1
|
Collier SL, Farrell SN, Goodman CD, McFadden GI. Modes and mechanisms for the inheritance of mitochondria and plastids in pathogenic protists. PLoS Pathog 2025; 21:e1012835. [PMID: 39847585 PMCID: PMC11756805 DOI: 10.1371/journal.ppat.1012835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Pathogenic protists are responsible for many diseases that significantly impact human and animal health across the globe. Almost all protists possess mitochondria or mitochondrion-related organelles, and many contain plastids. These endosymbiotic organelles are crucial to survival and provide well-validated and widely utilised drug targets in parasitic protists such as Plasmodium and Toxoplasma. However, mutations within the organellar genomes of mitochondria and plastids can lead to drug resistance. Such mutations ultimately challenge our ability to control and eradicate the diseases caused by these pathogenic protists. Therefore, it is important to understand how organellar genomes, and the resistance mutations encoded within them, are inherited during protist sexual reproduction and how this may impact the spread of drug resistance and future therapeutic approaches to target these organelles. In this review, we detail what is known about mitochondrial and plastid inheritance during sexual reproduction across different pathogenic protists, often turning to their better studied, nonpathogenic relatives for insight.
Collapse
Affiliation(s)
- Sophie L. Collier
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah N. Farrell
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Tang L, Tam NFY, Lam W, Lee TCH, Xu SJL, Lee CL, Lee FWF. Interpreting the complexities of the plastid genome in dinoflagellates: a mini-review of recent advances. PLANT MOLECULAR BIOLOGY 2024; 114:114. [PMID: 39432142 DOI: 10.1007/s11103-024-01511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024]
Abstract
Photosynthetic dinoflagellates play crucial roles in global primary production and carbon fixation. Despite their success in filling various ecological niches, numerous mysteries about their plastid evolution and plastid genomes remain unsolved. The plastid genome of dinoflagellates presents one of the most complex lineages in the biological realm, mainly due to multiple endosymbiotic plastid events in their evolutionary history. Peridinin-containing dinoflagellates possess the most reduced and fragmented genome, with only a few genes located on multiple "minicircles", whereas replacement plastids in dinoflagellate lineages have undergone different degrees of endosymbiotic gene transfer. Recent advancements in high-throughput sequencing have improved our understanding of plastid genomes and plastid-encoded gene expression in many dinoflagellate species. Plastid transcripts of dinoflagellates exhibit two unconventional processing pathways: the addition of a 3' poly(U) tail and substitutional RNA editing. These pathways are widely employed across dinoflagellate lineages, which are possibly retained from the ancestral peridinin plastid. This mini-review summarizes the developments in the plastid genomes of dinoflagellates and pinpoints the research areas that necessitate further exploration, aiming to provide valuable insights into plastid evolution in these fascinating and important organisms.
Collapse
Affiliation(s)
- Lu Tang
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Winnie Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Thomas Chun-Hung Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Chak-Lam Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
4
|
Howe CJ, Barbrook AC. Dinoflagellate chloroplasts as a model for extreme genome reduction and fragmentation in organelles - The COCOA principle for gene retention. Protist 2024; 175:126048. [PMID: 38981407 DOI: 10.1016/j.protis.2024.126048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK; Stellenbosch Institute for Advanced Study, (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
5
|
Novák Vanclová AM, Nef C, Füssy Z, Vancl A, Liu F, Bowler C, Dorrell RG. New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates. EMBO Rep 2024; 25:1859-1885. [PMID: 38499810 PMCID: PMC11014865 DOI: 10.1038/s44319-024-00103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.
Collapse
Affiliation(s)
- Anna Mg Novák Vanclová
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
- Institute Jacques Monod, Paris, France.
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Zoltán Füssy
- Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Adél Vancl
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Fuhai Liu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Centre de Recherches Interdisciplinaires, Paris, France
- Tsinghua-UC Berkeley Shenzhen Institute, Shenzhen, China
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Richard G Dorrell
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Sorbonne Université, Paris, France.
