to release the enzyme at supraphysiological levels. Therefore, we tested alternative LVs to overexpress an enhanced β-GAL deriving from murine (LV-enhGLB1) and human selectively mutated GLB1 sequences (LV-mutGLB1). Only human HSPCs transduced with LV-enhGLB1 overexpressed β-GAL in vitro and in vivo without evidence of overexpression-related toxicity. Their hematopoietic progeny efficiently released β-GAL, allowing the cross-correction of defective cells, including skeletal cells. We found that the low levels of human GLB1 mRNA in human hematopoietic cells and the improved stability of the enhanced β-GAL contribute to the increased efficacy of LV-enhGLB1. Importantly, the enhanced β-GAL enzyme showed physiological lysosomal trafficking in human cells and was not associated with increased immunogenicity in vitro. These results support the use of LV-enhGLB1 for further HSPC-GT development and future clinical translation to treat MPSIVB multisystem disease.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marialuisa Testa
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Naples, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Selene Ceriotti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ilaria Visigalli
- GLP - San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Antonella Paoli
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | | | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Degano
- Biocrystallography Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 20138 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
10
|
Gupta AO, Furcich JW, Nascene DR, Kemp S, King CJ, Nolan EE, Durose W, Miller BS, Orchard PJ, Lund TC. Targeting VEGF-mediated blood-brain barrier disruption in advanced cerebral leukodystrophy. J Neuroimmunol 2024; 393:578395. [PMID: 38897089 DOI: 10.1016/j.jneuroim.2024.578395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The earliest clinical manifestation of cerebral adrenoleukodystrophy (CALD) is adrenal insufficiency (AI) characterized by elevations in ACTH and loss of cortisol. We showed high (though physiologically achievable) levels of ACTH increases endothelial permeability, increases anisotropy, and increases VEGF secretion. An ACBD1 knockout endothelial cell line had increased sensitivity to ACTH and VEGF. Inhibition of VEGF via application of anti-VEGF (bevacizumab) improved permeability. Six boys with advanced CALD were treated with bevacizumab combined with dexamethasone and ruxolitinib as immune suppressants. Most boys had decreases in gadolinium enhancement on MRI indicating improvement in endothelial function, though all boys continued to progress symptomatically.
Collapse
Affiliation(s)
- Ashish O Gupta
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Justin W Furcich
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - David R Nascene
- Department of Diagnostic Radiology, University of Minnesota Medical Center, Minneapolis, MN 55455, United States of America
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Carina J King
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Erin E Nolan
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Willa Durose
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Bradley S Miller
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Paul J Orchard
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Troy C Lund
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
11
|
Chakraborty S, Gupta AK, Gupta N, Meena JP, Seth R, Kabra M. Hematopoietic Stem Cell Transplantation for Storage Disorders: Present Status. Indian J Pediatr 2024; 91:830-838. [PMID: 38639861 DOI: 10.1007/s12098-024-05110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Storage disorders are a group of inborn errors of metabolism caused by the defective activity of lysosomal enzymes or transporters. All of these disorders have multisystem involvement with variable degrees of neurological features. Neurological manifestations are one of the most difficult aspects of treatment concerning these diseases. The available treatment modalities for some of these disorders include enzyme replacement therapy, substrate reduction therapy, hematopoietic stem cell transplantation (HSCT) and the upcoming gene therapies. As a one-time intervention, the economic feasibility of HSCT makes it an attractive option for treating these disorders, especially in lower and middle-income countries. Further, improvements in peri-transplantation medical care, better conditioning regimens and better supportive care have improved the outcomes of patients undergoing HSCT. In this review, we discuss the current evidence for HSCT in various storage disorders and its suitability as a mode of therapy for the developing world.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
12
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Pimentel Vera LN, Arozqueta Basurto J, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice. Nat Commun 2024; 15:5654. [PMID: 38969669 PMCID: PMC11226701 DOI: 10.1038/s41467-024-49908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Anay Limaye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Biffi A. Hematopoietic stem cell gene therapy to halt neurodegeneration. Neurotherapeutics 2024; 21:e00440. [PMID: 39276677 PMCID: PMC11417237 DOI: 10.1016/j.neurot.2024.e00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024] Open
Abstract
Microglia play fundamental roles in multiple pathological primary and secondary processes affecting the central nervous system that ultimately result in neurodegeneration and for this reason they are considered as a key therapeutic target in several neurodegenerative diseases. Microglia-targeted therapies are directed at either restoring or modulating microglia function, to redirect their functional features toward neuroprotection. Among these strategies, hematopoietic stem cell gene therapy have proven to be endowed with a unique potential for replacing diseased microglia with engineered, transplant progeny cells that can integrate and exert relevant beneficial effects in the central nervous system of patients affected by inherited and acquired neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padova and Padova University Hospital, Padova, Italy.
| |
Collapse
|
14
|
Anderson JS, Lodigiani AL, Barbaduomo CM, Beegle JR. Hematopoietic stem cell gene therapy for the treatment of SYNGAP1-related non-specific intellectual disability. J Gene Med 2024; 26:e3717. [PMID: 38967915 DOI: 10.1002/jgm.3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Synaptic Ras GTPase activating protein 1 (SYNGAP1)-related non-specific intellectual disability is a neurodevelopmental disorder caused by an insufficient level of SynGAP1 resulting in a dysfunction of neuronal synapses and presenting with a wide array of clinical phenotypes. Hematopoietic stem cell gene therapy has the potential to deliver therapeutic levels of functional SynGAP1 to affected neurons upon transduction of hematopoietic stem and progenitor cells with a lentiviral vector. METHODS As a novel approach toward the treatment of SYNGAP1, we have generated a lentiviral vector expressing a modified form of SynGAP1 for transduction of human CD34+ hematopoietic stem and progenitor cells. The gene-modified cells were then transplanted into adult immunodeficient SYNGAP1+/- heterozygous mice and evaluated for improvement of SYNGAP1-related clinical phenotypes. Expression of SynGAP1 was also evaluated in the brain tissue of transplanted mice. RESULTS In our proof-of-concept study, we have demonstrated significant improvement of SYNGAP1-related phenotypes including an improvement in motor abilities observed in mice transplanted with the vector transduced cells because they displayed decreased hyperactivity in an open field assay and an increased latency to fall in a rotarod assay. An increased level of SynGAP1 was also detected in the brains of these mice. CONCLUSIONS These early-stage results highlight the potential of this stem cell gene therapy approach as a treatment strategy for SYNGAP1.
Collapse
Affiliation(s)
- Joseph S Anderson
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Alyse L Lodigiani
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Camilla M Barbaduomo
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Julie R Beegle
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
15
|
Pan X, Caillon A, Fan S, Khan S, Tomatsu S, Pshezhetsky AV. Heterologous HSPC Transplantation Rescues Neuroinflammation and Ameliorates Peripheral Manifestations in the Mouse Model of Lysosomal Transmembrane Enzyme Deficiency, MPS IIIC. Cells 2024; 13:877. [PMID: 38786099 PMCID: PMC11120110 DOI: 10.3390/cells13100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Mucopolysaccharidosis III type C (MPS IIIC) is an untreatable neuropathic lysosomal storage disease caused by a genetic deficiency of the lysosomal N-acetyltransferase, HGSNAT, catalyzing a transmembrane acetylation of heparan sulfate. HGSNAT is a transmembrane enzyme incapable of free diffusion between the cells or their cross-correction, which limits development of therapies based on enzyme replacement and gene correction. Since our previous work identified neuroinflammation as a hallmark of the CNS pathology in MPS IIIC, we tested whether it can be corrected by replacement of activated brain microglia with neuroprotective macrophages/microglia derived from a heterologous HSPC transplant. Eight-week-old MPS IIIC (HgsnatP304L) mice were transplanted with HSPC from congenic wild type mice after myeloablation with Busulfan and studied using behavior test battery, starting from the age of 6 months. At the age of ~8 months, mice were sacrificed to study pathological changes in the brain, heparan sulfate storage, and other biomarkers of the disease. We found that the treatment corrected several behavior deficits including hyperactivity and reduction in socialization, but not memory decline. It also improved several features of CNS pathology such as microastroglyosis, expression of pro-inflammatory cytokine IL-1β, and accumulation of misfolded amyloid aggregates in cortical neurons. At the periphery, the treatment delayed development of terminal urinary retention, potentially increasing longevity, and reduced blood levels of heparan sulfate. However, we did not observe correction of lysosomal storage phenotype in neurons and heparan sulfate brain levels. Together, our results demonstrate that neuroinflammation in a neurological lysosomal storage disease, caused by defects in a transmembrane enzyme, can be effectively ameliorated by replacement of microglia bearing the genetic defect with cells from a normal healthy donor. They also suggest that heterologous HSPC transplant, if used together with other methods, such as chaperone therapy or substrate reduction therapy, may constitute an effective combination therapy for MPS IIIC and other disorders with a similar etiology.
