1
|
Halonen R. Assessment of Anharmonicities in Clusters: Developing and Validating a Minimum-Information Partition Function. J Chem Theory Comput 2024; 20:4099-4114. [PMID: 38747413 DOI: 10.1021/acs.jctc.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Precise thermodynamic calculations are essential for understanding the dynamics of cluster systems and new particle formation. However, the widely employed harmonic statistical mechanical approach often falls short in terms of accuracy. In this study, we present an improved statistical model that incorporates vibrational anharmonicity via a novel partition function that requires only one additional system-specific input parameter. In addition to considering vibrational aspects, we also account for anharmonicity related to the configurational space. The role of anharmonicities is thoroughly examined in the case of general clusters, where the complete sets of conformers, mechanically stable spatial arrangements, are known up to clusters composed of 14 monomers. By performing consistent Monte Carlo simulations on these systems, we benchmark the statistical model's efficacy in reproducing key thermodynamic properties (formation free energy and potential energy) in the classical limit. The model exhibits exceptional alignment with simulations, accurately reproducing free energies within a precision of 2kBT and reliably capturing cluster melting temperatures. Furthermore, we demonstrate the significance and applicability of the model by reproducing thermodynamic barriers in homogeneous gas-phase nucleation of larger clusters. The transferability of our developed approach extends to more complex molecular systems and bears relevance for atmospheric multicomponent clusters, in particular.
Collapse
Affiliation(s)
- Roope Halonen
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
2
|
Curatolo AI, Kimchi O, Goodrich CP, Krueger RK, Brenner MP. A computational toolbox for the assembly yield of complex and heterogeneous structures. Nat Commun 2023; 14:8328. [PMID: 38097568 PMCID: PMC10721878 DOI: 10.1038/s41467-023-43168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
The self-assembly of complex structures from a set of non-identical building blocks is a hallmark of soft matter and biological systems, including protein complexes, colloidal clusters, and DNA-based assemblies. Predicting the dependence of the equilibrium assembly yield on the concentrations and interaction energies of building blocks is highly challenging, owing to the difficulty of computing the entropic contributions to the free energy of the many structures that compete with the ground state configuration. While these calculations yield well known results for spherically symmetric building blocks, they do not hold when the building blocks have internal rotational degrees of freedom. Here we present an approach for solving this problem that works with arbitrary building blocks, including proteins with known structure and complex colloidal building blocks. Our algorithm combines classical statistical mechanics with recently developed computational tools for automatic differentiation. Automatic differentiation allows efficient evaluation of equilibrium averages over configurations that would otherwise be intractable. We demonstrate the validity of our framework by comparison to molecular dynamics simulations of simple examples, and apply it to calculate the yield curves for known protein complexes and for the assembly of colloidal shells.
Collapse
Affiliation(s)
- Agnese I Curatolo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ofer Kimchi
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Carl P Goodrich
- Institute of Science and Technology Austria, A-3400, Klosterneuburg, Austria
| | - Ryan K Krueger
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Bressloff PC. Close encounters of the sticky kind: Brownian motion at absorbing boundaries. Phys Rev E 2023; 107:064121. [PMID: 37464709 DOI: 10.1103/physreve.107.064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
Encounter-based models of diffusion provide a probabilistic framework for analyzing the effects of a partially absorbing reactive surface, in which the probability of absorption depends upon the amount of surface-particle contact time. In this paper we develop a class of encounter-based models that deal with absorption at sticky boundaries. Sticky boundaries occur in a diverse range of applications, including cell biology, colloidal physics, finance, and human crowd dynamics. They also naturally arise in active matter, where confined active particles tend to spontaneously accumulate at boundaries even in the absence of any particle-particle interactions. We begin by constructing a one-dimensional encounter-based model of sticky Brownian motion (BM), which is based on the zero-range limit of nonsticky BM with a short-range attractive potential well near the origin. In this limit, the boundary-contact time is given by the amount of time (occupation time) that the particle spends at the origin. We calculate the joint probability density or propagator for the particle position and the occupation time, and then identify an absorption event as the first time that the occupation time crosses a randomly generated threshold. We illustrate the theory by considering diffusion in a finite interval with a partially absorbing sticky boundary at one end. We show how various quantities, such as the mean first passage time (MFPT) for single-particle absorption and the relaxation to steady state at the multiparticle level, depend on moments of the random threshold distribution. Finally, we determine how sticky BM can be obtained by taking a particular diffusion limit of a sticky run-and-tumble particle (RTP).
