1
|
Kha M, Magnusson Y, Johansson I, Altiparmak G, Lundgren J, Nyström J, Ebefors K, Swärd K, Johansson ME. Injured Proximal Tubular Epithelial Cells Lose Hepatocyte Nuclear Factor 4α Expression Crucial for Brush Border Formation and Transport. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:845-860. [PMID: 39954965 DOI: 10.1016/j.ajpath.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/30/2024] [Accepted: 01/10/2025] [Indexed: 02/17/2025]
Abstract
Recent studies have demonstrated that the transcription factor hepatocyte nuclear factor 4α (HNF4A) drives epithelial differentiation in the renal proximal tubules (PTs) and is critical for maintaining a mature PT phenotype. Furthermore, HNF4A down-regulation has been observed following kidney injury in mouse models. The aim of the present work was to investigate the role of HNF4A during acute and chronic human kidney disease and the loss of the mature PT phenotype in cultured PT cells. Loss of HNF4A expression and gain of vimentin expression were reciprocal and gradual during both acute and chronic kidney disease, as indicated by immunohistochemistry. Healthy human kidneys demonstrated partial or total loss of HNF4A expression in vimentin-positive scattered tubular cells. Primary cell isolation and subculture of PT cells recapitulated HNF4A-associated loss of the PT phenotype. Re-expression of HNF4A in cultured PT cells by adenoviral transduction increased transcripts related to brush border formation as well as absorptive and transport processes, as shown by RNA sequencing and gene set enrichment analyses. Thus, the reduction of HNF4A and increase of vimentin expression were connected to both acute and chronic kidney disease and represented a stereotypic injury response of the PT, resulting in dedifferentiation. HNF4A re-expression in cultured primary PT cells could provide a more reliable and predictive in vitro model to study PT function and injury.
Collapse
Affiliation(s)
- Michelle Kha
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ylva Magnusson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Iva Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gülay Altiparmak
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jaana Lundgren
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Ren Z, Shao F, Chen S, Sun Y, Ding Z, Dong L, Zhang J, Zang Y. Contribution of alterations in peritubular capillary density and microcirculation to the progression of tubular injury and kidney fibrosis. J Pathol 2025; 266:95-108. [PMID: 40103536 DOI: 10.1002/path.6414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
Peritubular capillary (PTC) rarefaction is a common pathological feature of chronic kidney disease (CKD). The critical function of PTCs in maintaining blood supply for tubular epithelial cells renders PTCs a promising therapeutic target. However, the role of PTC rarefaction in the progression of kidney fibrosis remains elusive. In this study, we first characterized mice with altered PTC density. CD31 staining, together with microvascular network perfusion with FITC-labelled albumin and laser speckle contrast imaging, revealed a significant increase in PTC density in Flt1 heterozygous-deficient mice, whereas homozygous disruption of the plasminogen activator, urokinase receptor gene (Plaur/uPAR), led to a notable decrease in PTC density. Using these genetically distinct mice, we showed that preexisting higher PTC density protected against tubular injury and attenuated the progression of tubulointerstitial fibrosis in two distinct kidney injury models, namely, ischemia-reperfusion injury (IRI) and unilateral ureteral obstruction (UUO). By contrast, Plaur-deficient mice with established lower PTC density displayed exacerbated tubular injury and renal fibrosis when subjected to IRI or UUO. The pathophysiological significance of PTC density was associated with protective effects on tubular cell apoptosis and concomitant regeneration. Finally, vasodilation of the renal capillary with minoxidil, a clinically available drug, effectively prevented UUO-induced tubular injury and renal fibrosis. Moreover, minoxidil treatment abolished the detrimental effect of Plaur deficiency on the UUO-treated kidney, thus suggesting a causative role of PTC density in the susceptibility of Plaur knockout mice to tubular injury following fibrosis. Our results provide an overview of the pathologic significance of PTC density alterations in the progression of CKD, and show that improving peritubular microcirculation is effective in preventing tubular injury and the subsequent renal fibrosis. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Shuli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| |