Collapse
Affiliation(s)
- Xuefang Pan
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
| | - Antoine Caillon
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
| | - Shuxian Fan
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.K.); (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.K.); (S.T.)
| | - Alexey V. Pshezhetsky
- Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; (X.P.); (A.C.); (S.F.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
16
|
Mandolfo O, Liao A, Singh E, O'leary C, Holley RJ, Bigger BW. Establishment of the Effectiveness of Early Versus Late Stem Cell Gene Therapy in Mucopolysaccharidosis II for Treating Central Versus Peripheral Disease. Hum Gene Ther 2024; 35:243-255. [PMID: 37427450 DOI: 10.1089/hum.2023.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Mucopolysaccharidosis type II (MPSII) is a rare pediatric X-linked lysosomal storage disease, caused by heterogeneous mutations in the iduronate-2-sulfatase (IDS) gene, which result in accumulation of heparan sulfate (HS) and dermatan sulfate within cells. This leads to severe skeletal abnormalities, hepatosplenomegaly, and cognitive deterioration. The progressive nature of the disease is a huge obstacle to achieve full neurological correction. Although current therapies can only treat somatic symptoms, a lentivirus-based hematopoietic stem cell gene therapy (HSCGT) approach has recently achieved improved central nervous system (CNS) neuropathology in the MPSII mouse model following transplant at 2 months of age. In this study, we evaluate neuropathology progression in 2-, 4- and 9-month-old MPSII mice, and using the same HSCGT strategy, we investigated somatic and neurological disease attenuation following treatment at 4 months of age. Our results showed gradual accumulation of HS between 2 and 4 months of age, but full manifestation of microgliosis/astrogliosis as early as 2 months. Late HSCGT fully reversed the somatic symptoms, thus achieving the same degree of peripheral correction as early therapy. However, late treatment resulted in slightly decreased efficacy in the CNS, with poorer brain enzymatic activity, together with reduced normalization of HS oversulfation. Overall, our findings confirm significant lysosomal burden and neuropathology in 2-month-old MPSII mice. Peripheral disease is readily reversible by LV.IDS-HSCGT regardless of age of transplant, suggesting a viable treatment for somatic disease. However, in the brain, higher IDS enzyme levels are achievable with early HSCGT treatment, and later transplant seems to be less effective, supporting the view that the earlier patients are diagnosed and treated, the better the therapy outcome.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Aiyin Liao
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Esha Singh
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Claire O'leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca J Holley
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Riedel A, Faul C, Reuss K, Schröder JC, Lang PJ, Lengerke C, Weissert N, Hengel H, Gröschel S, Schoels L, Bethge WA. Allogeneic hematopoietic cell transplantation for adult metachromatic leukodystrophy: a case series. Blood Adv 2024; 8:1504-1508. [PMID: 38330194 PMCID: PMC10966161 DOI: 10.1182/bloodadvances.2023011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
ABSTRACT Metachromatic leukodystrophy (MLD) is a rare genetic disorder caused by pathogenic variants of the ARSA gene, leading to a deficiency of the arylsulfatase A enzyme (ARSA) and consecutive accumulation of galactosylceramide-3-0-sulfate in the nervous system. The condition leads to severe neurological deficits and subsequently results in profound intellectual and motoric disability. Especially, the adult form of MLD, which occurs in individuals aged >16 years, poses significant challenges for treating physicians because of the rarity of cases, limited therapeutic options, and different allogeneic hematopoietic cell transplantation (allo-HCT) protocols worldwide. Here, we report the results of allo-HCT treatment in 4 patients with a confirmed adult MLD diagnosis. Bone marrow or mobilized peripheral progenitor cells were infused after a reduced intensity conditioning regime consisting of fludarabine and treosulfan. In 3 patients, allo-HCT was followed by an infusion of mesenchymal cells to further consolidate ARSA production. We observed a good tolerability and an increase in ARSA levels up to normal range values in all patients. A full donor chimerism was detected in 3 patients within the first 12 months. In a 1-year follow-up, patients with complete donor chimerism showed a neurological stable condition. Only 1 patient with an increasing autologous chimerism showed neurological deterioration and a decline in ARSA levels in the first year. In summary, allo-HCT offers a therapeutic option for reconstituting ARSA enzyme levels in adult patients with MLD, with tolerable side effects.
Collapse
Affiliation(s)
- Andreas Riedel
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Faul
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Kristina Reuss
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jan C. Schröder
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter J. Lang
- Department I, General Pediatrics, Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Nadine Weissert
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Tuebingen, Germany
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Holger Hengel
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Tuebingen, Germany
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Samuel Gröschel
- Department III, Neuropediatrics, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Ludger Schoels
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Tuebingen, Germany
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Wolfgang A. Bethge
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Das S, Rruga F, Montepeloso A, Dimartino A, Spadini S, Corre G, Patel J, Cavalca E, Ferro F, Gatti A, Milazzo R, Galy A, Politi LS, Rizzardi GP, Vallanti G, Poletti V, Biffi A. An empowered, clinically viable hematopoietic stem cell gene therapy for the treatment of multisystemic mucopolysaccharidosis type II. Mol Ther 2024; 32:619-636. [PMID: 38310355 PMCID: PMC10928283 DOI: 10.1016/j.ymthe.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/14/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.
Collapse
Affiliation(s)
- Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Fatlum Rruga
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Agnese Dimartino
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Silvia Spadini
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | | | - Janki Patel
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Eleonora Cavalca
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Francesca Ferro
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | | | | | | | - Letterio S Politi
- Humanitas University and IRCCS Humanitas Research Hospital, 20090 Pieve Emanuele (MI), Italy
| | | | | | - Valentina Poletti
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, 35128 Padua, Italy.