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
4
|
Mannattil M, Schwarz JM, Santangelo CD. Thermal Fluctuations of Singular Bar-Joint Mechanisms. PHYSICAL REVIEW LETTERS 2022; 128:208005. [PMID: 35657887 DOI: 10.1103/physrevlett.128.208005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
A bar-joint mechanism is a deformable assembly of freely rotating joints connected by stiff bars. Here we develop a formalism to study the equilibration of common bar-joint mechanisms with a thermal bath. When the constraints in a mechanism cease to be linearly independent, singularities can appear in its shape space, which is the part of its configuration space after discarding rigid motions. We show that the free-energy landscape of a mechanism at low temperatures is dominated by the neighborhoods of points that correspond to these singularities. We consider two example mechanisms with shape-space singularities and find that they are more likely to be found in configurations near the singularities than others. These findings are expected to help improve the design of nanomechanisms for various applications.
Collapse
Affiliation(s)
- Manu Mannattil
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - J M Schwarz
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
- Indian Creek Farm, Ithaca, New York 14850, USA
| | | |
Collapse
|
5
|
Marbach S, Zheng JA, Holmes-Cerfon M. The nanocaterpillar's random walk: diffusion with ligand-receptor contacts. SOFT MATTER 2022; 18:3130-3146. [PMID: 35348560 DOI: 10.1039/d1sm01544c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particles with ligand-receptor contacts bind and unbind fluctuating "legs" to surfaces, whose fluctuations cause the particle to diffuse. Quantifying the diffusion of such "nanoscale caterpillars" is a challenge, since binding events often occur on very short time and length scales. Here we derive an analytical formula, validated by simulations, for the long time translational diffusion coefficient of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that the effective diffusion coefficient, which depends on the microscopic parameters governing the legs, can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies rapidly with temperature, and reproduces the striking variations seen in existing data and our own measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg is always linked to the surface, and when does it prefer to move by hopping, which requires all legs to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated colloids) and present guidelines to control the mode of motion for materials design.
Collapse
Affiliation(s)
- Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, NY, 10012, USA.
- CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | | | | |
Collapse
|
6
|
Logan JA, Tkachenko AV. Geometric and topological entropies of sphere packing. Phys Rev E 2022; 105:014117. [PMID: 35193201 DOI: 10.1103/physreve.105.014117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
We present a statistical mechanical description of randomly packed spherical particles, where the average coordination number is treated as a macroscopic thermodynamic variable. The overall packing entropy is shown to have two contributions: geometric, reflecting statistical weights of individual configurations, and topological, which corresponds to the number of topologically distinct states. Both of them are computed in the thermodynamic limit for isostatic and weakly underconstrained packings in 2D and 3D. The theory generalizes concepts of granular and glassy configurational entropies for the case of nonjammed systems. It is directly applicable to sticky colloids and predicts an asymptotic phase behavior of sticky spheres in the limit of strong binding.
Collapse
Affiliation(s)
- Jack A Logan
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
7
|
Ozkan A, Sitharam M, Flores-Canales JC, Prabhu R, Kurnikova M. Baseline Comparisons of Complementary Sampling Methods for Assembly Driven by Short-Ranged Pair Potentials toward Fast and Flexible Hybridization. J Chem Theory Comput 2021; 17:1967-1987. [PMID: 33576635 DOI: 10.1021/acs.jctc.0c00945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work measures baseline sampling characteristics that highlight fundamental differences between sampling methods for assembly driven by short-ranged pair potentials. Such granular comparison is essential for fast, flexible, and accurate hybridization of complementary methods. Besides sampling speed, efficiency, and accuracy of uniform grid coverage, other sampling characteristics measured are (i) accuracy of covering narrow low energy regions that have low effective dimension (ii) ability to localize sampling to specific basins, and (iii) flexibility in sampling distributions. As a proof of concept, we compare a recently developed geometric methodology EASAL (Efficient Atlasing and Search of Assembly Landscapes) and the traditional Monte Carlo (MC) method for sampling the energy landscape of two assembling trans-membrane helices, driven by short-range pair potentials. By measuring the above-mentioned sampling characteristics, we demonstrate that EASAL provides localized and accurate coverage of crucial regions of the energy landscape of low effective dimension, under flexible sampling distributions, with much fewer samples and computational resources than MC sampling. EASAL's empirically validated theoretical guarantees permit credible extrapolation of these measurements and comparisons to arbitrary number and size of assembling units. Promising avenues for hybridizing the complementary advantages of the two methods are discussed.
