1
|
Albada B. Functionalized DNA secondary structures and nanostructures for specific protein modifications. Trends Biochem Sci 2024; 49:1124-1135. [PMID: 39443210 DOI: 10.1016/j.tibs.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Das PK, Silverman SK. Sequence-Dependent Acylation of Peptide Lysine Residues by DNAzymes. Chembiochem 2024; 25:e202400578. [PMID: 39239825 PMCID: PMC11543514 DOI: 10.1002/cbic.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
Methods for modifying intact peptides are useful but can be unselective with regard to amino acid position and sequence context. In this work, we used in vitro selection to identify DNAzymes that acylate a Lys residue of a short peptide in sequence-dependent fashion. The DNAzymes do not acylate Lys when placed at other residues in the peptide, and the acylation activity depends on the Lys sequence context. A high acylation yield is observed on the preparative nanomole scale. These findings are promising for further development of DNAzymes for broader application to top-down Lys acylation of peptide and protein substrates.
Collapse
Affiliation(s)
- Prakriti K Das
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, United States
| |
Collapse
|
3
|
Stratton RL, Pokhrel B, Smith B, Adeyemi A, Dhakal A, Shen H. DNA Catalysis: Design, Function, and Optimization. Molecules 2024; 29:5011. [PMID: 39519652 PMCID: PMC11547689 DOI: 10.3390/molecules29215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Catalytic DNA has gained significant attention in recent decades as a highly efficient and tunable catalyst, thanks to its flexible structures, exceptional specificity, and ease of optimization. Despite being composed of just four monomers, DNA's complex conformational intricacies enable a wide range of nuanced functions, including scaffolding, electrocatalysis, enantioselectivity, and mechano-electro spin coupling. DNA catalysts, ranging from traditional DNAzymes to innovative DNAzyme hybrids, highlight the remarkable potential of DNA in catalysis. Recent advancements in spectroscopic techniques have deepened our mechanistic understanding of catalytic DNA, paving the way for rational structural optimization. This review will summarize the latest studies on the performance and optimization of traditional DNAzymes and provide an in-depth analysis of DNAzyme hybrid catalysts and their unique and promising properties.
Collapse
Affiliation(s)
- Rebecca L. Stratton
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bishal Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bryce Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Adeola Adeyemi
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Ananta Dhakal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Yang S, Silverman SK. Defining the substrate scope of DNAzyme catalysis for reductive amination with aliphatic amines. Org Biomol Chem 2023; 21:1910-1919. [PMID: 36786764 DOI: 10.1039/d3ob00070b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Amines can be alkylated using various reactions, such as reductive amination of aldehydes. In this study, we sought DNAzymes as catalytic DNA sequences that promote reductive amination with aliphatic amines, including DNA-anchored peptide substrates with lysine residues. By in vitro selection starting with either N40 or N20 random DNA pools, we identified many DNAzymes that catalyze reductive amination between the DNA oligonucleotide-anchored aliphatic amino group of DNA-C3-NH2 (C3 = short three-carbon tether) and a DNA-anchored benzaldehyde group in the presence of NaCNBH3 as reducing agent. At pH 5.2, 6.0, 7.5, or 9.0 in the presence of various divalent metal ion cofactors including Mg2+, Mn2+, Zn2+ and Ni2+, the DNAzymes have kobs up to 0.12 h-1 and up to 130-fold rate enhancement relative to the DNA-splinted but uncatalyzed background reaction. However, analogous selection experiments did not lead to any DNAzymes that function with DNA-HEG-NH2 [HEG = long hexa(ethylene glycol) tether], or with short- and long-tethered DNA-AAAKAA and DNA-HEG-AAAKAA lysine-containing hexapeptide substrates (A = alanine, K = lysine). Including a variety of other amino acids in place of the neighboring alanines also did not lead to DNAzymes. These findings establish a practical limit on the substrate scope of DNAzyme catalysis for N-alkylation of aliphatic amines by reductive amination. The lack of DNAzymes for reductive amination with any substrate more structurally complex than DNA-C3-NH2 is likely related to the challenge in binding and spatially organizing those other substrates. Because other reactions such as aliphatic amine N-acylation are feasible for DNAzymes with DNA-anchored peptides, our findings show that the ability to identify DNAzymes depends strongly on both the investigated reaction and the composition of the substrate.