| |
Collapse
|
19
|
Catalano F, Vlaar EC, Katsavelis D, Dammou Z, Huizer TF, van den Bosch JC, Hoogeveen-Westerveld M, van den Hout HJ, Oussoren E, Ruijter GJ, Schaaf G, Pike-Overzet K, Staal FJ, van der Ploeg AT, Pijnappel WP. Tagged IDS causes efficient and engraftment-independent prevention of brain pathology during lentiviral gene therapy for Mucopolysaccharidosis type II. Mol Ther Methods Clin Dev 2023; 31:101149. [PMID: 38033460 PMCID: PMC10684800 DOI: 10.1016/j.omtm.2023.101149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Mucopolysaccharidosis type II (OMIM 309900) is a lysosomal storage disorder caused by iduronate 2-sulfatase (IDS) deficiency and accumulation of glycosaminoglycans, leading to progressive neurodegeneration. As intravenously infused enzyme replacement therapy cannot cross the blood-brain barrier (BBB), it fails to treat brain pathology, highlighting the unmet medical need to develop alternative therapies. Here, we test modified versions of hematopoietic stem and progenitor cell (HSPC)-mediated lentiviral gene therapy (LVGT) using IDS tagging in combination with the ubiquitous MND promoter to optimize efficacy in brain and to investigate its mechanism of action. We find that IDS tagging with IGF2 or ApoE2, but not RAP12x2, improves correction of brain heparan sulfate and neuroinflammation at clinically relevant vector copy numbers. HSPC-derived cells engrafted in brain show efficiencies highest in perivascular areas, lower in choroid plexus and meninges, and lowest in parenchyma. Importantly, the efficacy of correction was independent of the number of brain-engrafted cells. These results indicate that tagged versions of IDS can outperform untagged IDS in HSPC-LVGT for the correction of brain pathology in MPS II, and they imply both cell-mediated and tag-mediated correction mechanisms, including passage across the BBB and increased uptake, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Fabio Catalano
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Eva C. Vlaar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Drosos Katsavelis
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Zina Dammou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Tessa F. Huizer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Jeroen C. van den Bosch
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Hannerieke J.M.P. van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Esmeralda Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - George J.G. Ruijter
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Frank J.T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - W.W.M. Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| |
Collapse
|
20
|
Nolan EE, Durose W, Taghizadeh LA, King CJ, Gupta AO, Orchard PJ, Lorentson M, Braaten K, Furcich JW, Lund TC. Loss of early myeloid donor cell engraftment into the central nervous system with nonmyeloablative conditioning. Blood Adv 2023; 7:7290-7294. [PMID: 37871310 PMCID: PMC10711164 DOI: 10.1182/bloodadvances.2023010923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Affiliation(s)
- Erin E. Nolan
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Willa Durose
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Leyla A. Taghizadeh
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Carina J. King
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Ashish O. Gupta
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Maggie Lorentson
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Kai Braaten
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Justin W. Furcich
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| | - Troy C. Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN
| |
Collapse
|
21
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
22
|
Loeb AM, Pattwell SS, Meshinchi S, Bedalov A, Loeb KR. Donor bone marrow-derived macrophage engraftment into the central nervous system of patients following allogeneic transplantation. Blood Adv 2023; 7:5851-5859. [PMID: 37315172 PMCID: PMC10558597 DOI: 10.1182/bloodadvances.2023010409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/16/2023] Open
Abstract
Hematopoietic stem cell transplantation is a well-known treatment for hematologic malignancies, wherein nascent stem cells provide regenerating marrow and immunotherapy against the tumor. The progeny of hematopoietic stem cells also populate a wide spectrum of tissues, including the brain, as bone marrow-derived macrophages similar to microglial cells. We developed a sensitive and novel combined immunohistochemistry (IHC) and XY fluorescence in situ hybridization assay to detect, quantify, and characterize donor cells in the cerebral cortices of 19 female patients who underwent allogeneic stem cell transplantation. We showed that the number of male donor cells ranged from 0.14% to 3.0% of the total cells or from 1.2% to 25% of microglial cells. Using tyramide-based fluorescent IHC, we found that at least 80% of the donor cells expressed the microglial marker ionized calcium-binding adapter molecule-1, consistent with bone marrow-derived macrophages. The percentage of donor cells was related to pretransplantation conditioning; donor cells from radiation-based myeloablative cases averaged 8.1% of microglial cells, whereas those from nonmyeloablative cases averaged only 1.3%. The number of donor cells in patients conditioned with busulfan- or treosulfan-based myeloablation was similar to that in total body irradiation-based conditioning; donor cells averaged 6.8% of the microglial cells. Notably, patients who received multiple transplantations and those with the longest posttransplantation survival had the highest level of donor engraftment, with donor cells averaging 16.3% of the microglial cells. Our work represents the largest study characterizing bone marrow-derived macrophages in patients after transplantation. The efficiency of engraftment observed in our study warrants future research on microglial replacement as a therapeutic option for disorders of the central nervous system.
Collapse
Affiliation(s)
| | - Siobhan S. Pattwell
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Antonio Bedalov
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Keith R. Loeb
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Vera LNP, Basurto JA, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS Repopulation by Hematopoietic-Derived Microglia-Like Cells Corrects Progranulin deficiency. RESEARCH SQUARE 2023:rs.3.rs-3263412. [PMID: 37790525 PMCID: PMC10543302 DOI: 10.21203/rs.3.rs-3263412/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the CNS through donor-derived hematopoietic cells that become microglia-like cells. However, using standard conditioning approaches, hematopoietic stem cell transplantation is currently limited by low and slow engraftment of microglia-like cells. We report an efficient conditioning regimen based on Busulfan and a six-day course of microglia depletion using the colony-stimulating factor receptor 1 inhibitor PLX3397. Combining Busulfan-myeloablation and transient microglia depletion results in robust, rapid, and persistent microglia replacement by bone marrow-derived microglia-like cells throughout the CNS. Adding PLX3397 does not affect neurobehavior or has adverse effects on hematopoietic reconstitution. Through single-cell RNA sequencing and high-dimensional CyTOF mass cytometry, we show that microglia-like cells are a heterogeneous population and describe six distinct subpopulations. Though most bone-marrow-derived microglia-like cells can be classified as homeostatic microglia, their gene signature is a hybrid of homeostatic/embryonic microglia and border associated-macrophages. Busulfan-myeloablation and transient microglia depletion induce specific cytokines in the brain, ultimately combining myeloid proliferative and chemo-attractive signals that act locally to repopulate microglia from outside the niche. Importantly, this conditioning approach demonstrates therapeutic efficacy in a mouse model of GRN deficiency. Transplanting wild-type bone marrow into Grn-/- mice conditioned with Busulfan plus PLX3397 results in high engraftment of microglia-like cells in the brain and retina, restoring GRN levels and normalizing lipid metabolism.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA 94404
| | - Anay Limaye
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA 94404
| | - Kara Lynn Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| |
Collapse
|
24
|
Mishra P, Silva A, Sharma J, Nguyen J, Pizzo DP, Hinz D, Sahoo D, Cherqui S. Rescue of Alzheimer's disease phenotype in a mouse model by transplantation of wild-type hematopoietic stem and progenitor cells. Cell Rep 2023; 42:112956. [PMID: 37561625 PMCID: PMC10617121 DOI: 10.1016/j.celrep.2023.112956] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/19/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia; microglia have been implicated in AD pathogenesis, but their role is still matter of debate. Our study showed that single systemic wild-type (WT) hematopoietic stem and progenitor cell (HSPC) transplantation rescued the AD phenotype in 5xFAD mice and that transplantation may prevent microglia activation. Indeed, complete prevention of memory loss and neurocognitive impairment and decrease of β-amyloid plaques in the hippocampus and cortex were observed in the WT HSPC-transplanted 5xFAD mice compared with untreated 5xFAD mice and with mice transplanted with 5xFAD HSPCs. Neuroinflammation was also significantly reduced. Transcriptomic analysis revealed a significant decrease in gene expression related to "disease-associated microglia" in the cortex and "neurodegeneration-associated endothelial cells" in the hippocampus of the WT HSPC-transplanted 5xFAD mice compared with diseased controls. This work shows that HSPC transplant has the potential to prevent AD-associated complications and represents a promising therapeutic avenue for this disease.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Alexander Silva
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jay Sharma
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jacqueline Nguyen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Denise Hinz
- Flow Cytometry Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California, La Jolla, La Jolla, CA, USA; Moores Comprehensive Cancer Center, University of California, La Jolla, La Jolla, CA, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
He SJ, Li DJ, Lv WQ, Tang WH, Sun SW, Zhu YP, Liu Y, Wu J, Lu XX. Outcomes after HSCT for mucolipidosis II (I-cell disease) caused by novel compound heterozygous GNPTAB mutations. Front Pediatr 2023; 11:1199489. [PMID: 37484777 PMCID: PMC10359890 DOI: 10.3389/fped.2023.1199489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
Background Mucolipidosis type II (MLII), or I-cell disease, is a rare lysosomal storage disease (LSD) caused by variants in the GNPTAB gene. MLII patients exhibit clinical phenotypes in the prenatal or neonatal stage, such as marked dysmorphic features, cardiac involvement, respiratory symptoms, dysostosis multiplex, severe growth abnormalities, and mental and motor developmental abnormalities. The median age at diagnosis for MLII is 0.7 years, the median survival is 5.0 years, and the median age at death is 1.8 years. No cure for MLII exists. Methods Sanger sequencing of the GNPTAB gene identified the compound heterozygous mutations c.673C > T in exon 7 and c.1090C > T in exon 9, which were novel double heterozygous mutations first reported in China. For the first time, we describe our experience in the use of HSCT for MLII. Our patient underwent HSCT with cells from a 9/10 human leukocyte antigen (HLA)-matched unrelated donor at 12 months of age. Myeloid neutrophil and platelet engraftment occurred on Days 10 and 11, respectively. Results The patient's limb muscle tension was significantly reduced, and his gross and fine motor skills were improved four months after transplantation. DST(Developmental Screen Test) results showed that the patient's fine motor skills and mental development were improved compared with before HSCT. Conclusion MLII is a very severe lysosomal storage disease, to date, only 3 cases have been reported on the use of HSCT to treat MLII. Our data show that HSCT is a potential way to prolong the life of patients and improve their quality of life. Due to the lack of comparable data and time, the exact benefit remains unclear in MLII patients. Longer-term follow-up and in-depth prospective studies are indispensable.
