1
|
Zhu J, Boivin JC, Pang S, Xu CS, Lu Z, Saalfeld S, Hess HF, Ohyama T. Comparative connectomics and escape behavior in larvae of closely related Drosophila species. Curr Biol 2023:S0960-9822(23)00675-9. [PMID: 37285846 DOI: 10.1016/j.cub.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Evolution has generated an enormous variety of morphological, physiological, and behavioral traits in animals. How do behaviors evolve in different directions in species equipped with similar neurons and molecular components? Here we adopted a comparative approach to investigate the similarities and differences of escape behaviors in response to noxious stimuli and their underlying neural circuits between closely related drosophilid species. Drosophilids show a wide range of escape behaviors in response to noxious cues, including escape crawling, stopping, head casting, and rolling. Here we find that D. santomea, compared with its close relative D. melanogaster, shows a higher probability of rolling in response to noxious stimulation. To assess whether this behavioral difference could be attributed to differences in neural circuitry, we generated focused ion beam-scanning electron microscope volumes of the ventral nerve cord of D. santomea to reconstruct the downstream partners of mdIV, a nociceptive sensory neuron in D. melanogaster. Along with partner interneurons of mdVI (including Basin-2, a multisensory integration neuron necessary for rolling) previously identified in D. melanogaster, we identified two additional partners of mdVI in D. santomea. Finally, we showed that joint activation of one of the partners (Basin-1) and a common partner (Basin-2) in D. melanogaster increased rolling probability, suggesting that the high rolling probability in D. santomea is mediated by the additional activation of Basin-1 by mdIV. These results provide a plausible mechanistic explanation for how closely related species exhibit quantitative differences in the likelihood of expressing the same behavior.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Integrated Program of Neuroscience, McGill University, Pine Avenue W., Montreal, QC H3A 1A1, Canada
| | - Jean-Christophe Boivin
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Integrated Program of Neuroscience, McGill University, Pine Avenue W., Montreal, QC H3A 1A1, Canada
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA
| | - Tomoko Ohyama
- Department of Biology, McGill University, Docteur Penfield, Montreal, QC H3A 1B1, Canada; Alan Edwards Center for Research on Pain, McGill University, University Street, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
2
|
Södersten P, Brodin U, Zandian M, Bergh CEK. Verifying Feighner's Hypothesis; Anorexia Nervosa Is Not a Psychiatric Disorder. Front Psychol 2019; 10:2110. [PMID: 31607977 PMCID: PMC6756277 DOI: 10.3389/fpsyg.2019.02110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
Mental causation takes explanatory priority over evolutionary biology in most accounts of eating disorders. The evolutionary threat of starvation has produced a brain that assists us in the search for food and mental change emerges as a consequence. The major mental causation hypothesis: anxiety causes eating disorders, has been extensively tested and falsified. The subsidiary hypothesis: anxiety and eating disorders are caused by the same genotype, generates inconsistent results because the phenotypes are not traits, but vary along dimensions. Challenging the mental causation hypothesis in Feighner et al. (1972) noted that anorexic patients are physically hyperactive, hoarding for food, and they are rewarded for maintaining a low body weight. In 1996, Feighner's hypothesis was formalized, relating the patients' behavioral phenotype to the brain mechanisms of reward and attention (Bergh and Södersten, 1996), and in 2002, the hypothesis was clinically verified by training patients how to eat normally, thus improving outcomes (Bergh et al., 2002). Seventeen years later we provide evidence supporting Feighner's hypothesis by demonstrating that in 2012, 20 out of 37 patients who were referred by a psychiatrist, had a psychiatric diagnosis that differed from the diagnosis indicated by the SCID-I. Out of the 174 patients who were admitted in 2012, most through self-referral, there was significant disagreement between the outcomes of the SCID-I interview and the patient's subjective experience of a psychiatric problem in 110 of the cases. In addition, 358 anorexic patients treated to remission scored high on the Comprehensive Psychopathological Rating Scale, but an item response analysis indicated one (unknown) underlying dimension, rather than the three dimensions the scale can dissociate in patients with psychiatric disorders. These results indicate that psychiatric diagnoses, which are reliable and valid in patients with psychiatric disorders, are less well suited for patients with anorexia. The results are in accord with the hypothesis of the present Research Topic, that eating disorders are not always caused by disturbed psychological processes, and support the alternative, clinically relevant hypothesis that the behavioral phenotype of the patients should be addressed directly.
Collapse
Affiliation(s)
- Per Södersten
- Karolinska Institutet, Mandometer Clinics, Huddinge, Sweden
| | | | | | | |
Collapse
|
6
|
Rosales-Reynoso MA, Juárez-Vázquez CI, Barros-Núñez P. Evolution and genomics of the human brain. Neurologia 2015; 33:254-265. [PMID: 26304653 DOI: 10.1016/j.nrl.2015.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/01/2015] [Indexed: 01/20/2023] Open
Abstract
Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain.
Collapse
Affiliation(s)
- M A Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - C I Juárez-Vázquez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - P Barros-Núñez
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| |
Collapse
|