1
|
Mills KR, Torabifard H. Computational approaches to investigate fluoride binding, selectivity and transport across the membrane. Methods Enzymol 2024; 696:109-154. [PMID: 38658077 DOI: 10.1016/bs.mie.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F-) exporters: the CLCF F-/H+ antiporter and the Fluc F- channel. The CLCF antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLCF transport process, including its selectivity for F- over HF. In contrast, the Fluc F- channel presents a novel architecture as a dual topology dimer, featuring two pores for F- export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F- export in Fluc and reveal details about the coordination and hydration of both F- and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.
Collapse
Affiliation(s)
- Kira R Mills
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
| | - Hedieh Torabifard
- Department of Chemistry & Biochemistry, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
2
|
Yamaguchi A, Mukai Y, Sakuma T, Suganuma Y, Furugen A, Narumi K, Kobayashi M. Molecular characteristic analysis of single-nucleotide polymorphisms in SLC16A9/hMCT9. Life Sci 2023; 334:122205. [PMID: 37879602 DOI: 10.1016/j.lfs.2023.122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
AIMS Human monocarboxylate transporter 9 (hMCT9), encoded by SLC16A9, is a transporter that mediates creatine transport across the transmembrane. Previously, we reported that hMCT9 is an extracellular pH- and Na+-sensitive creatine transporter with two kinetic components. Recently, some variants of hMCT9 have been found to be associated with serum uric acid levels, hyperuricemia, and gout. Among these, two single-nucleotide polymorphisms (SNPs) have also been reported: rs550527563 (L93M) and rs2242206 (T258K). However, the effect of these SNPs on hMCT9 transport activity remains unclear. This study aimed to determine the influence of hMCT9 L93M and T258K on transport characteristics. MAIN METHODS hMCT9 L93M and T258K were constructed by site-directed mutagenesis and expressed in Xenopus laevis oocyte. Transport activity of uric acid and creatine via hMCT9 were measured by using a Xenopus laevis oocyte heterologous expression system. KEY FINDINGS We assessed the transport activity of uric acid and creatine, and observed that hMCT9-expressing oocytes transported uric acid approximately 3- to 4-fold more than water-injected oocytes. hMCT9 L93M slightly reduced the transport activity of creatine, whereas hMCT9 T258K did not affect the transport activity. Interestingly, hMCT9 T258K abolished Na+ sensitivity and altered the substrate affinity from two components to one. SIGNIFICANCE In conclusion, hMCT9 SNPs affect transport activity and characteristics. hMCT9 L93M and T258K may induce dysfunction and contribute to pathologies such as hyperuricemia and gout. This is a first study to evaluate molecular characteristics of hMCT9 SNPs.
Collapse
Affiliation(s)
- Atsushi Yamaguchi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-Jo, Nishi-5-Chome, Kita-ku, Sapporo 060-8648, Japan; Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuto Mukai
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoya Sakuma
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yudai Suganuma
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
3
|
Huttunen J, Kronenberger T, Montaser AB, Králová A, Terasaki T, Poso A, Huttunen KM. Sodium-Dependent Neutral Amino Acid Transporter 2 Can Serve as a Tertiary Carrier for l-Type Amino Acid Transporter 1-Utilizing Prodrugs. Mol Pharm 2023; 20:1331-1346. [PMID: 36688491 PMCID: PMC9906736 DOI: 10.1021/acs.molpharmaceut.2c00948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Membrane transporters are the key determinants of the homeostasis of endogenous compounds in the cells and their exposure to drugs. However, the substrate specificities of distinct transporters can overlap. In the present study, the interactions of l-type amino acid transporter 1 (LAT1)-utilizing prodrugs with sodium-coupled neutral amino acid transporter 2 (SNAT2) were explored. The results showed that the cellular uptake of LAT1-utilizing prodrugs into a human breast cancer cell line, MCF-7 cells, was mediated via SNATs as the uptake was increased at higher pH (8.5), decreased in the absence of sodium, and inhibited in the presence of unselective SNAT-inhibitor, (α-(methylamino)isobutyric acid, MeAIB). Moreover, docking the compounds to a SNAT2 homology model (inward-open conformation) and further molecular dynamics simulations and the subsequent trajectory and principal component analyses confirmed the chemical features supporting the interactions of the studied compounds with SNAT2, which was found to be the main SNAT expressed in MCF-7 cells.
Collapse
Affiliation(s)
- Johanna Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Thales Kronenberger
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Ahmed B. Montaser
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Adéla Králová
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Tetsuya Terasaki
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Antti Poso
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,Department
of Internal Medicine VIII, University Hospital
Tübingen, Otfried-Müller-Strasse
14, DE 72076 Tübingen, Germany,Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard-Karls-Universität,
Tübingen, Auf
der Morgenstelle 8, 72076 Tübingen, Germany,Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany,Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Kristiina M. Huttunen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland,
| |
Collapse
|
4
|
Wu F, Jin S, Jiang Y, Jin X, Tang B, Niu Z, Liu X, Zhang Q, Zeng X, Li SZ. Pre-Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203796. [PMID: 36202759 PMCID: PMC9685463 DOI: 10.1002/advs.202203796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Indexed: 05/16/2023]
Abstract
The latest biological findings observe that the motionless "lock-and-key" theory is not generally applicable and that changes in atomic sites and binding pose can provide important information for understanding drug binding. However, the computational expenditure limits the growth of protein trajectory-related studies, thus hindering the possibility of supervised learning. A spatial-temporal pre-training method based on the modified equivariant graph matching networks, dubbed ProtMD which has two specially designed self-supervised learning tasks: atom-level prompt-based denoising generative task and conformation-level snapshot ordering task to seize the flexibility information inside molecular dynamics (MD) trajectories with very fine temporal resolutions is presented. The ProtMD can grant the encoder network the capacity to capture the time-dependent geometric mobility of conformations along MD trajectories. Two downstream tasks are chosen to verify the effectiveness of ProtMD through linear detection and task-specific fine-tuning. A huge improvement from current state-of-the-art methods, with a decrease of 4.3% in root mean square error for the binding affinity problem and an average increase of 13.8% in the area under receiver operating characteristic curve and the area under the precision-recall curve for the ligand efficacy problem is observed. The results demonstrate a strong correlation between the magnitude of conformation's motion in the 3D space and the strength with which the ligand binds with its receptor.
Collapse
Affiliation(s)
- Fang Wu
- School of EngineeringWestlake UniversityHangzhou310024China
- MindRank AI Ltd.Hangzhou310000China
| | - Shuting Jin
- MindRank AI Ltd.Hangzhou310000China
- School of InformaticsXiamen UniversityXiamen361005China
| | | | | | | | | | - Xiangrong Liu
- School of InformaticsXiamen UniversityXiamen361005China
| | - Qiang Zhang
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310013China
| | - Xiangxiang Zeng
- School of Information Science and EngineeringHunan UniversityHunan410082China
| | - Stan Z. Li
- School of EngineeringWestlake UniversityHangzhou310024China
| |
Collapse
|
5
|
Neumann C, Rosenbæk LL, Flygaard RK, Habeck M, Karlsen JL, Wang Y, Lindorff‐Larsen K, Gad HH, Hartmann R, Lyons JA, Fenton RA, Nissen P. Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. EMBO J 2022; 41:e110169. [PMID: 36239040 PMCID: PMC9713717 DOI: 10.15252/embj.2021110169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
The sodium-potassium-chloride transporter NKCC1 of the SLC12 family performs Na+ -dependent Cl- - and K+ -ion uptake across plasma membranes. NKCC1 is important for regulating cell volume, hearing, blood pressure, and regulation of hyperpolarizing GABAergic and glycinergic signaling in the central nervous system. Here, we present a 2.6 Å resolution cryo-electron microscopy structure of human NKCC1 in the substrate-loaded (Na+ , K+ , and 2 Cl- ) and occluded, inward-facing state that has also been observed for the SLC6-type transporters MhsT and LeuT. Cl- binding at the Cl1 site together with the nearby K+ ion provides a crucial bridge between the LeuT-fold scaffold and bundle domains. Cl- -ion binding at the Cl2 site seems to undertake a structural role similar to conserved glutamate of SLC6 transporters and may allow for Cl- -sensitive regulation of transport. Supported by functional studies in mammalian cells and computational simulations, we describe a putative Na+ release pathway along transmembrane helix 5 coupled to the Cl2 site. The results provide insight into the structure-function relationship of NKCC1 with broader implications for other SLC12 family members.