Collapse
Affiliation(s)
- Si-jia He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dong-jun Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen-qiong Lv
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen-hao Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shu-wen Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi-ping Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, Prenatal Diagnosis Center of West China Second University Hospital, Chengdu, China
| | - Jin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, Prenatal Diagnosis Center of West China Second University Hospital, Chengdu, China
| | - Xiao-xi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Colella P, Meneghini V, Baldo G, Gomez-Ospina N. Editorial: Ex-vivo and in-vivo genome engineering for metabolic and neurometabolic diseases. Front Genome Ed 2023; 5:1248904. [PMID: 37484653 PMCID: PMC10359423 DOI: 10.3389/fgeed.2023.1248904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Guilherme Baldo
- Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
27
|
Gullotta GS, De Feo D, Friebel E, Semerano A, Scotti GM, Bergamaschi A, Butti E, Brambilla E, Genchi A, Capotondo A, Gallizioli M, Coviello S, Piccoli M, Vigo T, Della Valle P, Ronchi P, Comi G, D'Angelo A, Maugeri N, Roveri L, Uccelli A, Becher B, Martino G, Bacigaluppi M. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat Immunol 2023; 24:925-940. [PMID: 37188941 DOI: 10.1038/s41590-023-01505-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Aging accounts for increased risk and dismal outcome of ischemic stroke. Here, we investigated the impact of age-related changes in the immune system on stroke. Upon experimental stroke, compared with young mice, aged mice had increased neutrophil clogging of the ischemic brain microcirculation, leading to worse no-reflow and outcomes. Aged mice showed an enhanced granulopoietic response to stroke that led to the accumulation of CD101+CD62Llo mature and CD177hiCD101loCD62Llo and CD177loCD101loCD62Lhi immature atypical neutrophils in the blood, endowed with increased oxidative stress, phagocytosis and procoagulant features. Production of CXCL3 by CD62Llo neutrophils of the aged had a key role in the development and pathogenicity of aging-associated neutrophils. Hematopoietic stem cell rejuvenation reverted aging-associated neutropoiesis and improved stroke outcome. In elderly patients with ischemic stroke, single-cell proteome profile of blood leukocytes identified CD62Llo neutrophil subsets associated with worse reperfusion and outcome. Our results unveil how stroke in aging leads to a dysregulated emergency granulopoiesis impacting neurological outcome.
Collapse
Affiliation(s)
- Giorgia Serena Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Aurora Semerano
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Bergamaschi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Erica Butti
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Brambilla
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Genchi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessia Capotondo
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Gallizioli
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS, Policlinico San Donato, Milan, Italy
| | - Tiziana Vigo
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | - Patrizia Della Valle
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paola Ronchi
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Armando D'Angelo
- Coagulation Service and Thrombosis Research Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Luisa Roveri
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Antonio Uccelli
- IRCCS, Ospedale Policlinico San Martino, Genova, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Department, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
28
|
Peviani M, Das S, Patel J, Jno‐Charles O, Kumar R, Zguro A, Mathews TD, Cabras P, Milazzo R, Cavalca E, Poletti V, Biffi A. An innovative hematopoietic stem cell gene therapy approach benefits CLN1 disease in the mouse model. EMBO Mol Med 2023; 15:e15968. [PMID: 36876653 PMCID: PMC10086581 DOI: 10.15252/emmm.202215968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.
Collapse
Affiliation(s)
- Marco Peviani
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
- Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly
| | - Sabyasachi Das
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Janki Patel
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Odella Jno‐Charles
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Rajesh Kumar
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Ana Zguro
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Tyler D Mathews
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Paolo Cabras
- Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly
| | - Rita Milazzo
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
| | - Valentina Poletti
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Alessandra Biffi
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health DepartmentUniversity of PadovaPadovaItaly
| |
Collapse
|
29
|
Lauer A, Speroni SL, Choi M, Da X, Duncan C, McCarthy S, Krishnan V, Lusk CA, Rohde D, Hansen MB, Kalpathy-Cramer J, Loes DJ, Caruso PA, Williams DA, Mouridsen K, Emblem KE, Eichler FS, Musolino PL. Hematopoietic stem-cell gene therapy is associated with restored white matter microvascular function in cerebral adrenoleukodystrophy. Nat Commun 2023; 14:1900. [PMID: 37019892 PMCID: PMC10076264 DOI: 10.1038/s41467-023-37262-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Blood-brain barrier disruption marks the onset of cerebral adrenoleukodystrophy (CALD), a devastating cerebral demyelinating disease caused by loss of ABCD1 gene function. The underlying mechanism are not well understood, but evidence suggests that microvascular dysfunction is involved. We analyzed cerebral perfusion imaging in boys with CALD treated with autologous hematopoietic stem-cells transduced with the Lenti-D lentiviral vector that contains ABCD1 cDNA as part of a single group, open-label phase 2-3 safety and efficacy study (NCT01896102) and patients treated with allogeneic hematopoietic stem cell transplantation. We found widespread and sustained normalization of white matter permeability and microvascular flow. We demonstrate that ABCD1 functional bone marrow-derived cells can engraft in the cerebral vascular and perivascular space. Inverse correlation between gene dosage and lesion growth suggests that corrected cells contribute long-term to remodeling of brain microvascular function. Further studies are needed to explore the longevity of these effects.
Collapse
Affiliation(s)
- Arne Lauer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neuroradiology, Heidelberg University, Heidelberg, Germany
| | - Samantha L Speroni
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Myoung Choi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Xiao Da
- Functional Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Christine Duncan
- Dana-Farber and Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Siobhan McCarthy
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijai Krishnan
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Cole A Lusk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - David Rohde
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mikkel Bo Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Daniel J Loes
- Suburban Radiologic Consultants, Ltd, Minneapolis, MN, USA
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Williams
- Dana-Farber and Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Kim Mouridsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia L Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Athinoula A. Martinos Centre for Biomedical Imaging, Charlestown, MA, USA.
| |
Collapse
|
30
|
Parajuli B, Koizumi S. Strategies for Manipulating Microglia to Determine Their Role in the Healthy and Diseased Brain. Neurochem Res 2023; 48:1066-1076. [PMID: 36085395 PMCID: PMC9462627 DOI: 10.1007/s11064-022-03742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Microglia are the specialized macrophages of the central nervous system and play an important role in neural circuit development, modulating neurotransmission, and maintaining brain homeostasis. Microglia in normal brain is quiescent and show ramified morphology with numerous branching processes. They constantly survey their surrounding microenvironment through the extension and retraction of their processes and interact with neurons, astrocytes, and blood vessels using these processes. Microglia respond quickly to any pathological event in the brain by assuming ameboid morphology devoid of branching processes and restore homeostasis. However, when there is chronic inflammation, microglia may lose their homeostatic functions and secrete various proinflammatory cytokines and mediators that initiate neural dysfunction and neurodegeneration. In this article, we review the role of microglia in the normal brain and in various pathological brain conditions, such as Alzheimer's disease and multiple sclerosis. We describe strategies to manipulate microglia, focusing on depletion, repopulation, and replacement, and we discuss their therapeutic potential.