Collapse
Affiliation(s)
- Shukun Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Wang B, Wang M, Peng F, Fu X, Wen M, Shi Y, Chen M, Ke G, Zhang XB. Construction and Application of DNAzyme-based Nanodevices. Chem Res Chin Univ 2023; 39:42-60. [PMID: 36687211 PMCID: PMC9841151 DOI: 10.1007/s40242-023-2334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Menghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaoyi Fu
- Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, 310022 P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Yuyan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
7
|
Zhang Q, Liang Y, Xing H. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Edward A. Curtis
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| |
Collapse
|
9
|
Borggräfe J, Etzkorn M. Solution NMR Spectroscopy as a Tool to Study DNAzyme Structure and Function. Methods Mol Biol 2022; 2439:131-151. [PMID: 35226320 DOI: 10.1007/978-1-0716-2047-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Catalytically active DNA oligomers (or DNAzymes) offer a broad spectrum of functions as well as applications. Although known for over two decades, the DNAzyme's mode-of-actions are still poorly understood, mainly due to lack of high-resolution structural insights. Due to their molecular size, structural flexibility, and dynamic interactions with metal-ion cofactors, solution nuclear magnetic resonance spectroscopy (NMR) can serve as optimal tool to obtain mechanistic insights of DNAzymes. In this respect, nearly all states of the DNAzyme and its substrate during the catalytic cycle are accessible. The instructions and protocols provided in the following may assist the initial steps of an NMR-based characterization of DNAzymes. To reduce the initial setup requirements and foster exciting new research projects, the discussed approaches focus on experiments that do not require cost-intensive isotope labeling strategies.
Collapse
Affiliation(s)
- Jan Borggräfe
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Manuel Etzkorn
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany.
- Jülich Center for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2021; 61:e202109347. [PMID: 34559935 PMCID: PMC9298802 DOI: 10.1002/anie.202109347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Functional DNA molecules are useful components in nanotechnology and synthetic biology. To expand the toolkit of functional DNA parts, in this study we used artificial evolution to identify a glowing deoxyribozyme called Supernova. This deoxyribozyme transfers a phosphate from a 1,2-dioxetane substrate to its 5' hydroxyl group, which triggers a chemiluminescent reaction and a flash of blue light. An engineered version of Supernova is only catalytically active in the presence of an oligonucleotide complementary to its 3' end, demonstrating that light production can be coupled to ligand binding. We anticipate that Supernova will be useful in a wide variety of applications, including as a signaling component in allosterically regulated sensors and in logic gates of molecular computers.
Collapse
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| |
Collapse
|
11
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Xu X, Xiao L, Gu C, Shang J, Xiang Y. Wavelength-Selective Activation of Photocaged DNAzymes for Metal Ion Sensing in Live Cells. ACS OMEGA 2021; 6:13153-13160. [PMID: 34056465 PMCID: PMC8158819 DOI: 10.1021/acsomega.1c00976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 05/09/2023]
Abstract
RNA-cleaving DNAzymes are widely applied as sensors for detecting metal ions in environmental samples owing to their high sensitivity and selectivity, but their use for sensing biological metal ions in live cells is challenging because constitutive sensors fail to report the spatiotemporal heterogeneity of biological processes. Photocaged DNAzymes can be activated by light for sensing purposes that need spatial and temporal resolution. Studying complex biological processes requires logic photocontrol, but unfortunately all the literature-reported photocaged DNAzymes working in live cells cannot be selectively controlled by light irradiation at different wavelengths. In this work, we developed photocaged DNAzymes responsive to UV and visible light using a general synthetic method based on phosphorothioate chemistry. Taking the Zn2+-dependent DNAzyme sensor as a model, we achieved wavelength-selective activation of photocaged DNAzymes in live human cells by UV and visible light, laying the groundwork for the logic activation of DNAzyme-based sensors in biological systems.
Collapse
|
13
|
Secondary Structure Libraries for Artificial Evolution Experiments. Molecules 2021; 26:molecules26061671. [PMID: 33802780 PMCID: PMC8002575 DOI: 10.3390/molecules26061671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.