Collapse
Affiliation(s)
- Caroline Neumann
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Rasmus Kock Flygaard
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Michael Habeck
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Yong Wang
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark,Shanghai Institute for Advanced Study, Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Kresten Lindorff‐Larsen
- Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Hans Henrik Gad
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Rune Hartmann
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Joseph Anthony Lyons
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark,Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | | | - Poul Nissen
- Danish Research Institute of Translational Neuroscience—DANDRITENordic EMBL Partnership for Molecular MedicineAarhusDenmark,Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
Oliphant S, Morris RH. Density Functional Theory Study on the Selective Reductive Amination of Aldehydes and Ketones over Their Reductions to Alcohols Using Sodium Triacetoxyborohydride. ACS OMEGA 2022; 7:30554-30564. [PMID: 36061668 PMCID: PMC9434773 DOI: 10.1021/acsomega.2c04056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Reductive amination is one of the most important methods to synthesize amines, having a wide application in the pharmaceutical, fine chemicals, and materials industries. In general, the reaction begins with dehydration between a carbonyl compound and an amine compound, forming an imine, which is then reduced to an alkylated amine product. Sodium triacetoxyborohydride (STAB) is a popular choice for the reducing agent as it shows selectivity for imines over aldehydes and ketones, which is particularly important in direct reductive amination where the imine and carbonyl compounds are present concurrently. Here, we analyze the reaction pathways of acid-catalyzed direct reductive amination in 1,2-dichloroethane (DCE) with acetaldehyde and methylamine. We find that the transition states for the formation and subsequent reduction of Z-methylethylideneimine (resultant aldimine from acetaldehyde and methylamine) have lower energies than the reduction of acetaldehyde. Transition state structures for the hydride transfers are organized by the Lewis-acidic sodium ion. Additionally, reduction reactions with formaldehyde and acetone and their imine derivatives (with methylamine) are investigated, and again, the hydride transfer to the resultant aldimine or ketimine is lower in energy than that of their parent carbonyl compound.
Collapse
|
7
|
Hyperosmotic stress allosterically reconfigures betaine binding pocket in BetP. J Mol Biol 2022; 434:167747. [PMID: 35870651 DOI: 10.1016/j.jmb.2022.167747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/18/2022]
Abstract
The transporter BetP in C. glutamicum is essential in maintaining bacterial cell viability during hyperosmotic stress and functions by co-transporting betaine and Na+ into bacterial cells. Hyperosmotic stress leads to increased intracellular K+ concentrations which in turn promotes betaine binding. While structural details of multiple end state conformations of BetP have provided high resolution snapshots, how K+ sensing by the C-terminal domain is allosterically relayed to the betaine binding site is not well understood. In this study, we describe conformational dynamics in solution of BetP using amide hydrogen/deuterium exchange mass spectrometry (HDXMS). These reveal how K+ alters conformation of the disordered C- and N-terminal domains to allosterically reconfigure transmembrane helices 3,8 and 10 (TM 3, 8, 10) to enhance betaine interactions. A map of the betaine binding site, at near single amino acid resolution, reveals a critical extrahelical H-bond mediated by TM3 with betaine.
Collapse
|
8
|
Del Alamo D, Meiler J, Mchaourab HS. Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences. J Mol Biol 2022; 434:167746. [PMID: 35843285 DOI: 10.1016/j.jmb.2022.167746] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Found in all domains of life, transporters belonging to the LeuT-fold class mediate the import and exchange of hydrophilic and charged compounds such as amino acids, metals, and sugar molecules. Nearly two decades of investigations on the eponymous bacterial transporter LeuT have yielded a library of high-resolution snapshots of its conformational cycle linked by solution-state experimental data obtained from multiple techniques. In parallel, its topology has been observed in symporters and antiporters characterized by a spectrum of substrate specificities and coupled to gradients of distinct ions. Here we review and compare mechanistic models of transport for LeuT, its well-studied homologs, as well as functionally distant members of the fold, emphasizing the commonalities and divergences in alternating access and the corresponding energy landscapes. Our integrated summary illustrates how fold conservation, a hallmark of the LeuT fold, coincides with divergent choreographies of alternating access that nevertheless capitalize on recurrent structural motifs. In addition, it highlights the knowledge gap that hinders the leveraging of the current body of research into detailed mechanisms of transport for this important class of membrane proteins.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA. https://twitter.com/DdelAlamo
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, DE, USA. https://twitter.com/MeilerLab
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Chan MC, Selvam B, Young HJ, Procko E, Shukla D. The substrate import mechanism of the human serotonin transporter. Biophys J 2022; 121:715-730. [PMID: 35114149 PMCID: PMC8943754 DOI: 10.1016/j.bpj.2022.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The serotonin transporter (SERT) initiates the reuptake of extracellular serotonin in the synapse to terminate neurotransmission. The cryogenic electron microscopy structures of SERT bound to ibogaine and the physiological substrate serotonin resolved in different states have provided a glimpse of the functional conformations at atomistic resolution. However, the conformational dynamics and structural transitions to intermediate states are not fully understood. Furthermore, the molecular basis of how serotonin is recognized and transported remains unclear. In this study, we performed unbiased microsecond-long simulations of the human SERT to investigate the structural dynamics to various intermediate states and elucidated the complete substrate import pathway. Using Markov state models, we characterized a sequential order of conformational-driven ion-coupled substrate binding and transport events and calculated the free energy barriers of conformation transitions associated with the import mechanism. We find that the transition from the occluded to inward-facing state is the rate-limiting step for substrate import and that the substrate decreases the free energy barriers to achieve the inward-facing state. Our study provides insights on the molecular basis of dynamics-driven ion-substrate recognition and transport of SERT that can serve as a model for other closely related neurotransmitter transporters.
Collapse
Affiliation(s)
- Matthew C Chan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Heather J Young
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois; NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
10
|
Aghajani J, Farnia P, Farnia P, Ghanavi J, Velayati AA. Molecular Dynamic Simulations and Molecular Docking as a Potential Way for Designed New Inhibitor Drug without Resistance. TANAFFOS 2022; 21:1-14. [PMID: 36258912 PMCID: PMC9571241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/30/2021] [Indexed: 06/16/2023]
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis in humans and is responsible for more than 2 million deaths per year. Despite the development of anti-tuberculosis drugs (Isoniazid, Rifampicin, Ethambutol, pyrazinamide, streptomycin, etc.) and the TB vaccine, this disease has claimed the lives of many people around the world. Drug resistance in this disease is increasing day by day. Conventional methods for discovering and developing drugs are usually time-consuming and expensive. Therefore, a better method is needed to identify, design, and manufacture TB drugs without drug resistance. Bioinformatics applications in obtaining new drugs at the structural level include studies of the mechanism of drug resistance, detection of drug interactions, and prediction of mutant protein structure. In the present study, computer-based approaches including molecular dynamics simulation and molecular docking as a novel and efficient method for the identification and investigation of new cases as well as the investigation of mutated proteins and compounds will be examined .