Collapse
Affiliation(s)
- Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
- GLIA Center, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
- GLIA Center, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
31
|
Dermitzakis I, Manthou ME, Meditskou S, Tremblay MÈ, Petratos S, Zoupi L, Boziki M, Kesidou E, Simeonidou C, Theotokis P. Origin and Emergence of Microglia in the CNS-An Interesting (Hi)story of an Eccentric Cell. Curr Issues Mol Biol 2023; 45:2609-2628. [PMID: 36975541 PMCID: PMC10047736 DOI: 10.3390/cimb45030171] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia belong to tissue-resident macrophages of the central nervous system (CNS), representing the primary innate immune cells. This cell type constitutes ~7% of non-neuronal cells in the mammalian brain and has a variety of biological roles integral to homeostasis and pathophysiology from the late embryonic to adult brain. Its unique identity that distinguishes its "glial" features from tissue-resident macrophages resides in the fact that once entering the CNS, it is perennially exposed to a unique environment following the formation of the blood-brain barrier. Additionally, tissue-resident macrophage progenies derive from various peripheral sites that exhibit hematopoietic potential, and this has resulted in interpretation issues surrounding their origin. Intensive research endeavors have intended to track microglial progenitors during development and disease. The current review provides a corpus of recent evidence in an attempt to disentangle the birthplace of microglia from the progenitor state and underlies the molecular elements that drive microgliogenesis. Furthermore, it caters towards tracking the lineage spatiotemporally during embryonic development and outlining microglial repopulation in the mature CNS. This collection of data can potentially shed light on the therapeutic potential of microglia for CNS perturbations across various levels of severity.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Lida Zoupi
- Centre for Discovery Brain Sciences & Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
32
|
Critchley BJ, Gaspar HB, Benedetti S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol Ther 2023; 31:657-675. [PMID: 36457248 PMCID: PMC10014236 DOI: 10.1016/j.ymthe.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are multisystem inherited metabolic disorders caused by dysfunctional lysosomal activity, resulting in the accumulation of undegraded macromolecules in a variety of organs/tissues, including the central nervous system (CNS). Treatments include enzyme replacement therapy, stem/progenitor cell transplantation, and in vivo gene therapy. However, these treatments are not fully effective in treating the CNS as neither enzymes, stem cells, nor viral vectors efficiently cross the blood-brain barrier. Here, we review the latest advancements in improving delivery of different therapeutic agents to the CNS and comment upon outstanding questions in the field of neurological LSDs.
Collapse
Affiliation(s)
- Bethan J Critchley
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK
| | - H Bobby Gaspar
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; Orchard Therapeutics Ltd., London EC4N 6EU, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London WC1N 1DZ, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
33
|
Yilmaz S, Öner P. Low α-N-acetylgalactosaminidase plasma concentration correlates with the presence and severity of the bipolar affective disorder. World J Biol Psychiatry 2023; 24:187-194. [PMID: 36102137 DOI: 10.1080/15622975.2022.2124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Believing that a neurodevelopmental pathology may cause bipolar affective disorder (BAD), we aimed to measure the concentrations of α-N-acetylgalactosaminidase (α-NAGAL), a lysosomal enzyme. METHODS The study included 32 patients with BAD and 32 healthy controls. The Young Mania Rating Scale was used to measure the severity of the disease. Serum α-N-acetylgalactosaminidase concentrations were measured in all blood samples using the human α-N-acetylgalactosaminidase ELISA Kit. RESULTS A statistically significant difference was found in the α-NAGAL values between the groups. The mean α-NAGAL values of BAD patients are lower than the mean α-NAGAL values of the control group. A strong negative and statistically significant relationship was found between the α-NAGAL values of patients with BAD and their Young Mania Rating Scale scores. And a positive strong correlation was found between the age of onset of the disease and α-NAGAL levels. CONCLUSIONS Low α-N-acetylgalactosaminidase concentrations may cause the accumulation of some glycoproteins in the lysosomes in the brain during the gestational period, producing the clinical symptoms of BAD. α-N-acetylgalactosaminidase deficiency may not be the only cause of BAD, but it may be an important factor in the aetiology of this disease.
Collapse
Affiliation(s)
| | - Pınar Öner
- Elaziğ Fethi Sekin City Hospital, Elaziğ, Turkey
| |
Collapse
|
34
|
Abstract
OBJECTIVES Using a neurodevelopmental approach to examine the aetiology, we predicted an enzyme deficiency to exist at the cellular level and aimed to measure α-N-acetylgalactosaminidase (α-NAGAL) blood levels. METHODS The study included 32 patients diagnosed with schizophrenia and 30 healthy controls. The positive and negative syndrome scale (PANSS) was applied to the patients with schizophrenia. Serum α-NAGAL concentrations were measured in blood samples taken from all participants using the human alpha-N-acetylgalactosaminidase ELISA Kit. RESULTS The mean α-NAGAL values of schizophrenic patients are lower than the mean α-NAGAL values of the control group (p = 0.000 < 0.001). Correlation analysis showed that there was a significant relationship between α-NAGAL values and PANSS scores of patients with schizophrenia. PANSS total (r = -0.708, p = 0.000 < 0.001), PANSS positive (r = -0.627, p = 0.000 < 0.001), PANSS negative (r = -0.386, p = 0.029 < 0.05). And a positive moderate correlation was found between the age of onset of the disease and α-NAGAL levels (r = 0.529, p = 0.002 < 0.05). CONCLUSIONS Based on the neurodevelopmental hypothesis, the low α-NAGAL concentrations this study found might cause accumulation of glycoproteins in the lysosomes in the central nervous system during the gestational period and then might result in the clinical symptoms of schizophrenia. α-NAGAL may be an important factor in the aetiology of schizophrenia.
Collapse
Affiliation(s)
- Seda Yılmaz
- Elazığ Medical Park Hospital, Istinye University, Elazığ, Turkey
| | - Pınar Öner
- Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| |
Collapse
|
35
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
- Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
36
|
GATA1 controls numbers of hematopoietic progenitors and their response to autoimmune neuroinflammation. Blood Adv 2022; 6:5980-5994. [PMID: 36206195 PMCID: PMC9691916 DOI: 10.1182/bloodadvances.2022008234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
GATA-binding factor 1 (GATA1) is a transcription factor that governs the development and function of multiple hematopoietic cell lineages. GATA1 is expressed in hematopoietic stem and progenitor cells (HSPCs) and is essential for erythroid lineage commitment; however, whether it plays a role in hematopoietic stem cell (HSC) biology and the development of myeloid cells, and what that role might be, remains unclear. We initially set out to test the role of eosinophils in experimental autoimmune encephalomyelitis (EAE), a model of central nervous system autoimmunity, using mice lacking a double GATA-site (ΔdblGATA), which lacks eosinophils due to the deletion of the dblGATA enhancer to Gata1, which alters its expression. ΔdblGATA mice were resistant to EAE, but not because of a lack of eosinophils, suggesting that these mice have an additional defect. ΔdblGATA mice with EAE had fewer inflammatory myeloid cells than the control mice, suggesting that resistance to EAE is caused by a defect in myeloid cells. Naïve ΔdblGATA mice also showed reduced frequency of CD11b+ myeloid cells in the blood, indicating a defect in myeloid cell production. Examination of HSPCs revealed fewer HSCs and myeloid cell progenitors in the ΔdblGATA bone marrow (BM), and competitive BM chimera experiments showed a reduced capacity of the ΔdblGATA BM to reconstitute immune cells, suggesting that reduced numbers of ΔdblGATA HSPCs cause a functional deficit during inflammation. Taken together, our data show that GATA1 regulates the number of HSPCs and that reduced GATA1 expression due to dblGATA deletion results in a diminished immune response following the inflammatory challenge.