Collapse
|
14
|
Ponce-Salvatierra A, Boccaletto P, Bujnicki JM. DNAmoreDB, a database of DNAzymes. Nucleic Acids Res 2021; 49:D76-D81. [PMID: 33053178 PMCID: PMC7778931 DOI: 10.1093/nar/gkaa867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Deoxyribozymes, DNA enzymes or simply DNAzymes are single-stranded oligo-deoxyribonucleotide molecules that, like proteins and ribozymes, possess the ability to perform catalysis. Although DNAzymes have not yet been found in living organisms, they have been isolated in the laboratory through in vitro selection. The selected DNAzyme sequences have the ability to catalyze a broad range of chemical reactions, utilizing DNA, RNA, peptides or small organic compounds as substrates. DNAmoreDB is a comprehensive database resource for DNAzymes that collects and organizes the following types of information: sequences, conditions of the selection procedure, catalyzed reactions, kinetic parameters, substrates, cofactors, structural information whenever available, and literature references. Currently, DNAmoreDB contains information about DNAzymes that catalyze 20 different reactions. We included a submission form for new data, a REST-based API system that allows users to retrieve the database contents in a machine-readable format, and keyword and BLASTN search features. The database is publicly available at https://www.genesilico.pl/DNAmoreDB/.
Collapse
Affiliation(s)
- Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.,Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, PL-61-614 Poznan, Poland
| |
Collapse
|
15
|
Yao T, Przybyla JJ, Yeh P, Woodard AM, Nilsson HJ, Brandsen BM, Silverman SK. DNAzymes for amine and peptide lysine acylation. Org Biomol Chem 2021; 19:171-181. [PMID: 33150349 PMCID: PMC7790989 DOI: 10.1039/d0ob02015j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNAzymes were previously identified by in vitro selection for a variety of chemical reactions, including several biologically relevant peptide modifications. However, finding DNAzymes for peptide lysine acylation is a substantial challenge. By using suitably reactive aryl ester acyl donors as the electrophiles, here we used in vitro selection to identify DNAzymes that acylate amines, including lysine side chains of DNA-anchored peptides. Some of the DNAzymes can transfer a small glutaryl group to an amino group. These results expand the scope of DNAzyme catalysis and suggest the future broader applicability of DNAzymes for sequence-selective lysine acylation of peptide and protein substrates.
Collapse
Affiliation(s)
- Tianjiong Yao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
17
|
Rosenbach H, Victor J, Etzkorn M, Steger G, Riesner D, Span I. Molecular Features and Metal Ions That Influence 10-23 DNAzyme Activity. Molecules 2020; 25:E3100. [PMID: 32646019 PMCID: PMC7412337 DOI: 10.3390/molecules25133100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Deoxyribozymes (DNAzymes) with RNA hydrolysis activity have a tremendous potential as gene suppression agents for therapeutic applications. The most extensively studied representative is the 10-23 DNAzyme consisting of a catalytic loop and two substrate binding arms that can be designed to bind and cleave the RNA sequence of interest. The RNA substrate is cleaved between central purine and pyrimidine nucleotides. The activity of this DNAzyme in vitro is considerably higher than in vivo, which was suggested to be related to its divalent cation dependency. Understanding the mechanism of DNAzyme catalysis is hindered by the absence of structural information. Numerous biological studies, however, provide comprehensive insights into the role of particular deoxynucleotides and functional groups in DNAzymes. Here we provide an overview of the thermodynamic properties, the impact of nucleobase modifications within the catalytic loop, and the role of different metal ions in catalysis. We point out features that will be helpful in developing novel strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. Consideration of these features will enable to develop improved strategies for structure determination and to understand the mechanism of the 10-23 DNAzyme. These insights provide the basis for improving activity in cells and pave the way for developing DNAzyme applications.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Detlev Riesner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (H.R.); (J.V.); (M.E.); (G.S.); (D.R.)