Collapse
|
3
|
Bui AP, Pham TTM, Kim M, Park JH, Kim JI, Seo JH, Jung J, Kim JY, Ha E. GLDC alleviates cisplatin-induced apoptosis, cellular senescence, and production of reactive oxygen species via regulating UCP1 in the kidney. Life Sci 2025; 368:123502. [PMID: 40010632 DOI: 10.1016/j.lfs.2025.123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
AIMS Glycine decarboxylase (GLDC) is a mitochondrial enzyme that mediates the degradation of glycine as part of the glycine cleavage system. Although GLDC expression in the kidney is second highest next to the liver, very little is known as to the role of GLDC in the kidney. Thus, this study aimed to elucidate the role of GLDC in the kidney. MATERIALS AND METHODS HK-2 renal proximal tubular cells with GLDC overexpression and knockdown were established to investigate function of GLDC in cells treated with cisplatin (CP). For in vivo experiments, C57BL/6J mice were used in a CP-induced AKI model, with and without treatment with (aminooxy)acetic acid (AOAA), a GLDC inhibitor. KEY FINDINGS We found that GLDC overexpression attenuated CP-induced apoptosis, cellular senescence and production of reactive oxygen species (ROS) in HK2 cells, while GLDC knockdown aggravated these effects. Moreover, GLDC overexpression stimulated proliferation of HK-2 cells, while GLDC knockdown attenuated cell growth. Mechanistically, we found that effects of GLDC are mediated via modulating mitochondrial uncoupling protein 1 (UCP1). GLDC overexpression increased UCP1, while GLDC knockdown decreased UCP1. Knockdown of UCP1 reversed GLDC-mediated attenuation of CP-induced cellular senescence and ROS production. Treatment of AOAA into acute kidney injury (AKI)-induced mice aggravated AKI injury, increasing biomarkers, fibrosis and senescence associated-β-galactosidase staining. SIGNIFICANCE GLDC protects CP-induced apoptosis, cellular senescence, and ROS production in proximal tubular cells via a UCP-mediated pathway and lays a scientific foundation that could support a therapeutic strategy that targets GLDC for the treatment of cisplatin-induced AKI.
Collapse
Affiliation(s)
- Anh Phuc Bui
- Department of Biochemistry, School of Medicine, Keimyung University, Republic of Korea
| | - Thi Tuyet Mai Pham
- Department of Biochemistry, School of Medicine, Keimyung University, Republic of Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Republic of Korea
| | - Jae-Hyung Park
- Department of Physiology, School of Medicine, Keimyung University, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, School of Medicine, Keimyung University, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Republic of Korea
| | - Jeeyeon Jung
- Clinical Research Division, Korea Institute of Oriental Medicine, Republic of Korea.
| | - Jin Young Kim
- Division of Haematology and Oncology, Department of Internal Medicine, School of Medicine, Keimyung University, Republic of Korea.
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Republic of Korea.
| |
Collapse
|
4
|
Nakata T, Kirita Y, Umehara M, Nakamura M, Sawai S, Minamida A, Yamauchi-Sawada H, Sunahara Y, Matoba Y, Okuno-Ozeki N, Nakamura I, Nakai K, Yagi-Tomita A, Yamashita N, Tamagaki K, Humphreys BD, Matoba S, Kusaba T. Injured tubular epithelia-derived CCN1 promotes the mobilization of fibroblasts toward injury sites after kidney injury. iScience 2025; 28:112176. [PMID: 40224016 PMCID: PMC11987671 DOI: 10.1016/j.isci.2025.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Humoral factors that prompt fibroblasts to migrate to an injury site at an appropriate time point are deemed indispensable for repair after kidney injury. We herein demonstrated the pivotal roles of injured tubule-derived cellular communication network factor 1 (CCN1) in the mobilization of fibroblasts to the injury site after kidney injury. Based on analyses of ligand-receptor interactions in vitro and tubular epithelial-specific transcriptomics in vivo, we identified the up-regulation of CCN1 during the early phases of kidney injury. CCN1 promotes fibroblast chemotaxis through focal adhesion kinase-extracellular signal-regulated kinase (ERK) signaling. In vivo analyses utilizing tubular-specific CCN1 knockout (KO) mice demonstrated the sparse accumulation of fibroblasts around injured sites after injury, resulting in ameliorated tissue fibrosis in CCN1-KO mice. These results reveal an epithelial-fibroblast CCN1 signaling axis that mobilizes fibroblasts to injured tubule early after acute injury but that promotes interstitial fibrosis at late time points.