Collapse
|
37
|
Plasschaert RN, DeAndrade MP, Hull F, Nguyen Q, Peterson T, Yan A, Loperfido M, Baricordi C, Barbarossa L, Yoon JK, Dogan Y, Unnisa Z, Schindler JW, van Til NP, Biasco L, Mason C. High-throughput analysis of hematopoietic stem cell engraftment after intravenous and intracerebroventricular dosing. Mol Ther 2022; 30:3209-3225. [PMID: 35614857 PMCID: PMC9552809 DOI: 10.1016/j.ymthe.2022.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/15/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) has shown clear neurological benefit in rare diseases, which is achieved through the engraftment of genetically modified microglia-like cells (MLCs) in the brain. Still, the engraftment dynamics and the nature of engineered MLCs, as well as their potential use in common neurogenerative diseases, have remained largely unexplored. Here, we comprehensively characterized how different routes of administration affect the biodistribution of genetically engineered MLCs and other HSPC derivatives in mice. We generated a high-resolution single-cell transcriptional map of MLCs and discovered that they could clearly be distinguished from macrophages as well as from resident microglia by the expression of a specific gene signature that is reflective of their HSPC ontogeny and irrespective of their long-term engraftment history. Lastly, using murine models of Parkinson's disease and frontotemporal dementia, we demonstrated that MLCs can deliver therapeutically relevant levels of transgenic protein to the brain, thereby opening avenues for the clinical translation of HSPC-GT to the treatment of major neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Aimin Yan
- AVROBIO, Inc, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - Niek P van Til
- AVROBIO, Inc, Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Biasco
- AVROBIO, Inc, Cambridge, MA 02139, USA; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chris Mason
- AVROBIO, Inc, Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
38
|
A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy. Gene Ther 2022; 30:288-296. [PMID: 35835952 DOI: 10.1038/s41434-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
A hematopoietic stem cell (HSC) gene therapy (GT) using lentiviral vectors has attracted interest as a promising treatment approach for neuropathic lysosomal storage diseases. To proceed with the clinical development of HSC-GT, evaluation of the therapeutic potential of gene-transduced human CD34+ (hCD34+) cells in vivo is one of the key issues before human trials. Here, we established an immunodeficient murine model of mucopolysaccharidosis type II (MPS II), which are transplantable human cells, and demonstrated the application of those mice in evaluating the therapeutic efficacy of gene-modified hCD34+ cells. NOG/MPS II mice, which were generated using CRISPR/Cas9, exhibited a reduction of disease-causing enzyme iduronate-2-sulfatatase (IDS) activity and the accumulation of glycosaminoglycans in their tissues. When we transplanted hCD34+ cells transduced with a lentiviral vector carrying the IDS gene into NOG/MPS II mice, a significant amelioration of biochemical pathophenotypes was observed in the visceral and neuronal tissues of those mice. In addition, grafted cells in the NOG/MPS II mice showed the oligoclonal integration pattern of the vector, but no obvious clonal dominance was detected in the mice. Our findings indicate the promising application of NOG/MPS II mice to preclinical study of HSC-GT for MPS II using human cells.
Collapse
|
39
|
Aigrot MS, Barthelemy C, Moyon S, Dufayet-Chaffaud G, Izagirre-Urizar L, Gillet-Legrand B, Tada S, Bayón-Cordero L, Chara JC, Matute C, Cartier N, Lubetzki C, Tepavčević V. Genetically modified macrophages accelerate myelin repair. EMBO Mol Med 2022; 14:e14759. [PMID: 35822550 PMCID: PMC9358396 DOI: 10.15252/emmm.202114759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Preventing neurodegeneration‐associated disability progression in patients with multiple sclerosis (MS) remains an unmet therapeutic need. As remyelination prevents axonal degeneration, promoting this process in patients might enhance neuroprotection. In demyelinating mouse lesions, local overexpression of semaphorin 3F (Sema3F), an oligodendrocyte progenitor cell (OPC) attractant, increases remyelination. However, molecular targeting to MS lesions is a challenge. A clinically relevant paradigm for delivering Sema3F to demyelinating lesions could be to use blood‐derived macrophages as vehicles. Thus, we chose transplantation of genetically modified hematopoietic stem cells (HSCs) as means of obtaining chimeric mice with circulating Sema3F‐overexpressing monocytes. We demonstrated that Sema3F‐transduced HSCs stimulate OPC migration in a neuropilin 2 (Nrp2, Sema3F receptor)‐dependent fashion, which was conserved in middle‐aged OPCs. While demyelinating lesions induced in mice with Sema3F‐expressing blood cells showed no changes in inflammation and OPC survival, OPC recruitment was enhanced which accelerated the onset of remyelination. Our results provide a proof of concept that blood cells, particularly monocytes/macrophages, can be used to deliver pro‐remyelinating agents “at the right time and place,” suggesting novel means for remyelination‐promoting strategies in MS.
Collapse
Affiliation(s)
| | - Clara Barthelemy
- INSERM UMR1127 Sorbonne Université, Paris Brain Institute (ICM), Paris, France
| | - Sarah Moyon
- NYU Langone Health, Neuroscience Institute, New York City, NY, USA
| | | | - Leire Izagirre-Urizar
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Satoru Tada
- INSERM UMR1127 Sorbonne Université, Paris Brain Institute (ICM), Paris, France
| | - Laura Bayón-Cordero
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan-Carlos Chara
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nathalie Cartier
- Asklepios Biopharmaceutical, Inc., Institut du Cerveau (ICM), Paris, France
| | - Catherine Lubetzki
- INSERM UMR1127 Sorbonne Université, Paris Brain Institute (ICM), Paris, France.,AP-HP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Vanja Tepavčević
- Achucarro Basque Center for Neuroscience/Department of Neuroscience, School of Medicine University of the Basque Country, Leioa, Spain
| |
Collapse
|
40
|
Donald A, Björkvall CK, Vellodi A, Cox TM, Hughes D, Jones SA, Wynn R, Machaczka M. Thirty-year clinical outcomes after haematopoietic stem cell transplantation in neuronopathic Gaucher disease. Orphanet J Rare Dis 2022; 17:234. [PMID: 35717194 PMCID: PMC9206376 DOI: 10.1186/s13023-022-02378-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Neuronopathic Gaucher Disease (nGD) describes the condition of a subgroup of patients with the Lysosomal Storage Disorder (LSD), Gaucher disease with involvement of the central nervous system (CNS) which results from inherited deficiency of β-glucosylceramidase. Although systemic manifestations of disease are now corrected by augmentation with macrophage-targeted therapeutic enzyme (enzyme replacement therapy, ERT), neurological disease progresses unpredictably as a result of failure of therapeutic enzyme to cross the blood–brain barrier (BBB). Without therapy, the systemic and neurological effects of the disease progress and shorten life: investigators, principally in Sweden and the UK, pioneered bone marrow transplantation (BMT; Haematopoietic Stem Cell Transplantation HSCT) to supply healthy marrow-derived macrophages and other cells, to correct the peripheral disease. Here we report the first long-term follow-up (over 20 years in all cases) of nine patients in the UK and Sweden who underwent HSCT in the 1970s and 1980s. This retrospective, multicentre observational study was undertaken to determine whether there are neurological features of Gaucher disease that can be corrected by HSCT and the extent to which deterioration continues after the procedure. Since intravenous administration of ERT is approved for patients with the neuronopathic disease and ameliorates many of the important systemic manifestations but fails to correct the neurological features, we also consider the current therapeutic positioning of HSCT in this disorder. Results In the nine patients here reported, neurological disease continued to progress after transplantation, manifesting as seizures, cerebellar disease and abnormalities of tone and reflexes. Conclusions Although neurological disease progressed in this cohort of patients, there may be a future role for HSCT in the treatment of nGD. The procedure has the unique advantage of providing a life-long source of normally functioning macrophages in the bone marrow, and possibly other sites, after a single administration. HSCT moreover, clearly ameliorates systemic disease and this may be advantageous—especially where sustained provision of high-cost ERT cannot be guaranteed. Given the remaining unmet needs of patients with neuronopathic Gaucher disease and the greatly improved safety profile of the transplant procedure, HSCT could be considered to provide permanent correction of systemic disease, including bone disease not ameliorated by ERT, when combined with emerging therapies directed at the neurological manifestations of disease; this could include ex-vivo gene therapy approaches.