Collapse
Affiliation(s)
- Aysegul Ozkan
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | - Meera Sitharam
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | | | - Rahul Prabhu
- CISE Department, University of Florida, Gainesville, Florida 32611-6120, United States
| | - Maria Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Giammona J, Campàs O. Physical constraints on early blastomere packings. PLoS Comput Biol 2021; 17:e1007994. [PMID: 33497383 PMCID: PMC7864451 DOI: 10.1371/journal.pcbi.1007994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/05/2021] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
At very early embryonic stages, when embryos are composed of just a few cells, establishing the correct packing arrangements (contacts) between cells is essential for the proper development of the organism. As early as the 4-cell stage, the observed cellular packings in different species are distinct and, in many cases, differ from the equilibrium packings expected for simple adherent and deformable particles. It is unclear what are the specific roles that different physical parameters, such as the forces between blastomeres, their division times, orientation of cell division and embryonic confinement, play in the control of these packing configurations. Here we simulate the non-equilibrium dynamics of cells in early embryos and systematically study how these different parameters affect embryonic packings at the 4-cell stage. In the absence of embryo confinement, we find that cellular packings are not robust, with multiple packing configurations simultaneously possible and very sensitive to parameter changes. Our results indicate that the geometry of the embryo confinement determines the packing configurations at the 4-cell stage, removing degeneracy in the possible packing configurations and overriding division rules in most cases. Overall, these results indicate that physical confinement of the embryo is essential to robustly specify proper cellular arrangements at very early developmental stages. At the initial stages of embryogenesis, the precise arrangement of cells in the embryo is critical to ensure that each cell gets the right chemical and physical signals to guide the formation of the organism. Even when the embryo is made of only four cells, different species feature varying cellular arrangements: cells in mouse embryos arrange as a tetrahedron, in the nematode worm C. elegans cells make a diamond and in sea urchins cells arrange in a square configuration. How do cells in embryos of different species control their arrangements? Using computer simulations, we studied how cell divisions, physical contacts between cells and the confinement of the embryo by an eggshell affect the arrangements of cells when the embryos have only 4 cells. We find that the shape of the confining eggshell plays a key role in controlling the cell arrangements, removing unwanted arrangements and robustly specifying the proper contacts between cells. Our results highlight the important roles of embryonic confinement in establishing the proper cell-cell contacts as the embryo starts to develop.
Collapse
Affiliation(s)
- James Giammona
- California NanoSystems Institute, University of California, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, California, United States of America
| | - Otger Campàs
- California NanoSystems Institute, University of California, Santa Barbara, California, United States of America
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California, Santa Barbara, California, United States of America
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
9
|
Weeks ER, Criddle K. Visualizing free-energy landscapes for four hard disks. Phys Rev E 2020; 102:062153. [PMID: 33466114 DOI: 10.1103/physreve.102.062153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
We present a simple model system with four hard disks moving in a circular region for which free-energy landscapes can be directly calculated and visualized in two and three dimensions. We construct several energy landscapes for our system, and we explore the strengths and limitations of each in terms of understanding system dynamics, in particular the relationship between state transitions and free-energy barriers. We also demonstrate the importance of distinguishing between system dynamics in real space and those in landscape coordinates, and we show that care must be taken to appropriately combine dynamics with barrier properties to understand the transition rates. This simple model provides an intuitive way to understand free-energy landscapes, and it illustrates the benefits that free-energy landscapes can have over potential energy landscapes.
Collapse
Affiliation(s)
- Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Keely Criddle
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
10
|
Holmes-Cerfon M. Simulating sticky particles: A Monte Carlo method to sample a stratification. J Chem Phys 2020; 153:164112. [PMID: 33138386 DOI: 10.1063/5.0019550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many problems in materials science and biology involve particles interacting with strong, short-ranged bonds that can break and form on experimental timescales. Treating such bonds as constraints can significantly speed up sampling their equilibrium distribution, and there are several methods to sample probability distributions subject to fixed constraints. We introduce a Monte Carlo method to handle the case when constraints can break and form. More generally, the method samples a probability distribution on a stratification: a collection of manifolds of different dimensions, where the lower-dimensional manifolds lie on the boundaries of the higher-dimensional manifolds. We show several applications of the method in polymer physics, self-assembly of colloids, and volume calculation in high dimensions.