Collapse
Affiliation(s)
- Jafar Aghajani
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Poopak Farnia
- Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
12
|
Mazza T, Scalise M, Pappacoda G, Pochini L, Indiveri C. The involvement of sodium in the function of the human amino acid transporter ASCT2. FEBS Lett 2021; 595:3030-3041. [PMID: 34741534 DOI: 10.1002/1873-3468.14224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/19/2023]
Abstract
Alanine, serine, cysteine transporter 2 (ASCT2) is a membrane amino acid transporter with relevance to human physiology and pathology, such as cancer. Notwithstanding, the study on the ASCT2 transport cycle still has unknown aspects, such as the role of Na+ in this process. We investigate this issue using recombinant hASCT2 reconstituted in proteoliposomes. Changes in the composition of purification buffers show the crucial role of Na+ in ASCT2 functionality. The transport activity is abolished when Na+ is absent or substituted by Li+ or K+ in purification buffers. By employing a Na+ fluorometric probe, we measured an inwardly directed flux of Na+ and, by combining fluorometric and radiometric assays, determined a 2Na+ : 1Gln stoichiometry. Kinetics of Na+ transport suggest that pH-sensitive residues are involved in Na+ binding/transport. Our results clarify the role of Na+ on human ASCT2 transporter activity.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Gilda Pappacoda
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze Della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), Bari, Italy
| |
Collapse
|
13
|
Meshkin H, Zhu F. Toward Convergence in Free Energy Calculations for Protein Conformational Changes: A Case Study on the Thin Gate of Mhp1 Transporter. J Chem Theory Comput 2021; 17:6583-6596. [PMID: 34523931 DOI: 10.1021/acs.jctc.1c00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been challenging to obtain reliable free energies for protein conformational changes from all-atom molecular dynamics simulations, despite the availability of many enhanced sampling techniques. To alleviate the difficulties associated with the enormous complexity of the conformational space, here we propose a few practical strategies for such calculations, including (1) a stringent method to examine convergence by comparing independent simulations starting from different initial coordinates, (2) adoption of multistep schemes in which the complete conformational change consists of multiple transition steps, each sampled using a distinct reaction coordinate, and (3) application of boundary restraints to simplify the conformational space. We demonstrate these strategies on the conformational changes between the outward-facing and outward-occluded states of the Mhp1 membrane transporter, obtaining the equilibrium thermodynamics of the relevant metastable states, the kinetic rates between these states, and the reactive trajectories that reveal the atomic details of spontaneous transitions. Our approaches thus promise convergent and reliable calculations to examine intuition-based hypotheses and to eventually elucidate the underlying molecular mechanisms of reversible conformational changes in complex protein systems.
Collapse
Affiliation(s)
- Hamed Meshkin
- Department of Physics, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Fangqiang Zhu
- Department of Physics, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
14
|
Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria. Extremophiles 2021; 25:413-424. [PMID: 34480656 PMCID: PMC8578096 DOI: 10.1007/s00792-021-01241-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Acetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood–Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.
Collapse
|
15
|
Nicolàs-Aragó A, Fort J, Palacín M, Errasti-Murugarren E. Rush Hour of LATs towards Their Transport Cycle. MEMBRANES 2021; 11:602. [PMID: 34436365 PMCID: PMC8399266 DOI: 10.3390/membranes11080602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
The mammalian SLC7 family comprises the L-amino acid transporters (LATs) and the cationic amino acid transporters (CATs). The relevance of these transporters is highlighted by their involvement in several human pathologies, including inherited rare diseases and acquired diseases, such as cancer. In the last four years, several crystal or cryo-EM structures of LATs and CATs have been solved. These structures have started to fill our knowledge gap that previously was based on the structural biology of remote homologs of the amino acid-polyamine-organocation (APC) transporters. This review recovers this structural and functional information to start generating the molecular bases of the transport cycle of LATs. Special attention is given to the known transporter conformations within the transport cycle and the molecular bases for substrate interaction and translocation, including the asymmetric interaction of substrates at both sides of the plasma membrane.
Collapse
Affiliation(s)
- Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
| | - Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
| |
Collapse
|
16
|
Drexler K, Schmidt KM, Jordan K, Federlin M, Milenkovic VM, Liebisch G, Artati A, Schmidl C, Madej G, Tokarz J, Cecil A, Jagla W, Haerteis S, Aung T, Wagner C, Kolodziejczyk M, Heinke S, Stanton EH, Schwertner B, Riegel D, Wetzel CH, Buchalla W, Proescholdt M, Klein CA, Berneburg M, Schlitt HJ, Brabletz T, Ziegler C, Parkinson EK, Gaumann A, Geissler EK, Adamski J, Haferkamp S, Mycielska ME. Cancer-associated cells release citrate to support tumour metastatic progression. Life Sci Alliance 2021; 4:e202000903. [PMID: 33758075 PMCID: PMC7994318 DOI: 10.26508/lsa.202000903] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter's major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression.
Collapse
Affiliation(s)
- Konstantin Drexler
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | | | - Katrin Jordan
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Marianne Federlin
- Department of Conservative Dentistry and Periodontology, University Medical Center, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Anna Artati
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Christian Schmidl
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Gregor Madej
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Wolfgang Jagla
- Institute of Pathology, Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University of Regensburg, Regensburg, Germany
| | - Christine Wagner
- Department of Surgery, University Medical Center, Regensburg, Germany
| | | | - Stefanie Heinke
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Evan H Stanton
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Barbara Schwertner
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | - Dania Riegel
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Christoph A Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Eric K Parkinson
- Centre for Immunobiology and Regenerative Medicine, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Andreas Gaumann
- Institute of Pathology, Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Edward K Geissler
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Munich, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Maria E Mycielska
- Department of Surgery, University Medical Center, Regensburg, Germany
| |
Collapse
|
17
|
Schlick T, Portillo-Ledesma S, Myers CG, Beljak L, Chen J, Dakhel S, Darling D, Ghosh S, Hall J, Jan M, Liang E, Saju S, Vohr M, Wu C, Xu Y, Xue E. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Annu Rev Biophys 2021; 50:267-301. [PMID: 33606945 PMCID: PMC8105287 DOI: 10.1146/annurev-biophys-091720-102019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reassess progress in the field of biomolecular modeling and simulation, following up on our perspective published in 2011. By reviewing metrics for the field's productivity and providing examples of success, we underscore the productive phase of the field, whose short-term expectations were overestimated and long-term effects underestimated. Such successes include prediction of structures and mechanisms; generation of new insights into biomolecular activity; and thriving collaborations between modeling and experimentation, including experiments driven by modeling. We also discuss the impact of field exercises and web games on the field's progress. Overall, we note tremendous success by the biomolecular modeling community in utilization of computer power; improvement in force fields; and development and application of new algorithms, notably machine learning and artificial intelligence. The combined advances are enhancing the accuracy andscope of modeling and simulation, establishing an exemplary discipline where experiment and theory or simulations are full partners.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA;
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | | | - Christopher G Myers
- Department of Chemistry, New York University, New York, New York 10003, USA;
| | - Lauren Beljak
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Justin Chen
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sami Dakhel
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Daniel Darling
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sayak Ghosh
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Joseph Hall
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mikaeel Jan
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Emily Liang
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sera Saju
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mackenzie Vohr
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Chris Wu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Yifan Xu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Eva Xue
- College of Arts and Science, New York University, New York, New York 10003, USA
| |
Collapse
|
18
|
Staritzbichler R, Sarti E, Yaklich E, Aleksandrova A, Stamm M, Khafizov K, Forrest LR. Refining pairwise sequence alignments of membrane proteins by the incorporation of anchors. PLoS One 2021; 16:e0239881. [PMID: 33930031 PMCID: PMC8087094 DOI: 10.1371/journal.pone.0239881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/15/2021] [Indexed: 01/08/2023] Open
Abstract
The alignment of primary sequences is a fundamental step in the analysis of protein structure, function, and evolution, and in the generation of homology-based models. Integral membrane proteins pose a significant challenge for such sequence alignment approaches, because their evolutionary relationships can be very remote, and because a high content of hydrophobic amino acids reduces their complexity. Frequently, biochemical or biophysical data is available that informs the optimum alignment, for example, indicating specific positions that share common functional or structural roles. Currently, if those positions are not correctly matched by a standard pairwise sequence alignment procedure, the incorporation of such information into the alignment is typically addressed in an ad hoc manner, with manual adjustments. However, such modifications are problematic because they reduce the robustness and reproducibility of the aligned regions either side of the newly matched positions. Previous studies have introduced restraints as a means to impose the matching of positions during sequence alignments, originally in the context of genome assembly. Here we introduce position restraints, or "anchors" as a feature in our alignment tool AlignMe, providing an aid to pairwise global sequence alignment of alpha-helical membrane proteins. Applying this approach to realistic scenarios involving distantly-related and low complexity sequences, we illustrate how the addition of anchors can be used to modify alignments, while still maintaining the reproducibility and rigor of the rest of the alignment. Anchored alignments can be generated using the online version of AlignMe available at www.bioinfo.mpg.de/AlignMe/.