| |
Collapse
|
18
|
Ma L, Liu J. Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020; 23:100815. [PMID: 31954323 PMCID: PMC6962706 DOI: 10.1016/j.isci.2019.100815] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Since the initial discovery of ribozymes in the early 1980s, catalytic nucleic acids have been used in different areas. Compared with protein enzymes, catalytic nucleic acids are programmable in structure, easy to modify, and more stable especially for DNA. We take a historic view to summarize a few main interdisciplinary areas of research on nucleic acid enzymes that may have broader impacts. Early efforts on ribozymes in the 1980s have broken the notion that all enzymes are proteins, supplying new evidence for the RNA world hypothesis. In 1994, the first catalytic DNA (DNAzyme) was reported. Since 2000, the biosensor applications of DNAzymes have emerged and DNAzymes are particularly useful for detecting metal ions, a challenging task for enzymes and antibodies. Combined with nanotechnology, DNAzymes are key building elements for switches allowing dynamic control of materials assembly. The search for new DNAzymes and ribozymes is facilitated by developments in DNA sequencing and computational algorithms, further broadening our fundamental understanding of their biochemistry.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
19
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
20
|
Gao L, Tong X, Ye T, Gao H, Zhang Q, Yan C, Yu Y, Fei Y, Zhou X, Shao Y. G‐Quadruplex‐Based Photooxidase Driven by Visible Light. ChemCatChem 2019. [DOI: 10.1002/cctc.201901481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xingyu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| |
Collapse
|
21
|
Nucleic acid enzymes based on functionalized nucleosides. Curr Opin Chem Biol 2019; 52:93-101. [PMID: 31307007 DOI: 10.1016/j.cbpa.2019.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Nucleic acid-based enzymes have recently joined their proteinaceous counterparts as important biocatalysts. While RNA enzymes (ribozymes) are found in nature, deoxyribozymes or DNAzymes are man-made entities. Numerous ribozymes and DNAzymes have been identified by Darwinian selection methods to catalyze a broad array of chemical transformations. Despite these important advances, practical applications involving nucleic acid enzymes are often plagued by relatively poor pharmacokinetic properties and cellular uptake, rapid degradation by nucleases and/or by the limited chemical arsenal carried by natural DNA and RNA. In this review, the two main chemical approaches for the modification of nucleic acid-based catalysts, particularly DNAzymes, are described. These methods aim at improving the functional properties of nucleic acid enzymes by mitigating some of these shortcomings. In this context, recent developments in the post-SELEX processing of existing nucleic acid catalysts as well as efforts for the selection of DNAzymes and ribozymes with modified nucleoside triphosphates are summarized.
Collapse
|
22
|
Feng M, Gu C, Sun Y, Zhang S, Tong A, Xiang Y. Enhancing Catalytic Activity of Uranyl-Dependent DNAzyme by Flexible Linker Insertion for More Sensitive Detection of Uranyl Ion. Anal Chem 2019; 91:6608-6615. [PMID: 31016961 DOI: 10.1021/acs.analchem.9b00490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The uranyl-dependent DNAzyme 39E cleaves its nucleic acid substrate in the presence of uranyl ion (UO22+). It has been widely utilized in many sensor designs for selective and sensitive detection of UO22+ in the environment and inside live cells. In this work, by inserting a flexible linker (C3 Spacer) into one critical site (A20) of the 39E catalytic core, we successfully enhanced the original catalytic activity of 39E up to 8.1-fold at low UO22+ concentrations. Applying such a modified DNAzyme (39E-A20-C3) in a label-free fluorescent sensor for UO22+ detection achieved more than 1 order of magnitude sensitivity enhancement over using native 39E, with the UO22+ detection limit improved from 2.6 nM (0.63 ppb) to 0.19 nM (0.047 ppb), while the high selectivity to UO22+ over other metal ions was fully preserved. The method was also successfully applied for the detection of UO22+-spiked environmental water samples to demonstrate its practical usefulness.
Collapse
Affiliation(s)
- Mengli Feng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Chunmei Gu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yanping Sun
- School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Shuyuan Zhang
- School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
23
|
Sun M, Xu L, Qu A, Zhao P, Hao T, Ma W, Hao C, Wen X, Colombari FM, de Moura AF, Kotov NA, Xu C, Kuang H. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat Chem 2018; 10:821-830. [DOI: 10.1038/s41557-018-0083-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
|
24
|
Poudyal R, Cakmak FP, Keating CD, Bevilacqua PC. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry. Biochemistry 2018; 57:2509-2519. [PMID: 29560725 PMCID: PMC7276092 DOI: 10.1021/acs.biochem.8b00081] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective focuses on RNA in biological and nonbiological compartments resulting from liquid-liquid phase separation (LLPS), with an emphasis on origins of life. In extant cells, intracellular liquid condensates, many of which are rich in RNAs and intrinsically disordered proteins, provide spatial regulation of biomolecular interactions that can result in altered gene expression. Given the diversity of biogenic and abiogenic molecules that undergo LLPS, such membraneless compartments may have also played key roles in prebiotic chemistries relevant to the origins of life. The RNA World hypothesis posits that RNA may have served as both a genetic information carrier and a catalyst during the origin of life. Because of its polyanionic backbone, RNA can undergo LLPS by complex coacervation in the presence of polycations. Phase separation could provide a mechanism for concentrating monomers for RNA synthesis and selectively partition longer RNAs with enzymatic functions, thus driving prebiotic evolution. We introduce several types of LLPS that could lead to compartmentalization and discuss potential roles in template-mediated non-enzymatic polymerization of RNA and other related biomolecules, functions of ribozymes and aptamers, and benefits or penalties imparted by liquid demixing. We conclude that tiny liquid droplets may have concentrated precious biomolecules and acted as bioreactors in the RNA World.