Collapse
Affiliation(s)
- Miranda Holmes-Cerfon
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|
11
|
Prabhu R, Sitharam M, Ozkan A, Wu R. Atlasing of Assembly Landscapes using Distance Geometry and Graph Rigidity. J Chem Inf Model 2020; 60:4924-4957. [PMID: 32786706 DOI: 10.1021/acs.jcim.0c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Article describes a novel geometric methodology for analyzing free energy and kinetics of assembly driven by short-range pair-potentials in an implicit solvent and provides a proof-of-concept illustration of its unique capabilities. An atlas is a labeled partition of the assembly landscape into a roadmap of maximal, contiguous, nearly-equipotential-energy conformational regions or macrostates, together with their neighborhood relationships. The new methodology decouples the roadmap generation from sampling and produces: (1) a queryable atlas of local potential energy minima, their basin structure, energy barriers, and neighboring basins; (2) paths between a specified pair of basins, each path being a sequence of conformational regions or macrostates below a desired energy threshold; and (3) approximations of relative path lengths, basin volumes (configurational entropy), and path probabilities. Results demonstrating the core algorithm's capabilities and high computational efficiency have been generated by a resource-light, curated open source software implementation EASAL (Efficient Atlasing and Search of Assembly Landscapes, ACM Trans. Math. Softw. 2018 44, 1-48. 10.1145/3204472; see software, Efficient Atlasing and Search of Assembly Landscapes, 2016. https://bitbucket.org/geoplexity/easal; video, Video Illustrating the opensource software EASAL, 2016. https://cise.ufl.edu/~sitharam/EASALvideo.mpeg; and user guide, EASAL software user guide, 2016. https://bitbucket.org/geoplexity/easal/src/master/CompleteUserGuide.pdf). Running on a laptop with Intel(R) Core(TM) i7-7700@3.60 GHz CPU with 16GB of RAM, EASAL atlases several hundred thousand conformational regions or macrostates in minutes using a single compute core. Subsequent path and basin computations each take seconds. A parallelized EASAL version running on the same laptop with 4 cores gives a 3× speedup for atlas generation. The core algorithm's correctness, time complexity, and efficiency-accuracy trade-offs are formally guaranteed using modern distance geometry, geometric constraint systems and combinatorial rigidity. The methodology further links the shape of the input assembling units to a type of intuitive and queryable bar-code of the output atlas, which in turn determine stable assembled structures and kinetics. This succinct input-output relationship facilitates reverse analysis and control toward design. A novel feature that is crucial to both the high sampling efficiency and decoupling of roadmap generation from sampling is a recently developed theory of convex Cayley (distance-based) custom parametrizations specific to assembly, as opposed to folding. Representing microstates with macrostate-specific Cayley parameters, to generate microstate samples, avoids gradient-descent search used by all prevailing methods. Further, these parametrizations convexify conformational regions or macrostates. This ratchets up sampling efficiency, significantly reducing number of repeated and discarded samples. These features of the new stand-alone methodology can also be used to complement the strengths of prevailing methodologies including Molecular Dynamics, Monte Carlo, and Fast Fourier Transform based methods.
Collapse
Affiliation(s)
- Rahul Prabhu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32611, United States of America
| | - Meera Sitharam
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32611, United States of America
| | - Aysegul Ozkan
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32611, United States of America
| | - Ruijin Wu
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
12
|
Chatterjee S, Sarkar A, Zhu J, Khodjakov A, Mogilner A, Paul R. Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles. Biophys J 2020; 119:434-447. [PMID: 32610087 DOI: 10.1016/j.bpj.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
To segregate chromosomes in mitosis, cells assemble a mitotic spindle, a molecular machine with centrosomes at two opposing cell poles and chromosomes at the equator. Microtubules and molecular motors connect the poles to kinetochores, specialized protein assemblies on the centromere regions of the chromosomes. Bipolarity of the spindle is crucial for the proper cell division, and two centrosomes in animal cells naturally become two spindle poles. Cancer cells are often multicentrosomal, yet they are able to assemble bipolar spindles by clustering centrosomes into two spindle poles. Mechanisms of this clustering are debated. In this study, we computationally screen effective forces between 1) centrosomes, 2) centrosomes and kinetochores, 3) centrosomes and chromosome arms, and 4) centrosomes and cell cortex to understand mechanics that determines three-dimensional spindle architecture. To do this, we use the stochastic Monte Carlo search for stable mechanical equilibria in the effective energy landscape of the spindle. We find that the following conditions have to be met to robustly assemble the bipolar spindle in a multicentrosomal cell: 1) the strengths of centrosomes' attraction to each other and to the cell cortex have to be proportional to each other and 2) the strengths of centrosomes' attraction to kinetochores and repulsion from the chromosome arms have to be proportional to each other. We also find that three other spindle configurations emerge if these conditions are not met: 1) collapsed, 2) monopolar, and 3) multipolar spindles, and the computational screen reveals mechanical conditions for these abnormal spindles.