Collapse
Affiliation(s)
- René Staritzbichler
- ProteinFormatics Group, Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Emily Yaklich
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Antoniya Aleksandrova
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Marcus Stamm
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kamil Khafizov
- Moscow Institute of Physics and Technology, National Research University, Moscow, Russia
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
19
|
Sarti E, Aleksandrova AA, Ganta SK, Yavatkar AS, Forrest LR. EncoMPASS: an online database for analyzing structure and symmetry in membrane proteins. Nucleic Acids Res 2020; 47:D315-D321. [PMID: 30357403 PMCID: PMC6323976 DOI: 10.1093/nar/gky952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
The EncoMPASS online database (http://encompass.ninds.nih.gov) collects, organizes, and presents information about membrane proteins of known structure, emphasizing their structural similarities as well as their quaternary and internal symmetries. Unlike, e.g. SCOP, the EncoMPASS database does not aim for a strict classification of membrane proteins, but instead is organized as a protein chain-centric network of sequence and structural homologues. The online server for the EncoMPASS database provides tools for comparing the structural features of its entries, making it a useful resource for homology modeling and active site identification studies. The database can also be used for inferring functionality, which for membrane proteins often involves symmetry-related mechanisms. To this end, the online database also provides a comprehensive description of both the quaternary and internal symmetries in known membrane protein structures, with a particular focus on their orientation relative to the membrane.
Collapse
Affiliation(s)
- Edoardo Sarti
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srujan K Ganta
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra S Yavatkar
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Abstract
Here, we present a protocol for the functional characterization of the H+-coupled human peptide transporter PepT1 and sufficient notes to transfer the protocol to the Na+-coupled sugar transporter SGLT1, the organic cation transporter OCT2, the Na+/Ca2+ exchanger NCX, and the neuronal glutamate transporter EAAT3.The assay was developed for the commercially available SURFE2R N1 instrument (Nanion Technologies GmbH) which applies solid supported membrane (SSM)-based electrophysiology. This technique is widely used for the functional characterization of membrane transporters with more than 100 different transporters characterized so far. The technique is cost-effective, easy to use, and capable of high-throughput measurements.SSM-based electrophysiology utilizes SSM-coated gold sensors to physically adsorb membrane vesicles containing the protein of interest. A fast solution exchange provides the substrate and activates transport. For the measurement of PepT1 activity, we applied a peptide concentration jump to activate H+/peptide symport. Proton influx charges the sensor. A capacitive current is measured reflecting the transport activity of PepT1 . Multiple measurements on the same sensor allow for comparison of transport activity under different conditions. Here, we determine EC50 for PepT1-mediated glycylglycine transport and perform an inhibition experiment using the specific peptide inhibitor Lys[Z(NO2)]-Val.
Collapse
|
21
|
Li J, Zhao Z, Tajkhorshid E. Locking Two Rigid-body Bundles in an Outward-Facing Conformation: The Ion-coupling Mechanism in a LeuT-fold Transporter. Sci Rep 2019; 9:19479. [PMID: 31862903 PMCID: PMC6925253 DOI: 10.1038/s41598-019-55722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023] Open
Abstract
Secondary active transporters use electrochemical gradient of ions to fuel the "uphill" translocation of the substrate following the alternating-access model. The coupling of ions to conformational dynamics of the protein remains one of the least characterized aspects of the transporter function. We employ extended molecular dynamics (MD) simulations to examine the Na+-binding effects on the structure and dynamics of a LeuT-fold, Na+-coupled secondary transporter (Mhp1) in its major conformational states, i.e., the outward-facing (OF) and inward-facing (IF) states, as well as on the OF ↔ IF state transition. Microsecond-long, unbiased MD simulations illustrate that Na+ stabilizes an OF conformation favorable for substrate association, by binding to a highly conserved site at the interface between the two helical bundles and restraining their relative position and motion. Furthermore, a special-protocol biased simulation for state transition suggests that Na+ binding hinders the OF ↔ IF transition. These synergistic Na+-binding effects allosterically couple the ion and substrate binding sites and modify the kinetics of state transition, collectively increasing the lifetime of an OF conformation with high substrate affinity, thereby facilitating substrate recruitment from a low-concentration environment. Based on the similarity between our findings for Mhp1 and experimental reports on LeuT, we propose that this model may represent a general Na+-coupling mechanism among LeuT-fold transporters.
Collapse
Affiliation(s)
- Jing Li
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, United States
| | - Zhiyu Zhao
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
22
|
Abstract
Rudnick highlights a kinetic analysis of a bacterial Nramp transporter that focuses on how H+ gradients are coupled to metal transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University, New Haven, CT
| |
Collapse
|
23
|
Aleksandrova AA, Sarti E, Forrest LR. MemSTATS: A Benchmark Set of Membrane Protein Symmetries and Pseudosymmetries. J Mol Biol 2019; 432:597-604. [PMID: 31628944 DOI: 10.1016/j.jmb.2019.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
In membrane proteins, symmetry and pseudosymmetry often have functional or evolutionary implications. However, available symmetry detection methods have not been tested systematically on this class of proteins because of the lack of an appropriate benchmark set. Here we present MemSTATS, a publicly available benchmark set of both quaternary- and internal-symmetries in membrane protein structures. The symmetries are described in terms of order, repeated elements, and orientation of the axis with respect to the membrane plane. Moreover, using MemSTATS, we compare the performance of four widely used symmetry detection algorithms and highlight specific challenges and areas for improvement in the future.