Collapse
Affiliation(s)
- Tomohiro Nakata
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuhei Kirita
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Minato Umehara
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masashi Nakamura
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinji Sawai
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Minamida
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Yamauchi-Sawada
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuto Sunahara
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yayoi Matoba
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Natsuko Okuno-Ozeki
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Itaru Nakamura
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kunihiro Nakai
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Yagi-Tomita
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Yamashita
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Tamagaki
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Benjamin D. Humphreys
- Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Li J, Chen LT, Wang YL, Kang MX, Liang ST, Hong XZ, Hou FF, Zhang FJ. Inhibition of HIF-prolyl hydroxylase promotes renal tubule regeneration via the reprogramming of renal proximal tubular cells. Acta Pharmacol Sin 2025; 46:1002-1015. [PMID: 39775504 PMCID: PMC11950656 DOI: 10.1038/s41401-024-01445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
The ability of the mammalian kidney to repair or regenerate after acute kidney injury (AKI) is very limited. The maladaptive repair of AKI promotes progression to chronic kidney disease (CKD). Therefore, new strategies to promote the repair/regeneration of injured renal tubules after AKI are urgently needed. Hypoxia has been shown to induce heart regeneration in adult mice. However, it is unknown whether hypoxia can induce kidney regeneration after AKI. In this study, we used a prolyl hydroxylase domain inhibitor (PHDI), MK-8617, to mimic hypoxic conditions and found that MK-8617 significantly ameliorated ischemia reperfusion injury (IRI)-induced AKI. We also showed that MK-8617 dramatically facilitated renal tubule regeneration by promoting the proliferation of renal proximal tubular cells (RPTCs) after IRI-induced AKI. We then performed bulk mRNA sequencing and discovered that multiple nephrogenesis-related genes were significantly upregulated with MK-8617 pretreatment. We also showed that MK-8617 may alleviate proximal tubule injury by stabilizing the HIF-1α protein specifically in renal proximal tubular cells. Furthermore, we demonstrated that MK-8617 promotes the reprogramming of renal proximal tubular cells to Sox9+ renal progenitor cells and the regeneration of renal proximal tubules. In summary, we report that the inhibition of prolyl hydroxylase improves renal proximal tubule regeneration after IRI-induced AKI by promoting the reprogramming of renal proximal tubular cells to Sox9+ renal progenitor cells.