| |
Collapse
|
6
|
Tilney CL, Hubbard KA. Expression of nuclear-encoded, haptophyte-derived ftsH genes support extremely rapid PSII repair and high-light photoacclimation in Karenia brevis (Dinophyceae). HARMFUL ALGAE 2022; 118:102295. [PMID: 36195421 DOI: 10.1016/j.hal.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Karenia brevis, a neurotoxic dinoflagellate that produces brevetoxins, is endemic to the Gulf of Mexico and can grow at high irradiances typical of surface waters found there. To build upon a growing number of studies addressing high-light tolerance in K. brevis, specific photobiology and molecular mechanisms underlying this capacity were evaluated in culture. Since photosystem II (PSII) repair cycle activity can be crucial to high light tolerance in plants and algae, the present study assessed this capacity in K. brevis and characterized the ftsH-like genes which are fundamental to this process. Compared with cultures grown in low-light, cultures grown in high-light showed a 65-fold increase in PSII photoinactivation, a ∼50-fold increase in PSII repair, enhanced nonphotochemical quenching (NPQ), and depressed Fv/Fm. Repair rates were among the fastest reported in phytoplankton. Publicly available K. brevis transcriptomes (MMETSP) were queried for ftsH-like sequences and refined with additional sequencing from two K. brevis strains. The genes were phylogenetically related to haptophyte orthologs, implicating acquisition during tertiary endosymbiosis. RT-qPCR of three of the four ftsH-like homologs revealed that poly-A tails predominated in all homologs, and that the most highly expressed homolog had a 5' splice leader and amino-acid motifs characteristic of chloroplast targeting, indicating nuclear encoding for this plastid-targeted gene. High-light cultures showed a ∼1.5-fold upregulation in mRNA expression of the thylakoid-associated genes. Overall, in conjunction with NPQ mechanisms, rapid PSII repair mediated by a haptophyte-derived ftsH prevents chronic photoinhibition in K. brevis. Our findings continue to build the case that high-light photobiology-supported by the acquisition and maintenance of tertiary endosymbiotic genes-is critical to the success of K. brevis in the Gulf of Mexico.
Collapse
Affiliation(s)
- Charles L Tilney
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA; Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5M 1L7, Canada.
| | - Katherine A Hubbard
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, 33701, USA
| |
Collapse
|
7
|
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing. FRONTIERS IN PLANT SCIENCE 2022; 13:918543. [PMID: 35898209 PMCID: PMC9309888 DOI: 10.3389/fpls.2022.918543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Dinoflagellates possess plastids that are diverse in both pigmentation and evolutionary background. One of the plastid types found in dinoflagellates is pigmented with chlorophylls a and b (Chl a + b) and originated from the endosymbionts belonging to a small group of green algae, Pedinophyceae. The Chl a + b-containing plastids have been found in three distantly related dinoflagellates Lepidodinium spp., strain MGD, and strain TGD, and were proposed to be derived from separate partnerships between a dinoflagellate (host) and a pedinophycean green alga (endosymbiont). Prior to this study, a plastid genome sequence was only available for L. chlorophorum, which was reported to bear the features that were not found in that of the pedinophycean green alga Pedinomonas minor, a putative close relative of the endosymbiont that gave rise to the current Chl a + b-containing plastid. In this study, we sequenced the plastid genomes of strains MGD and TGD to compare with those of L. chlorophorum as well as pedinophycean green algae. The mapping of the RNA-seq reads on the corresponding plastid genome identified RNA editing on plastid gene transcripts in the three dinoflagellates. Further, the comparative plastid genomics revealed that the plastid genomes of the three dinoflagellates achieved several features, which are not found in or much less obvious than the pedinophycean plastid genomes determined to date, in parallel.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kounosuke Morita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takuro Nakayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Chihiro Sarai
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Kazuya Takahashi
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Iwataki
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Meade MJ, Proulex GCR, Manoylov KM, Cahoon AB. Chloroplast mRNAs are 3' polyuridylylated in the Green Alga Pithophora roettleri (Cladophorales). JOURNAL OF PHYCOLOGY 2020; 56:1124-1134. [PMID: 32464681 DOI: 10.1111/jpy.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Species within the green algal order Cladophorales have an unconventional plastome structure where individual coding regions or small numbers of genes occur as linear single-stranded DNAs folded into hairpin structures. Another group of photosynthetic organisms with an equivalently reduced chloroplast genome are the peridinin dinoflagellates of the Alveolata eukaryotic lineage whose plastomes are mini-circles carrying one or a few genes required for photosynthesis. One unusual aspect of the Alveolata is the polyuridylylation of mRNA 3' ends among peridinin dinoflagellates and the chromerid algae. This study was conducted to understand if an unconventional highly reduced plastome structure co-occurs with unconventional RNA processing. To address this, the 5' and 3' mRNA termini of the known chloroplast genes of Pithophora roettleri (order Cladophorales) were analyzed for evidence of post-transcriptional processing. Circular Reverse Transcriptase PCR (cRT-PCR) followed by deep sequencing of the amplicons was used to analyze 5' and 3' mRNA termini. Evidence of several processing events were collected, most notably the 3' termini of six of the eight genes were polyuridylylated, which has not been reported for any lineage outside of the Alveolata. Other processing events include poly(A) and heteropolymeric 3' additions, 5' primary transcript start sites, as well as the presence of circularized RNAs. Five other species representing other green algal lineages were also tested and poly(U) additions appear to be limited to the order Cladophorales. These results demonstrate that chloroplast mRNA polyuridylylation is not the sole provenance of photosynthetic alveolates and may have convergently evolved in two distinct photosynthetic lineages.