Collapse
Affiliation(s)
| | - Apurba Sarkar
- Indian Association for the Cultivation of Science, Kolkata, India
| | - Jie Zhu
- Gerber Technology, Tolland, Connecticut
| | - Alexei Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York; Rensselaer Polytechnic Institute, Troy, New York
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York.
| | - Raja Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
13
|
Trubiano A, Holmes-Cerfon M. From canyons to valleys: Numerically continuing sticky-hard-sphere clusters to the landscapes of smoother potentials. Phys Rev E 2020; 101:042608. [PMID: 32422818 DOI: 10.1103/physreve.101.042608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
We study the energy landscapes of particles with short-range attractive interactions as the range of the interactions increases. Starting with the set of local minima for 6≤N≤12 hard spheres that are "sticky," i.e., they interact only when their surfaces are exactly in contact, we use numerical continuation to evolve the local minima (clusters) as the range of the potential increases, using both the Lennard-Jones and Morse families of interaction potentials. As the range increases, clusters merge, until at long ranges only one or two clusters are left. We compare clusters obtained by continuation with different potentials and find that for short and medium ranges, up to about 30% of particle diameter, the continued clusters are nearly identical, both within and across families of potentials. For longer ranges, the clusters vary significantly, with more variation between families of potentials than within a family. We analyze the mechanisms behind the merge events and find that most rearrangements occur when a pair of nonbonded particles comes within the range of the potential. An exception occurs for nonharmonic clusters, i.e., those that have a zero eigenvalue in their Hessian, which undergo a more global rearrangement.
Collapse
Affiliation(s)
- Anthony Trubiano
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| | - Miranda Holmes-Cerfon
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|
14
|
Connelly R, Gortler SJ, Theran L. Rigidity for sticky discs. Proc Math Phys Eng Sci 2019; 475:20180773. [PMID: 30853847 DOI: 10.1098/rspa.2018.0773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/22/2019] [Indexed: 11/12/2022] Open
Abstract
We study the combinatorial and rigidity properties of disc packings with generic radii. We show that a packing of n discs in the plane with generic radii cannot have more than 2n - 3 pairs of discs in contact. The allowed motions of a packing preserve the disjointness of the disc interiors and tangency between pairs already in contact (modelling a collection of sticky discs). We show that if a packing has generic radii, then the allowed motions are all rigid body motions if and only if the packing has exactly 2n - 3 contacts. Our approach is to study the space of packings with a fixed contact graph. The main technical step is to show that this space is a smooth manifold, which is done via a connection to the Cauchy-Alexandrov stress lemma. Our methods also apply to jamming problems, in which contacts are allowed to break during a motion. We give a simple proof of a finite variant of a recent result of Connelly et al. (Connelly et al. 2018 (http://arxiv.org/abs/1702.08442)) on the number of contacts in a jammed packing of discs with generic radii.
Collapse
Affiliation(s)
- Robert Connelly
- Department of Mathematics, Cornell University, Ithaca, NY, USA
| | - Steven J Gortler
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Louis Theran
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| |
Collapse
|
15
|
Robinson JF, Turci F, Roth R, Royall CP. Morphometric Approach to Many-Body Correlations in Hard Spheres. PHYSICAL REVIEW LETTERS 2019; 122:068004. [PMID: 30822057 DOI: 10.1103/physrevlett.122.068004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 06/09/2023]
Abstract
We model the thermodynamics of local structures within the hard sphere liquid at arbitrary volume fractions through the morphometric calculation of n-body correlations. We calculate absolute free energies of local geometric motifs in excellent quantitative agreement with molecular dynamics simulations across the liquid and supercooled liquid regimes. We find a bimodality in the density library of states where fivefold symmetric structures appear lower in free energy than fourfold symmetric structures and from a single reaction path predict a dynamical barrier which scales linearly in the compressibility factor. The method provides a new route to assess changes in the free energy landscape at volume fractions dynamically inaccessible to conventional techniques.