Collapse
Affiliation(s)
- Jing Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
- Department of Critical Care Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Li-Ting Chen
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - You-Liang Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Mei-Xia Kang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Shi-Ting Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xi-Zhen Hong
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Fu-Jian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Li P, Dong X, Xu L, Hu X, Meng X, Yang P, Zhang X, Zong WX, Gao S, Zhuang S, Xin H. TRIM21 knockout alleviates renal fibrosis by promoting autophagic degradation of mature TGF-β1. Biochem Pharmacol 2025; 234:116822. [PMID: 39983846 DOI: 10.1016/j.bcp.2025.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/02/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Renal fibrosis is a common feature of chronic kidney disease, in which transforming growth factor-β1 (TGF-β1) plays an important role. Tripartite motif-containing 21 (TRIM21), an E3 ubiquitin ligase, has been studied for its role in acute kidney injury, but its role in renal fibrosis has not been reported. We analyzed public RNA-seq data of unilateral ureteral obstruction (UUO), ischemia-reperfusion injury (I/R), and aristolochic acid (AA)-induced renal fibrosis and found that TRIM21 expression was significantly elevated in fibrotic kidneys, which was verified by Western blot results corresponding to the mouse models. Similarly, TRIM21 expression was significantly elevated and negatively correlated with renal function in human fibrotic kidneys. We showed that TRIM21 knockout alleviated renal fibrosis in UUO mice. In vitro, TRIM21 knockout reduced TGF-β1-induced expression of mature TGF-β1 in HK-2 cells and primary renal tubular cells (PTECs), and this process was reversed by the autophagy inhibitor bafilomycin A1 (Baf-A1). Specifically, TRIM21 promoted K63-linked ubiquitination of p62, inhibited its oligomerization and thus its aggregation and segregation functions, and suppressed autophagic degradation of TGF-β1. Meanwhile, in the UUO mouse model, TRIM21 knockout promoted autophagy levels, and reduced the protein levels of mature TGF-β1 and the phosphorylation levels of SMAD2/3. In conclusion, our study demonstrates that TRIM21 knockdown alleviates renal fibrosis by promoting autophagic degradation of mature TGF-β1 and provides an insight into TRIM21 as a potential therapeutic target for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Peng Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinyi Dong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lijun Xu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiangyu Meng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 201203, China
| | - Peng Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 201203, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 201203, China.
| | - Shaoyong Zhuang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
7
|
Chung E, Nosrati F, Adam M, Potter A, Sayed M, Ahn C, Humphreys BD, Lim HW, Hu YC, Potter SS, Park JS. Proximal tubule cells contribute to the thin descending limb of the loop of Henle during mouse kidney development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633065. [PMID: 39868227 PMCID: PMC11761803 DOI: 10.1101/2025.01.14.633065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background The thin descending limb of the loop of Henle is crucial for urine concentration, as it facilitates passive water reabsorption. Despite its importance, little is known about how this nephron segment forms during kidney development. Methods We assembled a large single-cell RNA sequencing (scRNA-seq) dataset by integrating multiple datasets of non-mutant developing mouse kidneys to identify developing thin descending limb cells. To test whether those cells originate from proximal tubule cells, we generated a proximal tubule-specific Cre line, Slc34a1eGFPCre, and conducted lineage tracing. Additionally, given that the transcription factor Hnf4a directly binds to the Aqp1 gene, we examined whether the loss of Hnf4a affects Aqp1 expression in thin descending limb cells. Results From our scRNA-seq dataset, we identified a small cluster of cells distinct from both the proximal tubule and the thick ascending limb of the loop of Henle. Those cells exhibited high expression of thin descending limb marker genes, including Aqp1 and Bst1. Notably, a subset of proximal tubule cells also expressed thin descending limb marker genes, suggesting that proximal tubule cells may give rise to thin descending limb cells. Using lineage tracing with the Slc34a1eGFPCre line, we found that, at least, a subset of thin descending limb cells are descendants of proximal tubule cells. Furthermore, the loss of Hnf4a, a transcription factor essential for mature proximal tubule cell formation, disrupted proper Aqp1 expression in thin descending limb cells, providing additional evidence of a developmental link between proximal tubule cells and thin descending limb cells. Conclusion Our findings shed new light on the developmental origin of thin descending limb cells and highlight the importance of Hnf4a in regulating their formation.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Fariba Nosrati