Collapse
Affiliation(s)
- Marcus J Meade
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| | - Grayson C R Proulex
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| | - Kalina M Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, 31061, USA
| | - A Bruce Cahoon
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| |
Collapse
|
9
|
Dorrell RG, Nisbet RER, Barbrook AC, Rowden SJL, Howe CJ. Integrated Genomic and Transcriptomic Analysis of the Peridinin Dinoflagellate Amphidinium carterae Plastid. Protist 2019; 170:358-373. [PMID: 31415953 DOI: 10.1016/j.protis.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.
Collapse
Affiliation(s)
| | - R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
10
|
Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 2019; 116:6914-6923. [PMID: 30872488 DOI: 10.1073/pnas.1819976116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The division of life into producers and consumers is blurred by evolution. For example, eukaryotic phototrophs can lose the capacity to photosynthesize, although they may retain vestigial plastids that perform other essential cellular functions. Chrysophyte algae have undergone a particularly large number of photosynthesis losses. Here, we present a plastid genome sequence from a nonphotosynthetic chrysophyte, "Spumella" sp. NIES-1846, and show that it has retained a nearly identical set of plastid-encoded functions as apicomplexan parasites. Our transcriptomic analysis of 12 different photosynthetic and nonphotosynthetic chrysophyte lineages reveals remarkable convergence in the functions of these nonphotosynthetic plastids, along with informative lineage-specific retentions and losses. At one extreme, Cornospumella fuschlensis retains many photosynthesis-associated proteins, although it appears to have lost the reductive pentose phosphate pathway and most plastid amino acid metabolism pathways. At the other extreme, Paraphysomonas lacks plastid-targeted proteins associated with gene expression and all metabolic pathways that require plastid-encoded partners, indicating a complete loss of plastid DNA in this genus. Intriguingly, some of the nucleus-encoded proteins that once functioned in the expression of the Paraphysomonas plastid genome have been retained. These proteins were likely to have been dual targeted to the plastid and mitochondria of the chrysophyte ancestor, and are uniquely targeted to the mitochondria in Paraphysomonas Our comparative analyses provide insights into the process of functional reduction in nonphotosynthetic plastids.
Collapse
|
11
|
Klinger CM, Paoli L, Newby RJ, Wang MYW, Carroll HD, Leblond JD, Howe CJ, Dacks JB, Bowler C, Cahoon AB, Dorrell RG, Richardson E. Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends. Genome Biol Evol 2018; 10:1019-1038. [PMID: 29617800 PMCID: PMC5888634 DOI: 10.1093/gbe/evy057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Dinoflagellates are a group of unicellular protists with immense ecological and evolutionary significance and cell biological diversity. Of the photosynthetic dinoflagellates, the majority possess a plastid containing the pigment peridinin, whereas some lineages have replaced this plastid by serial endosymbiosis with plastids of distinct evolutionary affiliations, including a fucoxanthin pigment-containing plastid of haptophyte origin. Previous studies have described the presence of widespread substitutional RNA editing in peridinin and fucoxanthin plastid genes. Because reports of this process have been limited to manual assessment of individual lineages, global trends concerning this RNA editing and its effect on the biological function of the plastid are largely unknown. Using novel bioinformatic methods, we examine the dynamics and evolution of RNA editing over a large multispecies data set of dinoflagellates, including novel sequence data from the peridinin dinoflagellate Pyrocystis lunula and the fucoxanthin dinoflagellate Karenia mikimotoi. We demonstrate that while most individual RNA editing events in dinoflagellate plastids are restricted to single species, global patterns, and functional consequences of editing are broadly conserved. We find that editing is biased toward specific codon positions and regions of genes, and generally corrects otherwise deleterious changes in the genome prior to translation, though this effect is more prevalent in peridinin than fucoxanthin lineages. Our results support a model for promiscuous editing application subsequently shaped by purifying selection, and suggest the presence of an underlying editing mechanism transferred from the peridinin-containing ancestor into fucoxanthin plastids postendosymbiosis, with remarkably conserved functional consequences in the new lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Paoli
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Robert J Newby
- Department of Biology, Middle Tennessee State University
| | - Matthew Yu-Wei Wang
- Center for Computational Science and Department of Computer Science, Columbus State University, Columbus, GA 31907
| | - Hyrum D Carroll
- Center for Computational Science and Department of Computer Science, Columbus State University, Columbus, GA 31907
| | | | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Aubery Bruce Cahoon
- Department of Natural Sciences, The University of Virginia's College at Wise
| | - Richard G Dorrell
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | | |
Collapse
|
12
|