Collapse
Affiliation(s)
- Joshua F Robinson
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Francesco Turci
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - C Patrick Royall
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
- School of Chemistry, Cantocks Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
16
|
Trombach L, Hoy RS, Wales DJ, Schwerdtfeger P. From sticky-hard-sphere to Lennard-Jones-type clusters. Phys Rev E 2018; 97:043309. [PMID: 29758765 DOI: 10.1103/physreve.97.043309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 06/08/2023]
Abstract
A relation M_{SHS→LJ} between the set of nonisomorphic sticky-hard-sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential V_{mn}^{LJ}(r)=ɛ/n-m[mr^{-n}-nr^{-m}] is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n and increases exponentially with increasing cluster size N for N≳10. While the map from M_{SHS}→M_{SHS→LJ} is noninjective and nonsurjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to N=13, and most of the missing structures correspond to energetically unfavorable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.
Collapse
Affiliation(s)
- Lukas Trombach
- Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
- Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters, Drammensveien 78, NO-0271 Oslo, Norway
| |
Collapse
|
17
|
Zanjani MB, Crocker JC, Sinno T. Self-assembly with colloidal clusters: facile crystal design using connectivity landscape analysis. SOFT MATTER 2017; 13:7098-7105. [PMID: 28850137 DOI: 10.1039/c7sm01407d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent experimental and theoretical studies demonstrate that prefabricated micron-scale colloidal clusters functionalized with DNA oligomers offer a practical way for introducing anisotropic interactions, significantly extending the scope of DNA-mediated colloidal assembly, and enabling the formation of interesting crystalline superstructures that are otherwise inaccessible with short-ranged, spherically symmetric interactions. However, it is apparent that the high-dimensional parameter space that defines the geometric and interaction properties of such systems poses an obstacle to assembly design and optimization. Here, we present a geometrical analysis that generates connectivity landscapes for target superstructures, greatly reducing the space over which subsequent experimental trials must search. We focus on several superstructures that are assembled from binary systems comprised of 'merged' or 'sintered' tetrahedral clusters and single spheres. We also validate and extend the analytical constraint approach with direct MD simulations of superstructure nucleation and growth.
Collapse
Affiliation(s)
- Mehdi B Zanjani
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
18
|
|
19
|
Kleppmann N, Schreiber F, Klapp SHL. Limits of size scalability of diffusion and growth: Atoms versus molecules versus colloids. Phys Rev E 2017; 95:020801. [PMID: 28297845 DOI: 10.1103/physreve.95.020801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Understanding fundamental growth processes is key to the control of nonequilibrium structure formation for a wide range of materials on all length scales, from atomic to molecular and even colloidal systems. While atomic systems are relatively well studied, molecular and colloidal growth are currently moving more into the focus. This poses the question to what extent growth laws are size scalable between different material systems. We study this question by analyzing the potential energy landscape and performing kinetic Monte Carlo simulations for three representative systems. While submonolayer (island) growth is found to be essentially scalable, we find marked differences when moving into the third (vertical) dimension.
Collapse
Affiliation(s)
- N Kleppmann
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - F Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - S H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
20
|
Kallus Y, Holmes-Cerfon M. Free energy of singular sticky-sphere clusters. Phys Rev E 2017; 95:022130. [PMID: 28297917 DOI: 10.1103/physreve.95.022130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3N-6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N=10.
Collapse
Affiliation(s)
- Yoav Kallus
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
| | - Miranda Holmes-Cerfon
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
| |
Collapse
|
21
|
Tanaka H, Zeravcic Z, Brenner MP. Mutation at Expanding Front of Self-Replicating Colloidal Clusters. PHYSICAL REVIEW LETTERS 2016; 117:238004. [PMID: 27982625 DOI: 10.1103/physrevlett.117.238004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 06/06/2023]
Abstract
We construct a scheme for self-replicating square clusters of particles in two spatial dimensions, and validate it with computer simulations in a finite-temperature heat bath. We find that the self-replication reactions propagate through the bath in the form of Fisher waves. Our model reflects existing colloidal systems, but is simple enough to allow simulation of many generations and thereby the first study of evolutionary dynamics in an artificial system. By introducing spatially localized mutations in the replication rules, we show that the mutated cluster population can survive and spread with the expanding front in circular sectors of the colony.