Collapse
Affiliation(s)
- Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Rudnick G, Sandtner W. Serotonin transport in the 21st century. J Gen Physiol 2019; 151:1248-1264. [PMID: 31570504 PMCID: PMC6829555 DOI: 10.1085/jgp.201812066] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Rudnick and Sandtner review the history of serotonin transporter research in light of structural and electrophysiological advances. Serotonin (5-hydroxytryptamine [5-HT]) is accumulated within nerve endings by the serotonin transporter (SERT), which terminates its extracellular action and provides cytoplasmic 5-HT for refilling of synaptic vesicles. SERT is the target for many antidepressant medications as well as psychostimulants such as cocaine and ecstasy (3,4-methylenedioxymethamphetamine). SERT belongs to the SLC6 family of ion-coupled transporters and is structurally related to several other transporter families. SERT was studied in the 1970s and 1980s using membrane vesicles isolated from blood platelets. These studies led to a proposed stoichiometry of transport that has been challenged by high-resolution structures of SERT and its homologues and by studies of SERT electrophysiology. Here, we review the original evidence alongside more recent structural and electrophysiological evidence. A self-consistent picture emerges with surprising insights into the ion fluxes that accompany 5-HT transport.
Collapse
Affiliation(s)
- Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Breisch J, Waclawska I, Averhoff B. Identification and characterization of a carnitine transporter in Acinetobacter baumannii. Microbiologyopen 2019; 8:e00752. [PMID: 30318737 PMCID: PMC6562126 DOI: 10.1002/mbo3.752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii is able to grow on carnitine. The genes encoding the pathway for carnitine degradation to the intermediate malic acid are known but the transporter mediating carnitine uptake remained to be identified. The open reading frame HMPREF0010_01347 (aci01347) of Acinetobacter baumannii is annotated as a gene encoding a potential transporter of the betaine/choline/carnitine transporter (BCCT) family. To study the physiological function of Aci01347, the gene was deleted from A. baumannii ATCC 19606. The mutant was no longer able to grow on carnitine as sole carbon and energy source demonstrating the importance of this transporter for carnitine metabolism. Aci01347 was produced in Escherichia coli MKH13, a strain devoid of any compatible solute transporter, and the recombinant E. coli MKH13 strain was found to take up carnitine in an energy-dependent fashion. Aci01347 also transported choline, a compound known to be accumulated under osmotic stress. Choline transport was osmolarity-independent which is consistent with the absence of an extended C-terminus found in osmo-activated BCCT. We propose that the Aci01347 is the carnitine transporter mediating the first step in the growth of A. baumannii on carnitine.
Collapse
Affiliation(s)
- Jennifer Breisch
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesGoethe‐University Frankfurt am MainFrankfurtGermany
| | - Izabela Waclawska
- Institute of Biophysics & Biophysical ChemistryUniversity RegensburgRegensburgGermany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesGoethe‐University Frankfurt am MainFrankfurtGermany
| |
Collapse
|
26
|
Kickinger S, Hellsberg E, Frølund B, Schousboe A, Ecker GF, Wellendorph P. Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology 2019; 161:107644. [PMID: 31108110 DOI: 10.1016/j.neuropharm.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
ɣ-aminobutyric-acid (GABA) functions as the principal inhibitory neurotransmitter in the central nervous system. Imbalances in GABAergic neurotransmission are involved in the pathophysiology of various neurological diseases such as epilepsy, Alzheimer's disease and stroke. GABA transporters (GATs) facilitate the termination of GABAergic signaling by transporting GABA together with sodium and chloride from the synaptic cleft into presynaptic neurons and surrounding glial cells. Four different GATs have been identified that all belong to the solute carrier 6 (SLC6) transporter family: GAT1-3 (SLC6A1, SLC6A13, SLC6A11) and betaine/GABA transporter 1 (BGT1, SLC6A12). BGT1 has emerged as an interesting target for treating epilepsy due to animal studies that reported anticonvulsant effects for the GAT1/BGT1 selective inhibitor EF1502 and the BGT1 selective inhibitor RPC-425. However, the precise involvement of BGT1 in epilepsy remains elusive because of its controversial expression levels in the brain and the lack of highly selective and potent tool compounds. This review gathers the current structural and functional knowledge on BGT1 with emphasis on brain relevance, discusses all available compounds, and tries to shed light on the molecular determinants driving BGT1 selectivity. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Stefanie Kickinger
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Eva Hellsberg
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Bente Frølund
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Arne Schousboe
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
27
|
Leone V, Waclawska I, Kossmann K, Koshy C, Sharma M, Prisner TF, Ziegler C, Endeward B, Forrest LR. Interpretation of spectroscopic data using molecular simulations for the secondary active transporter BetP. J Gen Physiol 2019; 151:381-394. [PMID: 30728216 PMCID: PMC6400524 DOI: 10.1085/jgp.201812111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022] Open
Abstract
Mechanistic understanding of dynamic membrane proteins such as transporters, receptors, and channels requires accurate depictions of conformational ensembles, and the manner in which they interchange as a function of environmental factors including substrates, lipids, and inhibitors. Spectroscopic techniques such as electron spin resonance (ESR) pulsed electron-electron double resonance (PELDOR), also known as double electron-electron resonance (DEER), provide a complement to atomistic structures obtained from x-ray crystallography or cryo-EM, since spectroscopic data reflect an ensemble and can be measured in more native solvents, unperturbed by a crystal lattice. However, attempts to interpret DEER data are frequently stymied by discrepancies with the structural data, which may arise due to differences in conditions, the dynamics of the protein, or the flexibility of the attached paramagnetic spin labels. Recently, molecular simulation techniques such as EBMetaD have been developed that create a conformational ensemble matching an experimental distance distribution while applying the minimal possible bias. Moreover, it has been proposed that the work required during an EBMetaD simulation to match an experimentally determined distribution could be used as a metric with which to assign conformational states to a given measurement. Here, we demonstrate the application of this concept for a sodium-coupled transport protein, BetP. Because the probe, protein, and lipid bilayer are all represented in atomic detail, the different contributions to the work, such as the extent of protein backbone movements, can be separated. This work therefore illustrates how ranking simulations based on EBMetaD can help to bridge the gap between structural and biophysical data and thereby enhance our understanding of membrane protein conformational mechanisms.
Collapse
Affiliation(s)
- Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - Katharina Kossmann
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Caroline Koshy
- Max Planck Institute for Biophysics, Frankfurt am Main, Germany
| | - Monika Sharma
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Silwal AP, Lu HP. Mode-Selective Raman Imaging of Dopamine-Human Dopamine Transporter Interaction in Live Cells. ACS Chem Neurosci 2018; 9:3117-3127. [PMID: 30024721 DOI: 10.1021/acschemneuro.8b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dopamine (DA) is the catecholamine neurotransmitter which interacts with dopamine receptors (DARs) to generate dopaminergic signals in the nervous system. Dopamine transporter (DAT) interacts with DA to maintain DA's homeostasis in synaptic and perisynaptic space. DAT and DARs have great importance in the central nervous system (CNS) because they are associated with the targeted binding of drugs. Interactions of DA, its analogue with DARs, or DAT have been studied extensively to understand the mechanism of the dopaminergic signaling process and several neurodegenerative diseases, including schizophrenia, Parkinson's diseases, addiction, attention deficit hyperactivity disorder, and bipolar disorder. However, there is still a lack of a risk-free, label-free, and minimally invasive imaging approach to probe the interaction between DA and DAT or DARs. Here, we probed the DA, human dopamine transporter (hDAT), and DA-hDAT interactions in live cells using combined approach of two-photon excited (2PE) fluorescence imaging and mode-selective Raman measurement. We utilized the signature Raman peak at 1287 cm-1 to probe the location of DA and 807 and 1076 cm-1 to probe the DA-hDAT interaction in live cells. We found that the combined approach of mode-selective Raman imaging, 2PE fluorescence imaging, and computational methods is successful to probe and confirm the DA-hDAT interactions in living cells. The probing of the interactions of DARs or DAT with DA or other targeting drugs is crucial for the diagnosis and cure of several neurodegenerative diseases. Also, this analytical approach could be extended to probe other types of protein-ligand interactions.