Collapse
Affiliation(s)
- Aimee Donald
- Manchester Centre for Genomic Medicine, St Marys Hospital, Manchester, UK.
| | | | | | | | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Derralyn Hughes
- Lysosomal Storage Disorder Unit, Royal Free Hospital, UCL, London, UK
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, St Marys Hospital, Manchester, UK
| | - Robert Wynn
- Royal Manchester Children's Hospital, Manchester, UK
| | - Maciej Machaczka
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland.,Division of Internal Medicine, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Improved engraftment and therapeutic efficacy by human genome-edited hematopoietic stem cells with Busulfan-based myeloablation. Mol Ther Methods Clin Dev 2022; 25:392-409. [PMID: 35573043 PMCID: PMC9065050 DOI: 10.1016/j.omtm.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022]
Abstract
Autologous hematopoietic stem cell transplantation using genome-edited cells can become a definitive therapy for hematological and non-hematological disorders with neurological involvement. Proof-of-concept studies using human genome-edited hematopoietic stem cells have been hindered by the low efficiency of engraftment of the edited cells in the bone marrow and their modest efficacy in the CNS. To address these challenges, we tested a myeloablative conditioning regimen based on Busulfan in an immunocompromised model of mucopolysaccharidosis type 1. Compared with sub-lethal irradiation, Busulfan conditioning enhanced the engraftment of edited CD34+ cells in the bone marrow, as well the long-term homing and survival of bone-marrow-derived cells in viscera, and in the CNS, resulting in higher transgene expression and biochemical correction in these organs. Edited cell selection using a clinically compatible marker resulted in a population with low engraftment potential. We conclude that conditioning can impact the engraftment of edited hematopoietic stem cells. Furthermore, Busulfan-conditioned recipients have a higher expression of therapeutic proteins in target organs, particularly in the CNS, constituting a better conditioning approach for non-hematological diseases with neurological involvement.
Collapse
|
42
|
Sala D, Ornaghi F, Morena F, Argentati C, Valsecchi M, Alberizzi V, Di Guardo R, Bolino A, Aureli M, Martino S, Gritti A. Therapeutic advantages of combined gene/cell therapy strategies in a murine model of GM2 gangliosidosis. Mol Ther Methods Clin Dev 2022; 25:170-189. [PMID: 35434178 PMCID: PMC8983315 DOI: 10.1016/j.omtm.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/13/2022] [Indexed: 11/28/2022]
Abstract
Genetic deficiency of β-N-acetylhexosaminidase (Hex) functionality leads to accumulation of GM2 ganglioside in Tay-Sachs disease and Sandhoff disease (SD), which presently lack approved therapies. Current experimental gene therapy (GT) approaches with adeno-associated viral vectors (AAVs) still pose safety and efficacy issues, supporting the search for alternative therapeutic strategies. Here we leveraged the lentiviral vector (LV)-mediated intracerebral (IC) GT platform to deliver Hex genes to the CNS and combined this strategy with bone marrow transplantation (BMT) to provide a timely, pervasive, and long-lasting source of the Hex enzyme in the CNS and periphery of SD mice. Combined therapy outperformed individual treatments in terms of lifespan extension and normalization of the neuroinflammatory/neurodegenerative phenotypes of SD mice. These benefits correlated with a time-dependent increase in Hex activity and a remarkable reduction in GM2 storage in brain tissues that single treatments failed to achieve. Our results highlight the synergic mode of action of LV-mediated IC GT and BMT, clarify the contribution of treatments to the therapeutic outcome, and inform on the realistic threshold of corrective enzymatic activity. These results have important implications for interpretation of ongoing experimental therapies and for design of more effective treatment strategies for GM2 gangliosidosis.
Collapse
Affiliation(s)
- Davide Sala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesca Ornaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Roberta Di Guardo
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Sabata Martino
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
43
|
Consiglieri G, Bernardo ME, Brunetti-Pierri N, Aiuti A. Ex Vivo and In Vivo Gene Therapy for Mucopolysaccharidoses: State of the Art. Hematol Oncol Clin North Am 2022; 36:865-878. [DOI: 10.1016/j.hoc.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Abstract
The earliest conceptual history of gene therapy began with the recognition of DNA as the transforming substance capable of changing the phenotypic character of a bacterium and then as the carrier of the genomic code. Early studies of oncogenic viruses that could insert into the mammalian genome led to the concept that these same viruses might be engineered to carry new genetic material into mammalian cells, including human hematopoietic stem cells (HSC). In addition to properly engineered vectors capable of efficient safe transduction of HSC, successful gene therapy required the development of efficient materials, methods, and equipment to procure, purify, and culture HSC. Increased understanding of the preparative conditioning of patients was needed to optimize the engraftment of genetically modified HSC. Testing concepts in pivotal clinical trials to assess the efficacy and determine the cause of adverse events has advanced the efficiency and safety of gene therapy. This article is a historical overview of the separate threads of discovery that joined together to comprise our current state of gene therapy targeting HSC.
Collapse
|
45
|
de Vasconcelos P, Lacerda JF. Hematopoietic Stem Cell Transplantation for Neurological Disorders: A Focus on Inborn Errors of Metabolism. Front Cell Neurosci 2022; 16:895511. [PMID: 35693884 PMCID: PMC9178264 DOI: 10.3389/fncel.2022.895511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem cells have been investigated and applied for the treatment of certain neurological disorders for a long time. Currently, their therapeutic potential is harnessed in autologous and allogeneic hematopoietic stem cell transplantation (HSCT). Autologous HSCT is helpful in immune-mediated neurological diseases such as Multiple Sclerosis. However, clinical benefits derive more from the immunosuppressive conditioning regimen than the interaction between stem cells and the nervous system. Mainly used for hematologic malignancies, allogeneic HSCT explores the therapeutic potential of donor-derived hematopoietic stem cells. In the neurological setting, it has proven to be most valuable in Inborn Errors of Metabolism, a large spectrum of multisystem disorders characterized by congenital deficiencies in enzymes involved in metabolic pathways. Inborn Errors of Metabolism such as X-linked Adrenoleukodystrophy present with brain accumulation of enzymatic substrates that result in progressive inflammatory demyelination. Allogeneic HSCT can halt ongoing inflammatory neural destruction by replacing hematopoietic-originated microglia with donor-derived myeloid precursors. Microglia, the only neural cells successfully transplanted thus far, are the most valuable source of central nervous system metabolic correction and play a significant role in the crosstalk between the brain and hematopoietic stem cells. After transplantation, engrafted donor-derived myeloid cells modulate the neural microenvironment by recapitulating microglial functions and enhancing repair mechanisms such as remyelination. In some disorders, additional benefits result from the donor hematopoietic stem cell secretome that cross-corrects neighboring neural cells via mannose-6-phosphatase paracrine pathways. The limitations of allogeneic HSCT in this setting relate to the slow turnover of microglia and complications such as graft-vs.-host disease. These restraints have accelerated the development of hematopoietic stem cell gene therapy, where autologous hematopoietic stem cells are collected, manipulated ex vivo to overexpress the missing enzyme, and infused back into the patient. With this cellular drug vehicle strategy, the brain is populated by improved cells and exposed to supraphysiological levels of the flawed protein, resulting in metabolic correction. This review focuses on the mechanisms of brain repair resulting from HSCT and gene therapy in Inborn Errors of Metabolism. A brief mention will also be made on immune-mediated nervous system diseases that are treated with this approach.