Collapse
Affiliation(s)
- Hidenori Tanaka
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zorana Zeravcic
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Soft matter and chemistry laboratory, ESPCI PSL Research University, 75005 Paris, France
| | - Michael P Brenner
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
22
|
Abstract
We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.
Collapse
Affiliation(s)
- Miranda Holmes-Cerfon
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| |
Collapse
|
23
|
Fačkovec B, Morgan JWR, Wales DJ. Dynamical properties of two- and three-dimensional colloidal clusters of six particles. Phys Chem Chem Phys 2016; 18:12725-32. [PMID: 27098768 DOI: 10.1039/c6cp00677a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Colloidal clusters are important systems for studying self-assembly. Clusters of six colloidal particles attracting each other via short-ranged interactions have been recently studied both theoretically and experimentally. Here we present a computer modelling study of the thermodynamics and dynamics of these clusters using a short-ranged Morse potential in two and three dimensions. We combine energy landscape methods with comprehensive sampling, both of configurations using Markov chain Monte Carlo and also of trajectories using Langevin molecular dynamics propagation. We show that the interaction energies between the particles are probably greater than previously assumed. The rates predicted by transition state theory using harmonic vibrational densities of states are off by four orders of magnitude, since the effects of viscosity are not accounted for. In contrast, sampling short trajectories using an appropriate friction constant and discrete relaxation path sampling produces reasonable agreement with the experimental rates.
Collapse
Affiliation(s)
- B Fačkovec
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | | | |
Collapse
|
24
|
Perry RW, Manoharan VN. Segregation of "isotope" particles within colloidal molecules. SOFT MATTER 2016; 12:2868-2876. [PMID: 26869390 DOI: 10.1039/c5sm02851e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Clusters of spherical particles are called "colloidal molecules" because they adopt structures that resemble those of true molecules. In this analogy, the particles are the atoms, the attractive interactions between them are bonds, and the different structures that appear in equilibrium are isomers. We take this analogy a step further by doping colloidal molecules with colloidal "isotopes," particles that have the same size but different bonding energies from the other particles in the system. Our molecules are two-dimensional clusters consisting of polystyrene and silica microspheres held together by depletion interactions. Using a combination of optical microscopy and particle tracking, we examine an ensemble of 4- and 5-particle molecules at different isotope ratios. We find that the isotopes tend to segregate to particular positions in the various isomers. We explain these findings using a statistical mechanical model that accounts for the rotational entropy of the isomers and the different interaction potentials between the different types of particles. The model shows how to optimize the yield of any particular isomer, so as to put the isotopes in desired locations. Our experiments and models show that even in systems of particles with isotropic interactions, the structures of self-assembled molecules can in principle be controlled to a surprisingly high extent.
Collapse
Affiliation(s)
- Rebecca W Perry
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Abstract
Colloidal particles with well-controlled shapes and interactions are an ideal experimental system for exploring how matter organizes itself. Like atoms and molecules, these particles form bulk phases such as liquids and crystals. But they are more than just crude analogs of atoms; they are a form of matter in their own right, with complex and interesting collective behavior not seen at the atomic scale. Their behavior is affected by geometrical or topological constraints, such as curved surfaces or the shapes of the particles. Because the interactions between the particles are often short-ranged, we can understand the effects of these constraints using geometrical concepts such as packing. The geometrical viewpoint gives us a window into how entropy affects not only the structure of matter, but also the dynamics of how it forms.