Collapse
Affiliation(s)
- Achut P. Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Ohio 43403, United States
| |
Collapse
|
29
|
Silwal A, Lu HP. Raman Spectroscopic Analysis of Signaling Molecules-Dopamine Receptors Interactions in Living Cells. ACS OMEGA 2018; 3:14849-14857. [PMID: 30555993 PMCID: PMC6289496 DOI: 10.1021/acsomega.8b01727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
The selective interaction of signaling compounds including neurotransmitters and drugs with the dopamine receptors (DARs) is extremely important for the treatment of neurodegenerative diseases. Here, we report a method to probe the selective interactions of signaling compounds with D1 and D2 DARs in living cells using the combined approach of theoretical calculation and surface-enhanced Raman spectroscopy (SERS). When signaling compounds such as DA, amphetamine, methamphetamine, and methylenedioxypyrovalerone interact with D1 dopamine receptors (DRD1), the intracellular cyclic adenosine monophosphate (cAMP) level is increased. However, the intracellular level of cAMP is decreased when D2 dopamine receptors (DRD2) interact with the abovementioned signaling compounds. In our experiments, we have internalized the silica-coated silver nanoparticles (AgNP@SiO2) in living cells to adsorb biologically generated cAMP which was probed by using SERS. Besides adsorptions of cAMP, AgNP@SiO2 has a crucial role for the enhancement of Raman cross section of the samples. We observed the characteristic SERS peaks of cAMP when DRD1-overexpressed cells interact with the signaling compounds; these peaks were not observed for other cells including DRD2-overexpressed and DRD1-DRD2-coexpressed cells. Our experimental approach is successful to probe the intracellular cAMP and characterize the selectivity of signaling compounds to different types of DARs. Furthermore, our experimental approach is highly capable for in vivo studies because it can probe intracellular cAMP using a low input power of incident laser without significant cell damage. Our experimental results and density functional theory calculations showed that 780 and 1503 cm-1 are signature Raman peaks of cAMP. The SERS peak at 780 cm-1 is associated with C-O, C-C, and C-N stretching and symmetric and asymmetric bending of two O-H bonds of cAMP, whereas the SERS peak at 1503 cm-1 is contributed by the O9-H3 bending mode.
Collapse
|
30
|
Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron 2018; 99:1129-1143. [PMID: 30236283 PMCID: PMC6209097 DOI: 10.1016/j.neuron.2018.08.011] [Citation(s) in RCA: 1268] [Impact Index Per Article: 181.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
The impact of molecular dynamics (MD) simulations in molecular biology and drug discovery has expanded dramatically in recent years. These simulations capture the behavior of proteins and other biomolecules in full atomic detail and at very fine temporal resolution. Major improvements in simulation speed, accuracy, and accessibility, together with the proliferation of experimental structural data, have increased the appeal of biomolecular simulation to experimentalists-a trend particularly noticeable in, although certainly not limited to, neuroscience. Simulations have proven valuable in deciphering functional mechanisms of proteins and other biomolecules, in uncovering the structural basis for disease, and in the design and optimization of small molecules, peptides, and proteins. Here we describe, in practical terms, the types of information MD simulations can provide and the ways in which they typically motivate further experimental work.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Substrate-bound outward-open structure of a Na +-coupled sialic acid symporter reveals a new Na + site. Nat Commun 2018; 9:1753. [PMID: 29717135 PMCID: PMC5931594 DOI: 10.1038/s41467-018-04045-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport.
Collapse
|
32
|
The Xenobiotic Extrusion Mechanism of the MATE Transporter NorM_PS from Pseudomonas stutzeri. J Mol Biol 2018; 430:1311-1323. [PMID: 29555555 DOI: 10.1016/j.jmb.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/27/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022]
Abstract
Multidrug resistance (MDR) in bacterial pathogens has become a severe threat to public health. Membrane transporters of the multidrug and toxic compound extrusion (MATE) family contribute critically to MDR, making them promising drug targets. Despite recent advances, structures in different conformations and the mechanistic details of their antiport cycle are still elusive. Here we studied NorM_PS, a representative MATE transporter from Pseudomonas stutzeri, using biochemical assays in combination with hydrogen/deuterium exchange-mass spectrometry. Our results confirm that the antiport is proton dependent and electroneutral with a stoichiometry of two protons per one doubly positively charged substrate. We investigated the conformational dynamics upon substrate binding, and our hydrogen/deuterium exchange-mass spectrometry analysis revealed an occlusion in the proposed binding site as well as a closure of the cytoplasmic cavity and formation of a periplasmic cavity. Together with the results of selected variants (D38N, D373N and Q376A), we propose a six-step rocker-switch model for NorM_PS, which also increases our understanding of related MATE transporters and may help to fight the burden of MDR.
Collapse
|
33
|
Giovanola M, Vollero A, Cinquetti R, Bossi E, Forrest LR, Di Cairano ES, Castagna M. Threonine 67 is a key component in the coupling of the NSS amino acid transporter KAAT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1179-1186. [PMID: 29409909 DOI: 10.1016/j.bbamem.2018.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/30/2023]
Affiliation(s)
- M Giovanola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - A Vollero
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - R Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - E Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - L R Forrest
- Computational Structural Biology Section, NIH NINDS, 35 Convent Drive, Bethesda, MD 20892-3761, USA
| | - E S Di Cairano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - M Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy.
| |
Collapse
|
34
|
Cheng MH, Kaya C, Bahar I. Quantitative Assessment of the Energetics of Dopamine Translocation by Human Dopamine Transporter. J Phys Chem B 2017; 122:5336-5346. [PMID: 29232131 DOI: 10.1021/acs.jpcb.7b10340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Computational evaluation of the energetics of substrate binding, transport, and release events of neurotransmitter transporters at the molecular level is a challenge, as the structural transitions of these membrane proteins involve coupled global and local changes that span time scales of several orders of magnitude, from nanoseconds to seconds. Here, we provide a quantitative assessment of the energetics of dopamine (DA) translocation through the human DA transporter (hDAT), using a combination of molecular modeling, simulation, and analysis tools. DA-binding and -unbinding events, which generally involve local configurational changes, are evaluated using free-energy perturbation or adaptive biasing force methods. The global transitions between the outward-facing state and the inward-facing state, on the other hand, require a dual-boost accelerated molecular dynamics simulation. We present results on DA-binding/unbinding energetics under different conditions, as well as the conformational energy landscape of hDAT in both DA-bound and -unbound states. The study provides a tractable method of approach for quantitative evaluation of substrate-binding energetics and efficient estimation of conformational energy landscape, in general.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Cihan Kaya
- Department of Computational and Systems Biology, School of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
35
|
Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM, Carrasco N. The Sodium/Iodide Symporter (NIS): Molecular Physiology and Preclinical and Clinical Applications. Annu Rev Physiol 2017; 79:261-289. [PMID: 28192058 DOI: 10.1146/annurev-physiol-022516-034125] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Active iodide (I-) transport in both the thyroid and some extrathyroidal tissues is mediated by the Na+/I- symporter (NIS). In the thyroid, NIS-mediated I- uptake plays a pivotal role in thyroid hormone (TH) biosynthesis. THs are key during embryonic and postembryonic development and critical for cell metabolism at all stages of life. The molecular characterization of NIS in 1996 and the use of radioactive I- isotopes have led to significant advances in the diagnosis and treatment of thyroid cancer and provide the molecular basis for studies aimed at extending the use of radioiodide treatment in extrathyroidal malignancies. This review focuses on the most recent findings on I- homeostasis and I- transport deficiency-causing NIS mutations, as well as current knowledge of the structure/function properties of NIS and NIS regulatory mechanisms. We also discuss employing NIS as a reporter gene using viral vectors and stem cells in imaging, diagnostic, and therapeutic procedures.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06510;
| | - Andrea Reyna-Neyra
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06510;
| | - Giuseppe Ferrandino
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06510;
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06510;
| |
Collapse
|
36
|
Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S. Selective ion binding and transport by membrane proteins – A computational perspective. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Abstract
Functional characterization of transport proteins using conventional electrophysiology can be challenging, especially for low turnover transporters or transporters from bacteria and intracellular compartments. Solid-supported membrane (SSM)-based electrophysiology is a sensitive and cell-free assay technique for the characterization of electrogenic membrane proteins. Purified proteins reconstituted into proteoliposomes or membrane vesicles from cell culture or native tissues are adsorbed to the sensor holding an SSM. A substrate or a ligand is applied via rapid solution exchange. The electrogenic transporter activity charges the sensor, which is recorded as a transient current. The high stability of the SSM allows cumulative measurements on the same sensor using different experimental conditions. This allows the determination of kinetic properties including EC50, IC50, Km, KD, and rate constants of electrogenic reactions. About 100 different transporters have been measured so far using this technique, among them symporters, exchangers, uniporters, ATP-, redox-, and light-driven ion pumps, as well as receptors and ion channels. Different instruments apply this technique: the laboratory setups use a closed flow-through arrangement, while the commercially available SURFE2R N1 resembles a pipetting robot. For drug screening purposes high-throughput systems, such as the SURFE2R 96SE enable the simultaneous measurement of up to 96 sensors.