Collapse
Affiliation(s)
- Raghav Poudyal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Fatma Pir Cakmak
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christine D. Keating
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
25
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
26
|
Hesser AR, Brandsen BM, Walsh SM, Wang P, Silverman SK. DNA-catalyzed glycosylation using aryl glycoside donors. Chem Commun (Camb) 2016; 52:9259-62. [PMID: 27355482 DOI: 10.1039/c6cc04329a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the identification by in vitro selection of Zn(2+)/Mn(2+)-dependent deoxyribozymes that glycosylate the 3'-OH of a DNA oligonucleotide. Both β and α anomers of aryl glycosides can be used as the glycosyl donors. Individual deoxyribozymes are each specific for a particular donor anomer.
Collapse
Affiliation(s)
- Anthony R Hesser
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
| | | | | | | | | |
Collapse
|
27
|
Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes. Trends Biochem Sci 2016; 41:595-609. [PMID: 27236301 DOI: 10.1016/j.tibs.2016.04.010] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/23/2022]
Abstract
The discovery of natural RNA enzymes (ribozymes) prompted the pursuit of artificial DNA enzymes (deoxyribozymes) by in vitro selection methods. A key motivation is the conceptual and practical advantages of DNA relative to proteins and RNA. Early studies focused on RNA-cleaving deoxyribozymes, and more recent experiments have expanded the breadth of catalytic DNA to many other reactions. Including modified nucleotides has the potential to widen the scope of DNA enzymes even further. Practical applications of deoxyribozymes include their use as sensors for metal ions and small molecules. Structural studies of deoxyribozymes are only now beginning; mechanistic experiments will surely follow. Following the first report 21 years ago, the field of deoxyribozymes has promise for both fundamental and applied advances in chemistry, biology, and other disciplines.
Collapse
|
28
|
Hwang K, Hosseinzadeh P, Lu Y. Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes. Inorganica Chim Acta 2016; 452:12-24. [PMID: 27695134 DOI: 10.1016/j.ica.2016.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review summarizes research into the metal-binding properties of catalytic DNAzymes, towards the goal of understanding the structural properties leading to metal ion specificity. Progress made and insight gained from a range of biochemical and biophysical techniques are covered, and promising directions for future investigations are discussed.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
29
|
Zhou C, Avins JL, Klauser PC, Brandsen BM, Lee Y, Silverman SK. DNA-Catalyzed Amide Hydrolysis. J Am Chem Soc 2016; 138:2106-9. [PMID: 26854515 DOI: 10.1021/jacs.5b12647] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Joshua L Avins
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul C Klauser
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Benjamin M Brandsen
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yujeong Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Räz MH, Hollenstein M. Probing the effect of minor groove interactions on the catalytic efficiency of DNAzymes 8-17 and 10-23. MOLECULAR BIOSYSTEMS 2016; 11:1454-61. [PMID: 25854917 DOI: 10.1039/c5mb00102a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNAzymes (Dz) 8-17 and 10-23 are two widely studied and well-characterized RNA-cleaving DNA catalysts. In an effort to further improve the understanding of the fragile interactions and dynamics of the enzymatic mechanism, this study examines the catalytic efficiency of minimally modified DNAzymes. Five single mutants of Dz8-17 and Dz10-23 were prepared by replacing the adenine residues in the corresponding catalytic cores with 3-deazaadenine units. Kinetic assays were used to assess the effect on the catalytic activity and thereby identify the importance of hydrogen bonding that arises from the N3 atoms. The results suggest that modifications at A15 and A15.0 of Dz8-17 have a significant influence and show a reduction in catalytic activity. Modification at each location in Dz10-23 results in a decrease of the observed rate constants, with A12 appearing to be the most affected with a reduction of ∼80% of kobs and ∼25% of the maximal cleavage rate compared to the wild-type DNAzyme. On the other hand, modification of A12 in Dz8-17 showed an ∼130% increase in kobs, thus unraveling a new potential site for the introduction of chemical modifications. A pH-profile analysis showed that the chemical cleavage step is rate-determining, regardless of the presence and/or location of the mutation. These findings point towards the importance of the N3-nitrogens of certain adenine nucleotides located within the catalytic cores of the DNAzymes for efficient catalytic activity and further suggest that they might directly partake in maintaining the appropriate tertiary structure. Therefore, it appears that minor groove interactions constitute an important feature of DNAzymes as well as ribozymes.