Matsuo E, Inagaki Y. Patterns in evolutionary origins of heme, chlorophyll a and isopentenyl diphosphate biosynthetic pathways suggest non-photosynthetic periods prior to plastid replacements in dinoflagellates. PeerJ 2018; 6:e5345. [PMID: 30083465 PMCID: PMC6078071 DOI: 10.7717/peerj.5345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Background The ancestral dinoflagellate most likely established a peridinin-containing plastid, which have been inherited in the extant photosynthetic descendants. However, kareniacean dinoflagellates and Lepidodinium species were known to bear “non-canonical” plastids lacking peridinin, which were established through haptophyte and green algal endosymbioses, respectively. For plastid function and maintenance, the aforementioned dinoflagellates were known to use nucleus-encoded proteins vertically inherited from the ancestral dinoflagellates (vertically inherited- or VI-type), and those acquired from non-dinoflagellate organisms (including the endosymbiont). These observations indicated that the proteomes of the non-canonical plastids derived from a haptophyte and a green alga were modified by “exogenous” genes acquired from non-dinoflagellate organisms. However, there was no systematic evaluation addressing how “exogenous” genes reshaped individual metabolic pathways localized in a non-canonical plastid. Results In this study, we surveyed transcriptomic data from two kareniacean species (Karenia brevis and Karlodinium veneficum) and Lepidodinium chlorophorum, and identified proteins involved in three plastid metabolic pathways synthesizing chlorophyll a (Chl a), heme and isoprene. The origins of the individual proteins of our interest were investigated, and we assessed how the three pathways were modified before and after the algal endosymbioses, which gave rise to the current non-canonical plastids. We observed a clear difference in the contribution of VI-type proteins across the three pathways. In both Karenia/Karlodinium and Lepidodinium, we observed a substantial contribution of VI-type proteins to the isoprene and heme biosynthesises. In sharp contrast, VI-type protein was barely detected in the Chl a biosynthesis in the three dinoflagellates. Discussion Pioneering works hypothesized that the ancestral kareniacean species had lost the photosynthetic activity prior to haptophyte endosymbiosis. The absence of VI-type proteins in the Chl a biosynthetic pathway in Karenia or Karlodinium is in good agreement with the putative non-photosynthetic nature proposed for their ancestor. The dominance of proteins with haptophyte origin in the Karenia/Karlodinium pathway suggests that their ancestor rebuilt the particular pathway by genes acquired from the endosymbiont. Likewise, we here propose that the ancestral Lepidodinium likely experienced a non-photosynthetic period and discarded the entire Chl a biosynthetic pathway prior to the green algal endosymbiosis. Nevertheless, Lepidodinium rebuilt the pathway by genes transferred from phylogenetically diverse organisms, rather than the green algal endosymbiont. We explore the reasons why green algal genes were barely utilized to reconstruct the Lepidodinium pathway.
Collapse
Affiliation(s)
- Eriko Matsuo
- Graduate School of Biological and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Inagaki
- Graduate School of Biological and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Abstract
The classic Darwinian theory and the Synthetic evolutionary theory and their linear models, while invaluable to study the origins and evolution of species, are not primarily designed to model the evolution of organisations, typically that of ecosystems, nor that of processes. How could evolutionary theory better explain the evolution of biological complexity and diversity? Inclusive network-based analyses of dynamic systems could retrace interactions between (related or unrelated) components. This theoretical shift from a Tree of Life to a Dynamic Interaction Network of Life, which is supported by diverse molecular, cellular, microbiological, organismal, ecological and evolutionary studies, would further unify evolutionary biology.
Collapse
Affiliation(s)
- Eric Bapteste
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), F-75005 Paris, France
- CNRS, UMR7138, Institut de Biologie Paris-Seine, F-75005 Paris, France
| | - Philippe Huneman
- Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS / Paris I Sorbonne), F-75006 Paris, France
| |
Collapse
|
14
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
15
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
16
|
Liew YJ, Li Y, Baumgarten S, Voolstra CR, Aranda M. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet 2017; 13:e1006619. [PMID: 28245292 PMCID: PMC5357065 DOI: 10.1371/journal.pgen.1006619] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/17/2017] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
RNA editing is a rare post-transcriptional event that provides cells with an additional level of gene expression regulation. It has been implicated in various processes including adaptation, viral defence and RNA interference; however, its potential role as a mechanism in acclimatization has just recently been recognised. Here, we show that RNA editing occurs in 1.6% of all nuclear-encoded genes of Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. All base-substitution edit types were present, and statistically significant motifs were associated with three edit types. Strikingly, a subset of genes exhibited condition-specific editing patterns in response to different stressors that resulted in significant increases of non-synonymous changes. We posit that this previously unrecognised mechanism extends this organism's capability to respond to stress beyond what is encoded by the genome. This in turn may provide further acclimatization capacity to these organisms, and by extension, their coral hosts.