Collapse
Affiliation(s)
- Andre Bazzone
- Max Planck Institute of Biophysics, Frankfurt/Main, Germany; Nanion Technologies GmbH, Munich, Germany
| | | | - Klaus Fendler
- Max Planck Institute of Biophysics, Frankfurt/Main, Germany.
| |
Collapse
|
38
|
Silwal AP, Yadav R, Sprague JE, Lu HP. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells. ACS Chem Neurosci 2017; 8:1510-1518. [PMID: 28375605 DOI: 10.1021/acschemneuro.7b00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm-1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm-1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm-1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm-1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.
Collapse
Affiliation(s)
- Achut P. Silwal
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Rajeev Yadav
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Jon E. Sprague
- The Ohio Attorney General’s Center for the Future of Forensic Science, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry
and Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
39
|
Cheng MH, Garcia-Olivares J, Wasserman S, DiPietro J, Bahar I. Allosteric modulation of human dopamine transporter activity under conditions promoting its dimerization. J Biol Chem 2017; 292:12471-12482. [PMID: 28584050 DOI: 10.1074/jbc.m116.763565] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
The human dopamine (DA) transporter (hDAT) is a key regulator of neurotransmission and a target for antidepressants and addictive drugs. Despite the recent resolution of dDAT structures from Drosophila melanogaster, complete understanding of its mechanism of function and even information on its biological assembly is lacking. The resolved dDAT structures are monomeric, but growing evidence suggests that hDAT might function as a multimer, and its oligomerization may be relevant to addictive drug effects. Here, using structure-based computations, we examined the possible mechanisms of hDAT dimerization and its dynamics in a lipid bilayer. Using a combination of site-directed mutagenesis, DA-uptake, and cross-linking experiments that exploited the capacity of Cys-306 to form intermonomeric disulfide bridges in the presence of an oxidizing agent, we tested the effects of mutations at transmembrane segment (TM) 6 and 12 helices in HEK293 cells. The most probable structural model for hDAT dimer suggested by computations and experiments differed from the dimeric structure resolved for the bacterial homolog, LeuT, presumably because of a kink at TM12 preventing favorable monomer packing. Instead, TM2, TM6, and TM11 line the dimer interface. Molecular dynamics simulations of the dimeric hDAT indicated that the two subunits tend to undergo cooperative structural changes, both on local (extracellular gate opening/closure) and global (transition between outward-facing and inward-facing states) scales. These observations suggest that hDAT transport properties may be allosterically modulated under conditions promoting dimerization. Our study provides critical insights into approaches for examining the oligomerization of neurotransmitter transporters and sheds light on their drug modulation.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jennie Garcia-Olivares
- Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Steven Wasserman
- Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jennifer DiPietro
- Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
40
|
Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr Opin Struct Biol 2016; 45:100-108. [PMID: 28040635 DOI: 10.1016/j.sbi.2016.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023]
Abstract
Secondary active transporters couple the uphill translocation of substrates to electrochemical ion gradients. Transporter conformational motion, generically referred to as alternating access, enables a central ligand binding site to change its orientation relative to the membrane. Here we review themes of alternating access and the transduction of ion gradient energy to power this process in the LeuT-fold class of transporters where crystallographic, computational and spectroscopic approaches have converged to yield detailed models of transport cycles. Specifically, we compare findings for the Na+-coupled amino acid transporter LeuT and the Na+-coupled hydantoin transporter Mhp1. Although these studies have illuminated multiple aspects of transporter structures and dynamics, a number of questions remain unresolved that so far hinder understanding transport mechanisms in an energy landscape perspective.
Collapse
|
41
|
Immadisetty K, Hettige J, Moradi M. What Can and Cannot Be Learned from Molecular Dynamics Simulations of Bacterial Proton-Coupled Oligopeptide Transporter GkPOT? J Phys Chem B 2016; 121:3644-3656. [PMID: 27959539 DOI: 10.1021/acs.jpcb.6b09733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have performed an extensive set of all-atom molecular dynamics (MD) simulations of a bacterial proton-coupled oligopeptide transporter (POT) in an explicit membrane environment. We have characterized both the local and global conformational dynamics of the transporter upon the proton and/or substrate binding, within a statistical framework. Our results reveal a clearly distinct behavior for local conformational dynamics in the absence and presence of the proton at the putative proton binding residue E310. Particularly, we find that the substrate binding conformation is drastically different in the two conditions, where the substrate binds to the protein in a lateral/vertical manner, in the presence/absence of the proton. We do not observe any statistically significant distinctive behavior in terms of the global conformational changes in different simulation conditions, within the time scales of our simulations. Our extensive simulations and analyses call into question the implicit assumption of many MD studies that local conformational changes observed in short simulations could provide clues to the global conformational changes that occur on much longer time scales. The linear regression analysis of quantities associated with the global conformational fluctuations, however, provides an indication of a mechanism involving the concerted motion of the transmembrane helices, consistent with the rocker-switch mechanism.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Jeevapani Hettige
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
42
|
Bracher S, Schmidt CC, Dittmer SI, Jung H. Core Transmembrane Domain 6 Plays a Pivotal Role in the Transport Cycle of the Sodium/Proline Symporter PutP. J Biol Chem 2016; 291:26208-26215. [PMID: 27793991 DOI: 10.1074/jbc.m116.753103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
Crystal structures of transporters with a LeuT-type structural fold assign core transmembrane domain 6 (TM6') a central role in substrate binding and translocation. Here, the function of TM6' in the sodium/proline symporter PutP, a member of the solute/sodium symporter family, was investigated. A complete scan of TM6' identified eight amino acids as particularly important for PutP function. Of these residues, Tyr-248, His-253, and Arg-257 impact sodium binding, whereas Arg-257 and Ala-260 may participate in interactions leading to closure of the inner gate. Furthermore, the previous suggestion of an involvement of Trp-244, Tyr-248, and Pro-252 in proline binding is further supported. In addition, substitution of Gly-245, Gly-247, and Gly-250 affects the amount of PutP in the membrane. A Cys accessibility analysis suggests an involvement of the inner half of TM6' in the formation of a hydrophilic pathway that is open to the inside in the absence of ligands and closed in the presence of sodium and proline. In conclusion, the results demonstrate that TM6' plays a central role in substrate binding and release on the inner side of the membrane also in PutP and extend the knowledge on functionally relevant amino acids in transporters with a LeuT-type structural fold.