Collapse
Affiliation(s)
- Michael H Räz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | | |
Collapse
|
31
|
Crystal structure of a DNA catalyst. Nature 2016; 529:231-4. [PMID: 26735012 DOI: 10.1038/nature16471] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/20/2015] [Indexed: 01/13/2023]
Abstract
Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.
Collapse
|
32
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
33
|
Kang SK, Chen BX, Tian T, Jia XS, Chu XY, Liu R, Dong PF, Yang QY, Zhang HY. ATP selection in a random peptide library consisting of prebiotic amino acids. Biochem Biophys Res Commun 2015; 466:400-5. [PMID: 26365351 DOI: 10.1016/j.bbrc.2015.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/02/2023]
Abstract
Based upon many theoretical findings on protein evolution, we proposed a ligand-selection model for the origin of proteins, in which the most ancient proteins originated from ATP selection in a pool of random peptides. To test this ligand-selection model, we constructed a random peptide library consisting of 15 types of prebiotic amino acids and then used cDNA display to perform six rounds of in vitro selection with ATP. By means of next-generation sequencing, the most prevalent sequence was defined. Biochemical and biophysical characterization of the selected peptide showed that it was stable and foldable and had ATP-hydrolysis activity as well.
Collapse
Affiliation(s)
- Shou-Kai Kang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Bai-Xue Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Tian Tian
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi-Shuai Jia
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xin-Yi Chu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Rong Liu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Peng-Fei Dong
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qing-Yong Yang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hong-Yu Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
34
|
Abstract
Catalysis is a fundamental chemical concept, and many kinds of catalysts have considerable practical value. Developing entirely new catalysts is an exciting challenge. Rational design and screening have provided many new small-molecule catalysts, and directed evolution has been used to optimize or redefine the function of many protein enzymes. However, these approaches have inherent limitations that prompt the pursuit of different kinds of catalysts using other experimental methods. Nature evolved RNA enzymes, or ribozymes, for key catalytic roles that in modern biology are limited to phosphodiester cleavage/ligation and amide bond formation. Artificial DNA enzymes, or deoxyribozymes, have great promise for a broad range of catalytic activities. They can be identified from unbiased (random) sequence populations as long as the appropriate in vitro selection strategies can be implemented for their identification. Notably, in vitro selection is different in key conceptual and practical ways from rational design, screening, and directed evolution. This Account describes the development by in vitro selection of DNA catalysts for many different kinds of covalent modification reactions of peptide and protein substrates, inspired in part by our earlier work with DNA-catalyzed RNA ligation reactions. In one set of studies, we have sought DNA-catalyzed peptide backbone cleavage, with the long-term goal of artificial DNA-based proteases. We originally anticipated that amide hydrolysis should be readily achieved, but in vitro selection instead surprisingly led to deoxyribozymes for DNA phosphodiester hydrolysis; this was unexpected because uncatalyzed amide bond hydrolysis is 10(5)-fold faster. After developing a suitable selection approach that actively avoids DNA hydrolysis, we were able to identify deoxyribozymes for hydrolysis of esters and aromatic amides (anilides). Aliphatic amide cleavage remains an ongoing focus, including via inclusion of chemically modified DNA nucleotides in the catalyst, which we have recently found to enable this cleavage reaction. In numerous other efforts, we have investigated DNA-catalyzed peptide side chain modification reactions. Key successes include nucleopeptide formation (attachment of oligonucleotides to peptide side chains) and phosphatase and kinase activities (removal and attachment of phosphoryl groups to side chains). Through all of these efforts, we have learned the importance of careful selection design, including the frequent need to develop specific "capture" reactions that enable the selection process to provide only those DNA sequences that have the desired catalytic functions. We have established strategies for identifying deoxyribozymes that accept discrete peptide and protein substrates, and we have obtained data to inform the key choice of random region length at the outset of selection experiments. Finally, we have demonstrated the viability of modular deoxyribozymes that include a small-molecule-binding aptamer domain, although the value of such modularity is found to be minimal, with implications for many selection endeavors. Advances such as those summarized in this Account reveal that DNA has considerable catalytic abilities for biochemically relevant reactions, specifically including covalent protein modifications. Moreover, DNA has substantially different, and in many ways better, characteristics than do small molecules or proteins for a catalyst that is obtained "from scratch" without demanding any existing information on catalyst structure or mechanism. Therefore, prospects are very strong for continued development and eventual practical applications of deoxyribozymes for peptide and protein modification.