Collapse
Affiliation(s)
- Yi Jin Liew
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Yong Li
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Sebastian Baumgarten
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Christian R. Voolstra
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Dorrell RG, Klinger CM, Newby RJ, Butterfield ER, Richardson E, Dacks JB, Howe CJ, Nisbet ER, Bowler C. Progressive and Biased Divergent Evolution Underpins the Origin and Diversification of Peridinin Dinoflagellate Plastids. Mol Biol Evol 2016; 34:361-379. [DOI: 10.1093/molbev/msw235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Nisbet RER, McKenzie JL. Transcription of the apicoplast genome. Mol Biochem Parasitol 2016; 210:5-9. [PMID: 27485555 PMCID: PMC5404108 DOI: 10.1016/j.molbiopara.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Many members of the Apicomplexa contain a remnant chloroplast, known as an apicoplast. The apicoplast encodes numerous genes, and loss of the organelle is lethal. Here, we present a summary of what is known about apicoplast transcription. Unlike plant chloroplasts, there is a single RNA polymerase, and initial transcription is polycistronic. RNA is then cleaved into tRNA, mRNA and rRNA molecules. Significant levels of antisense transcription have been reported, together with a single case of RNA editing. Polycistronic transcription is also observed in the related algae Chromera and Vitrella, which retain a photosynthetic chloroplast. Surprisingly, a polyU tail is added to Chromera and Vitrella transcripts which encode proteins involved in photosynthesis. No such tail is added to Plasmodium transcripts. Transcription in the Apicomplexa is remarkably similar to that seen in the chloroplast of the related peridinin dinoflagellate algae, reflecting the common evolutionary origins of the organelle.
Collapse
Affiliation(s)
- R E R Nisbet
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - J L McKenzie
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
19
|
Nisbet RER, Kurniawan DP, Bowers HD, Howe CJ. Transcripts in the Plasmodium Apicoplast Undergo Cleavage at tRNAs and Editing, and Include Antisense Sequences. Protist 2016; 167:377-388. [PMID: 27458998 PMCID: PMC4995348 DOI: 10.1016/j.protis.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022]
Abstract
The apicoplast, an organelle found in Plasmodium and many other parasitic apicomplexan species, is a remnant chloroplast that is no longer able to carry out photosynthesis. Very little is known about primary transcripts and RNA processing in the Plasmodium apicoplast, although processing in chloroplasts of some related organisms (chromerids and dinoflagellate algae) shows a number of unusual features, including RNA editing and the addition of 3′ poly(U) tails. Here, we show that many apicoplast transcripts are polycistronic and that there is extensive RNA processing, often involving the excision of tRNA molecules. We have identified major RNA processing sites, and have shown that these are associated with a conserved sequence motif. We provide the first evidence for the presence of RNA editing in the Plasmodium apicoplast, which has evolved independently from editing in dinoflagellates. We also present evidence for long, polycistronic antisense transcripts, and show that in some cases these are processed at the same sites as sense transcripts. Together, this research has significantly enhanced our understanding of the evolution of chloroplast RNA processing in the Apicomplexa and dinoflagellate algae.
Collapse
Affiliation(s)
- R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| | - Davy P Kurniawan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Harrison D Bowers
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| |
Collapse
|
20
|
Smith DR, Keeling PJ. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits. Annu Rev Microbiol 2016; 70:161-78. [PMID: 27359218 DOI: 10.1146/annurev-micro-102215-095448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7;
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;
| |
Collapse
|
21
|
Dorrell RG, Hinksman GA, Howe CJ. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi. PLANT MOLECULAR BIOLOGY 2016; 90:233-47. [PMID: 26768263 PMCID: PMC4717168 DOI: 10.1007/s11103-015-0408-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/12/2015] [Indexed: 05/05/2023]
Abstract
Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- School of Biology, École Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
22
|
Dorrell RG, Howe CJ. Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 2015; 112:10247-54. [PMID: 25995366 PMCID: PMC4547248 DOI: 10.1073/pnas.1421380112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their associated plastids, which have been acquired through multiple different endosymbiotic events. Most dinoflagellate species possess plastids that contain the pigment peridinin and show extreme reduction and integration with the host biology. In some species, these plastids have been replaced through serial endosymbiosis with plastids derived from a different phylogenetic derivation, of which some have become intimately connected with the biology of the host whereas others have not. We discuss in particular the evolution of the fucoxanthin-containing dinoflagellates, which have adapted pathways retained from the ancestral peridinin plastid symbiosis for transcript processing in their current, serially acquired plastids. Finally, we consider why such a diversity of different degrees of integration between host and plastid is observed in different dinoflagellates and how dinoflagellates may thus inform our broader understanding of plastid evolution and function.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; School of Biology, École Normale Superieure, Paris 75005, France
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