Collapse
Affiliation(s)
- Pedro de Vasconcelos
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - João F. Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
A phase I/IIa clinical trial of autologous hematopoietic stem cell transplantation in amyotrophic lateral sclerosis. J Neurol 2022; 269:5337-5346. [PMID: 35596795 DOI: 10.1007/s00415-022-11185-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To verify the safety and potential effect on ALS progression of a low-intensity immunosuppressive regimen followed by autologous hematopoietic stem cell transplantation (aHSCT) in amyotrophic lateral sclerosis (ALS) patients. METHODS ALS eligible patients underwent a set of clinical and laboratory evaluations at T-4 (screening), T-1 (pre-treatment visit), and for the 12 consecutive months after treatment (T3, T6, T9, T12). We evaluated the tolerability of the procedure, its efficacy on clinical course and quality of life (QoL). RESULTS Eight of the 11 ALS patients enrolled received the established immunoablative protocol. The procedure was well tolerated and side effects were those expected. One patient died 4 months after the conditioning regimen and another patient underwent tracheotomy just before T3 for a sudden respiratory failure, but he is still alive 4 years after the procedure without being ventilated any more. A third patient died 10 months after conditioning. In the other cases, there was no statistical difference in all functional measures and QoL pre- and post-treatment; however, a transitory slopes' reduction of ALSFRS-R and seated SVC% after the conditioning procedures was reported. Moreover, although not statistically significant, trends of reduction of CD4 + and increment of CD8 + were found. CONCLUSIONS aHSCT was overall well tolerated, but it was not followed by any significant modification in disease progression. Considering the negative results of this small trial, further studies aimed to evaluate the possible efficacy of the aHSCT using a higher-intensity regimen should be carefully and with caution evaluated.
Collapse
|
47
|
Sivakumar A, Cherqui S. Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia. Front Genome Ed 2022; 4:903139. [PMID: 35663795 PMCID: PMC9157421 DOI: 10.3389/fgeed.2022.903139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited, multisystemic disorder predominantly caused by GAA hyper expansion in intron 1 of frataxin (FXN) gene. This expansion mutation transcriptionally represses FXN, a mitochondrial protein that is required for iron metabolism and mitochondrial homeostasis, leading to neurodegerative and cardiac dysfunction. Current therapeutic options for FRDA are focused on improving mitochondrial function and increasing frataxin expression through pharmacological interventions but are not effective in delaying or preventing the neurodegeneration in clinical trials. Recent research on in vivo and ex vivo gene therapy methods in FRDA animal and cell models showcase its promise as a one-time therapy for FRDA. In this review, we provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of FXN as a viable option to restore endogenous frataxin expression. We also assess the potential of ex vivo gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.
Collapse
Affiliation(s)
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
48
|
Rossini L, Durante C, Marzollo A, Biffi A. New Indications for Hematopoietic Stem Cell Gene Therapy in Lysosomal Storage Disorders. Front Oncol 2022; 12:885639. [PMID: 35646708 PMCID: PMC9136164 DOI: 10.3389/fonc.2022.885639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Lysosomal storage disorders (LSDs) are a heterogenous group of disorders due to genetically determined deficits of lysosomal enzymes. The specific molecular mechanism and disease phenotype depends on the type of storage material. Several disorders affect the brain resulting in severe clinical manifestations that substantially impact the expectancy and quality of life. Current treatment modalities for LSDs include enzyme replacement therapy (ERT) and hematopoietic cell transplantation (HCT) from allogeneic healthy donors, but are available for a limited number of disorders and lack efficacy on several clinical manifestations. Hematopoietic stem cell gene therapy (HSC GT) based on integrating lentiviral vectors resulted in robust clinical benefit when administered to patients affected by Metachromatic Leukodystrophy, for whom it is now available as a registered medicinal product. More recently, HSC GT has also shown promising results in Hurler syndrome patients. Here, we discuss possible novel HSC GT indications that are currently under development. If these novel drugs will prove effective, they might represent a new standard of care for these disorders, but several challenges will need to be addresses, including defining and possibly expanding the patient population for whom HSC GT could be efficacious.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Caterina Durante
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Fondazione Citta’ della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
- *Correspondence: Alessandra Biffi,
| |
Collapse
|
49
|
Hwang D, Seyedsadr MS, Ishikawa LLW, Boehm A, Sahin Z, Casella G, Jang S, Gonzalez MV, Garifallou JP, Hakonarson H, Zhang W, Xiao D, Rostami A, Zhang GX, Ciric B. CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation. Proc Natl Acad Sci U S A 2022; 119:e2111804119. [PMID: 35353625 PMCID: PMC9168454 DOI: 10.1073/pnas.2111804119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
The receptor for colony stimulating factor 1 (CSF-1R) is important for the survival and function of myeloid cells that mediate pathology during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). CSF-1 and IL-34, the ligands of CSF-1R, have similar bioactivities but distinct tissue and context-dependent expression patterns, suggesting that they have different roles. This could be the case in EAE, given that CSF-1 expression is up-regulated in the CNS, while IL-34 remains constitutively expressed. We found that targeting CSF-1 with neutralizing antibody halted ongoing EAE, with efficacy superior to CSF-1R inhibitor BLZ945, whereas IL-34 neutralization had no effect, suggesting that pathogenic myeloid cells were maintained by CSF-1. Both anti–CSF-1 and BLZ945 treatment greatly reduced the number of monocyte-derived cells and microglia in the CNS. However, anti–CSF-1 selectively depleted inflammatory microglia and monocytes in inflamed CNS areas, whereas BLZ945 depleted virtually all myeloid cells, including quiescent microglia, throughout the CNS. Anti–CSF-1 treatment reduced the size of demyelinated lesions and microglial activation in the gray matter. Lastly, we found that bone marrow–derived immune cells were the major mediators of CSF-1R–dependent pathology, while microglia played a lesser role. Our findings suggest that targeting CSF-1 could be effective in ameliorating MS pathology, while preserving the homeostatic functions of myeloid cells, thereby minimizing risks associated with ablation of CSF-1R–dependent cells.
Collapse
Affiliation(s)
- Daniel Hwang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Maryam S. Seyedsadr
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Alexandra Boehm
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ziver Sahin
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Giacomo Casella
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Soohwa Jang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael V. Gonzalez
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
| | - James P. Garifallou
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
| | - Hakon Hakonarson
- The Children’s Hospital of Philadelphia, Abramson Research Center, Center for Applied Genomics, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Weifeng Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dan Xiao
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Abdolmohamad Rostami
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Guang-Xian Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Bogoljub Ciric
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
50
|
Shibuya Y, Kumar KK, Mader MMD, Yoo Y, Ayala LA, Zhou M, Mohr MA, Neumayer G, Kumar I, Yamamoto R, Marcoux P, Liou B, Bennett FC, Nakauchi H, Sun Y, Chen X, Heppner FL, Wyss-Coray T, Südhof TC, Wernig M. Treatment of a genetic brain disease by CNS-wide microglia replacement. Sci Transl Med 2022; 14:eabl9945. [PMID: 35294256 PMCID: PMC9618306 DOI: 10.1126/scitranslmed.abl9945] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hematopoietic cell transplantation after myeloablative conditioning has been used to treat various genetic metabolic syndromes but is largely ineffective in diseases affecting the brain presumably due to poor and variable myeloid cell incorporation into the central nervous system. Here, we developed and characterized a near-complete and homogeneous replacement of microglia with bone marrow cells in mice without the need for genetic manipulation of donor or host. The high chimerism resulted from a competitive advantage of scarce donor cells during microglia repopulation rather than enhanced recruitment from the periphery. Hematopoietic stem cells, but not immediate myeloid or monocyte progenitor cells, contained full microglia replacement potency equivalent to whole bone marrow. To explore its therapeutic potential, we applied microglia replacement to a mouse model for Prosaposin deficiency, which is characterized by a progressive neurodegeneration phenotype. We found a reduction of cerebellar neurodegeneration and gliosis in treated brains, improvement of motor and balance impairment, and life span extension even with treatment started in young adulthood. This proof-of-concept study suggests that efficient microglia replacement may have therapeutic efficacy for a variety of neurological diseases.
Collapse
Affiliation(s)
- Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin K Kumar
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,These authors contributed equally
| | - Luis Angel Ayala
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mu Zhou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ishan Kumar
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul Marcoux
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Frank L. Heppner
- Department of Neuropathology, Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany,Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany,Cluster of Excellence, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany,Berlin Institute of Health (BIH), 10117 Berlin, Germany,German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA,Veterans Administration Palo Alto Healthcare System, Palo Alto, CA 94304, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA,Lead Contact,Correspondence:
| |
Collapse
|