Collapse
Affiliation(s)
- Scott K. Silverman
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Tram K, Xia J, Gysbers R, Li Y. An Efficient Catalytic DNA that Cleaves L-RNA. PLoS One 2015; 10:e0126402. [PMID: 25946137 PMCID: PMC4422682 DOI: 10.1371/journal.pone.0126402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022] Open
Abstract
Many DNAzymes have been isolated from synthetic DNA pools to cleave natural RNA (D-RNA) substrates and some have been utilized for the design of aptazyme biosensors for bioanalytical applications. Even though these biosensors perform well in simple sample matrices, they do not function effectively in complex biological samples due to ubiquitous RNases that can efficiently cleave D-RNA substrates. To overcome this issue, we set out to develop DNAzymes that cleave L-RNA, the enantiomer of D-RNA, which is known to be completely resistant to RNases. Through in vitro selection we isolated three L-RNA-cleaving DNAzymes from a random-sequence DNA pool. The most active DNAzyme exhibits a catalytic rate constant ~3 min-1 and has a structure that contains a kissing loop, a structural motif that has never been observed with D-RNA-cleaving DNAzymes. Furthermore we have used this DNAzyme and a well-known ATP-binding DNA aptamer to construct an aptazyme sensor and demonstrated that this biosensor can achieve ATP detection in biological samples that contain RNases. The current work lays the foundation for exploring RNA-cleaving DNAzymes for engineering biosensors that are compatible with complex biological samples.
Collapse
Affiliation(s)
- Kha Tram
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jiaji Xia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rachel Gysbers
- Department of Biochemistry and Biomedical Sciences and Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, and Origins Institute, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
36
|
Chu CC, Wong OY, Silverman SK. A generalizable DNA-catalyzed approach to peptide-nucleic acid conjugation. Chembiochem 2014; 15:1905-10. [PMID: 25056930 DOI: 10.1002/cbic.201402255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 01/11/2023]
Abstract
We report DNA catalysts (deoxyribozymes) that join tyrosine-containing peptides to RNA and DNA in one step and without requiring protecting groups on either the peptide or the nucleic acid. Our previous efforts towards this goal required tethering the peptide to a DNA anchor oligonucleotide. Here, we established direct in vitro selection for deoxyribozymes that use untethered, free peptide substrates. This approach enables imposition of selection pressure via reduced peptide concentration and leads to preparatively useful lower apparent Km values of ∼100 μM peptide. Use of phosphorimidazolide (Imp) rather than triphosphate as the electrophile enables reactivity of either terminus (5' or 3') of both RNA and DNA. Our findings establish a generalizable means of joining unprotected peptide to nucleic acid in one step by using DNA catalysts identified by in vitro selection.
Collapse
Affiliation(s)
- Chih-Chi Chu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA)
| | | | | |
Collapse
|
37
|
Brandsen BM, Velez TE, Sachdeva A, Ibrahim NA, Silverman SK. DNA-catalyzed lysine side chain modification. Angew Chem Int Ed Engl 2014; 53:9045-50. [PMID: 24981820 DOI: 10.1002/anie.201404622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 02/03/2023]
Abstract
Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys-modified proteins. We previously reported the DNA-catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5'-phosphorimidazolide (5'-Imp) rather than 5'-triphosphate (5'-ppp) enables the DNA-catalyzed modification of Lys in a DNA-anchored peptide substrate. The DNA-catalyzed reaction of Lys with 5'-Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5'-ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.