23
|
Gavelis GS, White RA, Suttle CA, Keeling PJ, Leander BS. Single-cell transcriptomics using spliced leader PCR: Evidence for multiple losses of photosynthesis in polykrikoid dinoflagellates. BMC Genomics 2015; 16:528. [PMID: 26183220 PMCID: PMC4504456 DOI: 10.1186/s12864-015-1636-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most microbial eukaryotes are uncultivated and thus poorly suited to standard genomic techniques. This is the case for Polykrikos lebouriae, a dinoflagellate with ultrastructurally aberrant plastids. It has been suggested that these plastids stem from a novel symbiosis with either a diatom or haptophyte, but this hypothesis has been difficult to test as P. lebouriae dwells in marine sand rife with potential genetic contaminants. RESULTS We applied spliced-leader targeted PCR (SLPCR) to obtain dinoflagellate-specific transcriptomes on single-cell isolates of P. lebouriae from marine sediments. Polykrikos lebouriae expressed nuclear-encoded photosynthetic genes that were characteristic of the peridinin-plastids of dinoflagellates, rather than those from a diatom of haptophyte. We confirmed these findings at the genomic level using multiple displacement amplification (MDA) to obtain a partial plastome of P. lebouriae. CONCLUSION From these data, we infer that P. lebouriae has retained the peridinin plastids ancestral for dinoflagellates as a whole, while its closest relatives have lost photosynthesis multiple times independently. We discuss these losses with reference to mixotrophy in polykrikoid dinoflagellates. Our findings demonstrate new levels of variation associated with the peridinin plastids of dinoflagellates and the usefulness of SLPCR approaches on single cell isolates. Unlike other transcriptomic methods, SLPCR has taxonomic specificity, and can in principle be adapted to different splice-leader bearing groups.
Collapse
Affiliation(s)
- Gregory S Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Richard A White
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Curtis A Suttle
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
- Department of Botany, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
- Department of Earth, Ocean and Atmospheric Sciences, Vancouver, BC, V6T1Z4, Canada.
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Brian S Leander
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
- Department of Botany, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| |
Collapse
|
24
|
Kamikawa R, Tanifuji G, Kawachi M, Miyashita H, Hashimoto T, Inagaki Y. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol Evol 2015; 7:1133-40. [PMID: 25840416 PMCID: PMC4419806 DOI: 10.1093/gbe/evv060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Unlike many other photosynthetic dinoflagellates, whose plastids contain a characteristic carotenoid peridinin, members of the genus Lepidodinium are the only known dinoflagellate species possessing green alga-derived plastids. However, the precise origin of Lepidodinium plastids has hitherto remained uncertain. In this study, we completely sequenced the plastid genome of Lepidodinium chlorophorum NIES-1868. Our phylogenetic analyses of 52 plastid-encoded proteins unite L. chlorophorum exclusively with a pedinophyte, Pedinomonas minor, indicating that the green-colored plastids in Lepidodinium spp. were derived from an endosymbiotic pedinophyte or a green alga closely related to pedinophytes. Our genome comparison incorporating the origin of the Lepidodinium plastids strongly suggests that the endosymbiont plastid genome acquired by the ancestral Lepidodinium species has lost genes encoding proteins involved in metabolism and biosynthesis, protein/metabolite transport, and plastid division during the endosymbiosis. We further discuss the commonalities and idiosyncrasies in genome evolution between the L. chlorophorum plastid and other plastids acquired through endosymbiosis of eukaryotic photoautotrophs.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Global Environmental Studies and Graduate School of Human and Environmental Studies, Kyoto University, Japan
| | - Goro Tanifuji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masanobu Kawachi
- The National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hideaki Miyashita
- Graduate School of Global Environmental Studies and Graduate School of Human and Environmental Studies, Kyoto University, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 2015; 112:10177-84. [PMID: 25814499 DOI: 10.1073/pnas.1422049112] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial and plastid genomes show a wide array of architectures, varying immensely in size, structure, and content. Some organelle DNAs have even developed elaborate eccentricities, such as scrambled coding regions, nonstandard genetic codes, and convoluted modes of posttranscriptional modification and editing. Here, we compare and contrast the breadth of genomic complexity between mitochondrial and plastid chromosomes. Both organelle genomes have independently evolved many of the same features and taken on similar genomic embellishments, often within the same species or lineage. This trend is most likely because the nuclear-encoded proteins mediating these processes eventually leak from one organelle into the other, leading to a high likelihood of processes appearing in both compartments in parallel. However, the complexity and intensity of genomic embellishments are consistently more pronounced for mitochondria than for plastids, even when they are found in both compartments. We explore the evolutionary forces responsible for these patterns and argue that organelle DNA repair processes, mutation rates, and population genetic landscapes are all important factors leading to the observed convergence and divergence in organelle genome architecture.