Collapse
Affiliation(s)
- Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
|
27
|
Hoy RS. Structure and dynamics of model colloidal clusters with short-range attractions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012303. [PMID: 25679619 DOI: 10.1103/physreve.91.012303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 06/04/2023]
Abstract
We examine the structure and dynamics of small isolated N-particle clusters interacting via short-ranged Morse potentials. "Ideally prepared ensembles" obtained via exact enumeration studies of sticky hard-sphere packings serve as reference states allowing us to identify key statistical-geometrical properties and to quantitatively characterize how nonequilibrium ensembles prepared by thermal quenches at different rates T[over ̇] differ from their equilibrium counterparts. Studies of equilibrium dynamics show nontrivial temperature dependence: nonexponential relaxation indicates both glassy dynamics and differing stabilities of degenerate clusters with different structures. Our results should be useful for extending recent experimental studies of small colloidal clusters to examine both equilibrium relaxation dynamics at fixed T and a variety of nonequilibrium phenomena.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
28
|
Size limits of self-assembled colloidal structures made using specific interactions. Proc Natl Acad Sci U S A 2014; 111:15918-23. [PMID: 25349380 DOI: 10.1073/pnas.1411765111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We establish size limitations for assembling structures of controlled size and shape out of colloidal particles with short-ranged interactions. Through simulations we show that structures with highly variable shapes made out of dozens of particles can form with high yield, as long as each particle in the structure binds only to the particles in their local environment. To understand this, we identify the excited states that compete with the ground-state structure and demonstrate that these excited states have a completely topological characterization, valid when the interparticle interactions are short-ranged. This allows complete enumeration of the energy landscape and gives bounds on how large a colloidal structure can assemble with high yield. For large structures the yield can be significant, even with hundreds of particles.
Collapse
|
29
|
Morgan JWR, Wales DJ. Energy landscapes of planar colloidal clusters. NANOSCALE 2014; 6:10717-10726. [PMID: 25095731 PMCID: PMC4263186 DOI: 10.1039/c4nr02670e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
A short-ranged pairwise Morse potential is used to model colloidal clusters with planar morphologies. Potential and free energy global minima as well as rearrangement paths, obtained by basin-hopping global optimisation and discrete path sampling, are characterised. The potential and free energy landscapes are visualised using disconnectivity graphs. The short-ranged potential is found to favour close-packed structures, with the potential energy primarily controlled by the number of nearest neighbour contacts. In the case of quasi-degeneracy the free energy global minimum may differ from the potential energy global minimum. This difference is due to symmetry effects, which result in a higher entropy for structures with lower symmetry.
Collapse
Affiliation(s)
- John W. R. Morgan
- University Chemical Laboratories , Lensfield Road , Cambridge CB2 1EW , UK
| | - David J. Wales
- University Chemical Laboratories , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
30
|
Abstract
High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.
Collapse
|
31
|
Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites. Proc Natl Acad Sci U S A 2014; 111:4803-8. [PMID: 24639545 DOI: 10.1073/pnas.1318012111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The degree to which DNA-linked particle crystals, particularly those composed of micrometer-scale colloids, are able to dynamically evolve or whether they are kinetically arrested after formation remains poorly understood. Here, we study a recently observed displacive transformation in colloidal binary superlattice crystals, whereby a body-centered cubic to face-centered cubic transformation is found to proceed spontaneously under some annealing conditions. Using a comprehensive suite of computer simulation tools, we develop a framework for analyzing the many displacive transformation pathways corresponding to distinct, but energetically degenerate, random hexagonal close-packed end states. Due to the short-ranged, spherically symmetric nature of the particle interactions the pathways are all barrierless, suggesting that all end states should be equally likely. Instead, we find that hydrodynamic correlations between particles result in anisotropic mobility along the various possible displacive pathways, strongly selecting for pathways that lead to the fcc-CuAu-I configuration, explaining recent experimental observations. This finding may provide clues for discovering new approaches for controlling structure in this emerging class of materials.
Collapse
|
32
|
Fung J, Manoharan VN. Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:020302. [PMID: 24032764 DOI: 10.1103/physreve.88.020302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Indexed: 06/02/2023]
Abstract
We measure all nonzero elements of the three-dimensional diffusion tensor D for clusters of colloidal spheres to a precision of 1% or better using digital holographic microscopy. We study both dimers and triangular trimers of spheres, for which no analytical calculations of the diffusion tensor exist. We observe anisotropic rotational and translational diffusion arising from the asymmetries of the clusters. In the case of the three-particle triangular cluster, we also detect a small but statistically significant difference in the rotational diffusion about the two in-plane axes. We attribute this difference to weak breaking of threefold rotational symmetry due to a small amount of particle polydispersity. Our experimental measurements agree well with numerical calculations and show how diffusion constants can be measured under conditions relevant to colloidal self-assembly, where theoretical and even numerical prediction is difficult.
Collapse
Affiliation(s)
- Jerome Fung
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|