Collapse
Affiliation(s)
- Benjamin M Brandsen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (USA) http://www.scs.illinois.edu/silverman/
| | | | | | | | | |
Collapse
|
38
|
Brandsen BM, Velez TE, Sachdeva A, Ibrahim NA, Silverman SK. DNA-Catalyzed Lysine Side Chain Modification. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology. Appl Microbiol Biotechnol 2014; 98:3389-99. [DOI: 10.1007/s00253-014-5528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
|
40
|
Xu W, Xing H, Lu Y. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate. Analyst 2013; 138:6266-9. [PMID: 24005082 PMCID: PMC3813883 DOI: 10.1039/c3an01182h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.
Collapse
Affiliation(s)
- Weichen Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
41
|
Brandsen BM, Hesser AR, Castner MA, Chandra M, Silverman SK. DNA-catalyzed hydrolysis of esters and aromatic amides. J Am Chem Soc 2013; 135:16014-7. [PMID: 24127695 DOI: 10.1021/ja4077233] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We previously reported that DNA catalysts (deoxyribozymes) can hydrolyze DNA phosphodiester linkages, but DNA-catalyzed amide bond hydrolysis has been elusive. Here we used in vitro selection to identify DNA catalysts that hydrolyze ester linkages as well as DNA catalysts that hydrolyze aromatic amides, for which the leaving group is an aniline moiety. The aromatic amide-hydrolyzing deoxyribozymes were examined using linear free energy relationship analysis. The hydrolysis reaction is unaffected by substituents on the aromatic ring (ρ ≈ 0), suggesting general acid-catalyzed elimination as the likely rate-determining step of the addition-elimination hydrolysis mechanism. These findings establish that DNA has the catalytic ability to achieve hydrolysis of esters and aromatic amides as carbonyl-based substrates, and they suggest a mechanism-based approach to achieve DNA-catalyzed aliphatic amide hydrolysis.
Collapse
Affiliation(s)
- Benjamin M Brandsen
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
42
|
Cernak P, Sen D. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate. Nat Chem 2013; 5:971-7. [PMID: 24153377 DOI: 10.1038/nchem.1777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 09/05/2013] [Indexed: 11/09/2022]
Abstract
Vitamins are hypothesized to be relics of an RNA world, and were probably participants in RNA-mediated primordial metabolism. If catalytic RNAs, or ribozymes, could harness vitamin cofactors to aid their function in a manner similar to protein enzymes, it would enable them to catalyse a much larger set of chemical reactions. The cofactor thiamin diphosphate, a derivative of vitamin B1 (thiamin), is used by enzymes to catalyse difficult metabolic reactions, including decarboxylation of stable α-keto acids such as pyruvate. Here, we report a ribozyme that uses free thiamin to decarboxylate a pyruvate-based suicide substrate (LnkPB). Thiamin conjugated to biotin was used to isolate catalytic individuals from a pool of random-sequence RNAs attached to LnkPB. Analysis of a stable guanosine adduct obtained via digestion of an RNA sequence (clone dc4) showed the expected decarboxylation product. The discovery of a prototypic thiamin-utilizing ribozyme has implications for the role of RNA in orchestrating early metabolic cycles.
Collapse
Affiliation(s)
- Paul Cernak
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
43
|
Walsh SM, Sachdeva A, Silverman SK. DNA catalysts with tyrosine kinase activity. J Am Chem Soc 2013; 135:14928-31. [PMID: 24066831 DOI: 10.1021/ja407586u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We show that DNA catalysts (deoxyribozymes, DNA enzymes) can phosphorylate tyrosine residues of peptides. Using in vitro selection, we identified deoxyribozymes that transfer the γ-phosphoryl group from a 5'-triphosphorylated donor (a pppRNA oligonucleotide or GTP) to the tyrosine hydroxyl acceptor of a tethered hexapeptide. Tyrosine kinase deoxyribozymes that use pppRNA were identified from each of N30, N40, and N50 random-sequence pools. Each deoxyribozyme requires Zn(2+), and most additionally require Mn(2+). The deoxyribozymes have little or no selectivity for the amino acid identities near the tyrosine, but they are highly selective for phosphorylating tyrosine rather than serine. Analogous GTP-dependent DNA catalysts were identified and found to have apparent Km(GTP) as low as ∼20 μM. These findings establish that DNA has the fundamental catalytic ability to phosphorylate the tyrosine side chain of a peptide substrate.
Collapse
Affiliation(s)
- Shannon M Walsh
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | |
Collapse
|