Collapse
|
26
|
Penny D. Cooperation and selfishness both occur during molecular evolution. Biol Direct 2014; 10:26. [PMID: 25486885 PMCID: PMC4266915 DOI: 10.1186/s13062-014-0026-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
Perhaps the 'selfish' aspect of evolution has been over-emphasised, and organisms considered as basically selfish. However, at the macromolecular level of genes and proteins the cooperative aspect of evolution is more obvious and balances this self-centred aspect. Thousands of proteins must function together in an integrated manner to use and to produce the many molecules necessary for a functioning cell. The macromolecules have no idea whether they are functioning cooperatively or competitively with other genes and gene products (such as proteins). The cell is a giant cooperative system of thousands of genes/proteins that function together, even if it has to simultaneously resist 'parasites'. There are extensive examples of cooperative behavior among genes and proteins in both functioning cells and in the origin of life, so this cooperative nature, along with selfishness, must be considered part of normal evolution. The principles also apply to very large numbers of examples of 'positive interactions' between organisms, including both eukaryotes and akaryotes (prokaryotes). This does not negate in any way the 'selfishness' of genes - but macromolecules have no idea when they are helping, or hindering, other groups of macromolecules. We need to assert more strongly that genes, and gene products, function together as a cooperative unit.
Collapse
Affiliation(s)
- David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Klimeš V, Gentekaki E, Roger AJ, Eliáš M. A large number of nuclear genes in the human parasite blastocystis require mRNA polyadenylation to create functional termination codons. Genome Biol Evol 2014; 6:1956-61. [PMID: 25015079 PMCID: PMC4159000 DOI: 10.1093/gbe/evu146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Termination codons in mRNA molecules are typically specified directly by the sequence of the corresponding gene. However, in mitochondria of a few eukaryotic groups, some mRNAs contain the termination codon UAA deriving one or both adenosines from transcript polyadenylation. Here, we show that a similar phenomenon occurs for a substantial number of nuclear genes in Blastocystis spp., divergent unicellular eukaryote gut parasites. Our analyses of published genomic data from Blastocystis sp. subtype 7 revealed that polyadenylation-mediated creation of termination codons occurs in approximately 15% of all nuclear genes. As this phenomenon has not been noticed before, the procedure previously employed to annotate the Blastocystis nuclear genome sequence failed to correctly define the structure of the 3'-ends of hundreds of genes. From sequence data we have obtained from the distantly related Blastocystis sp. subtype 1 strain, we show that this phenomenon is widespread within the Blastocystis genus. Polyadenylation in Blastocystis appears to be directed by a conserved GU-rich element located four nucleotides downstream of the polyadenylation site. Thus, the highly precise positioning of the polyadenylation in Blastocystis has allowed reduction of the 3'-untranslated regions to the point that, in many genes, only one or two nucleotides of the termination codon are left.
Collapse
Affiliation(s)
- Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Eleni Gentekaki
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, CanadaIntegrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Halifax, Nova Scotia, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
28
|
Richardson E, Dorrell RG, Howe CJ. Genome-wide transcript profiling reveals the coevolution of plastid gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Mol Biol Evol 2014; 31:2376-86. [PMID: 24925926 PMCID: PMC4137713 DOI: 10.1093/molbev/msu189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plastids utilize a complex gene expression machinery, which has coevolved with the underlying genome sequence. Relatively, little is known about the genome-wide evolution of transcript processing in algal plastids that have undergone complex endosymbiotic events. We present the first genome-wide study of transcript processing in a plastid acquired through serial endosymbiosis, in the fucoxanthin-containing dinoflagellate Karlodinium veneficum. The fucoxanthin dinoflagellate plastid has an extremely divergent genome and utilizes two unusual transcript processing pathways, 3'-poly(U) tail addition and sequence editing, which were acquired following the serial endosymbiosis event. We demonstrate that poly(U) addition and sequence editing are widespread features across the Karl. veneficum plastid transcriptome, whereas other dinoflagellate plastid lineages that have arisen through independent serial endosymbiosis events do not utilize either RNA processing pathway. These pathways constrain the effects of divergent sequence evolution in fucoxanthin plastids, for example by correcting mutations in the genomic sequence that would otherwise be deleterious, and are specifically associated with transcripts that encode functional plastid proteins over transcripts of recently generated pseudogenes. These pathways may have additionally facilitated divergent evolution within the Karl. veneficum plastid. Transcript editing, for example, has contributed to the evolution of a novel C-terminal sequence extension on the Karl. veneficum AtpA protein. We furthermore provide the first complete sequence of an episomal minicircle in a fucoxanthin dinoflagellate plastid, which contains the dnaK gene, and gives rise to polyuridylylated and edited transcripts. Our results indicate that RNA processing in fucoxanthin dinoflagellate plastids is evolutionarily dynamic, coevolving with the underlying genome sequence.