Collapse
Affiliation(s)
- Susanne Bracher
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Claudia C Schmidt
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Sophie I Dittmer
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Heinrich Jung
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| |
Collapse
|
43
|
Abstract
The sodium/iodide symporter (NIS) mediates active I(-) transport in the thyroid-the first step in thyroid hormone biosynthesis-with a 2 Na(+): 1 I(-) stoichiometry. The two Na(+) binding sites (Na1 and Na2) and the I(-) binding site interact allosterically: when Na(+) binds to a Na(+) site, the affinity of NIS for the other Na(+) and for I(-) increases significantly. In all Na(+)-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na(+) ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues-S66, D191, Q194, and Q263-are also involved in Na(+) coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I(-) These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance.
Collapse
|
44
|
Subramanian N, Scopelitti AJ, Carland JE, Ryan RM, O’Mara ML, Vandenberg RJ. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2. PLoS One 2016; 11:e0157583. [PMID: 27337045 PMCID: PMC4919009 DOI: 10.1371/journal.pone.0157583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.
Collapse
Affiliation(s)
- Nandhitha Subramanian
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Amanda J. Scopelitti
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10021, United States of America
| | - Jane E. Carland
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Renae M. Ryan
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert J. Vandenberg
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
45
|
Knight MJ, Senior L, Nancolas B, Ratcliffe S, Curnow P. Direct evidence of the molecular basis for biological silicon transport. Nat Commun 2016; 7:11926. [PMID: 27305972 PMCID: PMC4912633 DOI: 10.1038/ncomms11926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na+/silicic acid symporters with a 1:1 protein: substrate stoichiometry and KM for silicic acid of 20 μM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials. Diatoms sheath themselves in a self-made casing of silica, which requires the function of silicic acid transporters. Here, the authors identify versions of these transporters that are experimentally tractable, and develop a fluorescence method to study silicic acid transport in vitro.
Collapse
Affiliation(s)
- Michael J Knight
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Senior
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Bethany Nancolas
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sarah Ratcliffe
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
46
|
Ravera S, Quick M, Nicola JP, Carrasco N, Amzel LM. Beyond non-integer Hill coefficients: A novel approach to analyzing binding data, applied to Na+-driven transporters. ACTA ACUST UNITED AC 2016; 145:555-63. [PMID: 26009546 PMCID: PMC4442788 DOI: 10.1085/jgp.201511365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel approach to analyzing binding data from proteins with two binding sites for the same substrate provides information beyond that accessible with traditional Hill equation analysis. Prokaryotic and eukaryotic Na+-driven transporters couple the movement of one or more Na+ ions down their electrochemical gradient to the active transport of a variety of solutes. When more than one Na+ is involved, Na+-binding data are usually analyzed using the Hill equation with a non-integer exponent n. The results of this analysis are an overall Kd-like constant equal to the concentration of ligand that produces half saturation and n, a measure of cooperativity. This information is usually insufficient to provide the basis for mechanistic models. In the case of transport using two Na+ ions, an n < 2 indicates that molecules with only one of the two sites occupied are present at low saturation. Here, we propose a new way of analyzing Na+-binding data for the case of two Na+ ions that, by taking into account binding to individual sites, provides far more information than can be obtained by using the Hill equation with a non-integer coefficient: it yields pairs of possible values for the Na+ affinities of the individual sites that can only vary within narrowly bounded ranges. To illustrate the advantages of the method, we present experimental scintillation proximity assay (SPA) data on binding of Na+ to the Na+/I− symporter (NIS). SPA is a method widely used to study the binding of Na+ to Na+-driven transporters. NIS is the key plasma membrane protein that mediates active I− transport in the thyroid gland, the first step in the biosynthesis of the thyroid hormones, of which iodine is an essential constituent. NIS activity is electrogenic, with a 2:1 Na+/I− transport stoichiometry. The formalism proposed here is general and can be used to analyze data on other proteins with two binding sites for the same substrate.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510
| | - Matthias Quick
- Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Juan P Nicola
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
47
|
F. M. Cellier M, Inrs-Institut Armand-Frappier, 531, Bd des prairies, Laval, QC H7V 1B7, Canada. Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.2.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
48
|
Bisha I, Magistrato A. The molecular mechanism of secondary sodium symporters elucidated through the lens of the computational microscope. RSC Adv 2016. [DOI: 10.1039/c5ra22131e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transport of molecules across cellular membranes is a key biological process for normal cell function. In this review we describe current state-of-the-art knowledge on molecular mechanism of secondary active transporters obtained by molecular simulations studies.
Collapse
Affiliation(s)
- Ina Bisha
- Theoretical Chemical Biology and Protein Modelling Group
- Technische Universität München
- 85354 Freising
- Germany
| | | |
Collapse
|
49
|
Lu M. Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications. Channels (Austin) 2015; 10:88-100. [PMID: 26488689 PMCID: PMC4960993 DOI: 10.1080/19336950.2015.1106654] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance poses grand challenges to the effective treatment of infectious diseases and cancers. Integral membrane proteins from the multidrug and toxic compound extrusion (MATE) family contribute to multidrug resistance by exporting a wide variety of therapeutic drugs across cell membranes. MATE proteins are conserved from bacteria to humans and can be categorized into the NorM, DinF and eukaryotic subfamilies. MATE transporters hold great appeal as potential therapeutic targets for curbing multidrug resistance, yet their transport mechanism remains elusive. During the past 5 years, X-ray structures of 4 NorM and DinF transporters have been reported and guided biochemical studies to reveal how MATE transporters extrude different drugs. Such advances, although substantial, have yet to be discussed collectively. Herein I review these structures and the unprecedented mechanistic insights that have been garnered from those structure-inspired studies, as well as lay out the outstanding questions that present exciting opportunities for future work.
Collapse
Affiliation(s)
- Min Lu
- a Department of Biochemistry & Molecular Biology , Rosalind Franklin University of Medicine & Science , Chicago , IL , USA
| |
Collapse
|
50
|
Cheng MH, Bahar I. Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter. Structure 2015; 23:2171-81. [PMID: 26481814 DOI: 10.1016/j.str.2015.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 01/16/2023]
Abstract
Dopamine transporters (DATs) control neurotransmitter dopamine (DA) homeostasis by reuptake of excess DA, assisted by sodium and chloride ions. The recent resolution of DAT structure (dDAT) from Drosophila permits us for the first time to directly view the sequence of events involved in DA reuptake in human DAT (hDAT) using homology modeling and full-atomic microseconds accelerated simulations. Major observations are spontaneous closure of extracellular gates prompted by DA binding; stabilization of a holo-occluded intermediate; disruption of N82-N353 hydrogen bond and exposure to intracellular (IC) water triggered by Na2 dislocation; redistribution of a network of salt bridges at the IC surface in the inward-facing state; concerted tilting of IC-exposed helices to enable the release of Na(+) and Cl(-) ions; and DA release after protonation of D79. The observed time-resolved interactions confirm the conserved dynamics of LeuT-fold family, while providing insights into the mechanistic role of specific residues in hDAT.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|