Collapse
Affiliation(s)
| | - Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S, Satoh N, Shoguchi E. Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol Evol 2014; 6:1408-22. [PMID: 24881086 PMCID: PMC4079212 DOI: 10.1093/gbe/evu109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.
Collapse
Affiliation(s)
- Sutada Mungpakdee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Ryo Koyanagi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, JapanDNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Makiko Tanaka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Hiroki Goto
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| |
Collapse
|
30
|
Dorrell RG, Drew J, Nisbet RER, Howe CJ. Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives. PLoS Genet 2014; 10:e1004008. [PMID: 24453981 PMCID: PMC3894158 DOI: 10.1371/journal.pgen.1004008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. Chloroplasts contain their own genomes, containing two broad functional types of gene: genes encoding proteins directly involved in photosynthesis, and genes with a non-photosynthesis function, such as cofactor biosynthesis, assembly of protein complexes, or expression of the chloroplast genome. Thus far, to our knowledge, no chloroplast gene expression pathways in any lineage have been found to target one functional category of gene specifically. Here, we show that a chloroplast RNA processing pathway – the addition of a 3′ poly(U) tail – is specifically associated with photosynthesis genes in two species of algae, the ‘chromerids’ Chromera and Vitrella. The addition of the poly(U) tail enables the precise processing of mature photosynthesis gene transcripts from precursor RNA, and is likely to be essential for expression of the chromerid photosynthesis machinery. The chromerid algae are the closest photosynthetic relatives of a parasitic group of eukaryotes, the apicomplexans, which include the malaria pathogen Plasmodium. Apicomplexans are descended from algae, and retain a reduced chloroplast, which contains genes only of non-photosynthesis function. We have confirmed that 3′ poly(U) tails are not added to Plasmodium chloroplast transcripts. The expression pathways associated with photosynthesis genes have therefore been lost in the evolution of the apicomplexan chloroplast, and this loss could potentially have driven the transition from photosynthesis to parasitism.
Collapse
Affiliation(s)
- Richard G. Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James Drew
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - R. Ellen R. Nisbet
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Cavalier-Smith T. Symbiogenesis: Mechanisms, Evolutionary Consequences, and Systematic Implications. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110411-160320] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Jackson CJ, Waller RF. A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria. PLoS One 2013; 8:e56777. [PMID: 23437234 PMCID: PMC3577742 DOI: 10.1371/journal.pone.0056777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/15/2013] [Indexed: 11/30/2022] Open
Abstract
Cytochrome oxidase subunit 3 (Cox3) is a mitochondrion-encoded core membrane protein of complex IV of the mitochondrial respiratory chain, and consists of seven trans-membrane helices. Here we show that in diverse later-branching dinoflagellates, cox3 is consistently split into two exons in the mitochondrial genome between helices six and seven. Gene exons are transcribed as two discrete oligoadenylated precursor RNAs, and these are subsequently trans-spliced to form a complete coding mRNA. This trans-splicing is highly unusual in that some of the oligoadenylated tail is incorporated at the splice site, such that a short string of adenosines links the two coding exons. This feature is consistently represented in diverse dinoflagellates, however the number of adenosines added varies according to the size of the coding gap between the two exons. Thus we observed between zero (Amphidinium carterae) and 10 (Symbiodinium sp.) adenosines added in different taxa, but the final coding sequence length is identical with the reading frame maintained. Northern analyses show that precursor cox3 transcripts are approximately equally abundant as mature cox3 mRNAs, suggesting a slow or regulated maturation process. These data indicate that the splicing mechanism in dinoflagellate mitochondria is tolerant of variations in the length of the precursor coding sequence, and implicates the use of a splicing template, or guide molecule, during splicing that controls mature mRNA length.
Collapse
Affiliation(s)
| | - Ross F. Waller
- School of Botany, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
33
|
Abstract
Dinoflagellates are known for their development of highly aberrant organelle genetic systems. Both their plastid and mitochondrial genomes are extremely reduced in gene number and rearranged into numerous unconventional genomic elements. Transcription processes are also elaborately modified including extensive RNA editing and trans-splicing. Some dinoflagellates have replaced their original plastid through serial endosymbiotic events. Karlodinium veneficum is such an example that now contains a haptophyte plastid. This tertiary plastid provides a case of a more conventional genetic system introduced into a cellular environment with a known penchant for genetic oddities. Here, we show that K. veneficum plastid transcripts undergo extensive substitutional editing. The substitution types are more diverse than those seen in most other plastids but are similar to those of dinoflagellate organelles. There is no evidence for RNA editing of plastid-encoded transcripts from extant haptophytes, suggesting that K. veneficum plastid editing developed after the uptake of the tertiary endosymbiont.
Collapse
|