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Potter
- Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Mohammed Sayed
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Ahn
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO, USA
- Department of Developmental Biology, Washington University, St. Louis, MO, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - S. Steven Potter
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| |
Collapse
|
8
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
9
|
Manrique-Caballero CL, Barasch J, Zaidi SK, Bates CM, Ray EC, Kleyman TR, Al-Bataineh MM. Expression and distribution of MUC1 in the developing and adult kidney. Am J Physiol Renal Physiol 2025; 328:F107-F120. [PMID: 39588770 PMCID: PMC11918333 DOI: 10.1152/ajprenal.00206.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Mucin 1 (or MUC1) is a heterodimeric transmembrane glycoprotein expressed on the apical surface of polarized epithelial cells in several tissues including the kidney. Recent studies have revealed several novel roles of MUC1 in the kidney, potentially including bacterial infection, mineral balance, and genetic interstitial kidney disease, even though MUC1 levels are reduced not only in the kidney but also in all tissues due to MUC1 mutations. A careful localization of MUC1 in discrete segments of the nephron is the first step in understanding the multiple functional roles of MUC1 in the kidney. Most published reports of MUC1 expression to date have been largely confined to cultured cells, tumor tissues, and selective nephron segments of experimental rodents, and very few studies have been performed using human kidney tissues. Given the rising attention to the role of MUC1 in differing components of renal physiology, we carefully examined the kidney distribution of MUC1 in both human and mouse kidney sections using well-defined markers for different nephron segments or cell types. We further extended our investigation to include sections of early stages of mouse kidney development and upon injury in humans. We included staining for MUC1 in urothelial cells, the highly specialized epithelial cells lining the renal pelvis and bladder. These data implicate a role for MUC1 in antimicrobial defense. Our study provides the groundwork to test the physiological relevance of MUC1 in the urinary tract.NEW & NOTEWORTHY MUC1 is a transmembrane glycoprotein expressed on the apical surface of polarized epithelial tissues and most carcinomas. MUC1 may play novel roles in the kidney including defense against infections. Here, we examine the expression of MUC1 in mouse and human kidneys. We show that the distal nephron and the urinary system are the predominant sites of expression of both message and protein, implicating segment-specific roles including distal nephron defense against ascending bacteria.
Collapse
Affiliation(s)
- Carlos L Manrique-Caballero
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Syed K Zaidi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carlton M Bates
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Evan C Ray
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Mohammad M Al-Bataineh
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Ward HH, Anquetil F, Das V, Gibson CB, Dovmark TH, Kusmartseva I, Yang M, Beery M, Atkinson MA, Zeng X, Alpers CE, Wesley JD, Karihaloo A. Network for Pancreatic Organ donors with Diabetes-Kidney: A Heterogenous Donor Cohort for the Investigation of Diabetic Kidney Disease Pathogenesis and Progression. KIDNEY360 2025; 6:15-26. [PMID: 39499578 PMCID: PMC11793189 DOI: 10.34067/kid.0000000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024]
Abstract
Key Points Lack of human kidney tissue availability and access has hindered molecular understanding of human diabetic kidney disease processes and disease heterogeneity. Preclinical validation of diabetic kidney disease targets using data from large, human kidney samples should reduce poor translatability to clinical trials. The Network for Pancreatic Organ donors with Diabetes-Kidney cohort is validated and available for use by the research community. Background The Network for Pancreatic Organ Donors with Diabetes-Kidney (nPOD-K) project was initiated to assess the feasibility of using kidneys from organ donors to enhance understanding of diabetic kidney disease (DKD) progression. Methods Traditional and digital pathology approaches were used to characterize the nPOD-K cohort. Periodic acid–Schiff- and hematoxylin and eosin-stained sections were used to manually examine and score each nPOD-K case. Brightfield and fluorescently labeled whole slide images of nPOD-K sections were used to train, validate, and test deep learning compartment segmentation and machine learning image analysis tools within Visiopharm software. These digital pathology tools were subsequently used to evaluate kidney cell-specific markers and pathological indicators. Results Digital quantitation of mesangial expansion, tubular atrophy, kidney injury molecule-1 expression, cellular infiltration, and fibrosis index aligned with histological DKD classification, as defined by pathologists' review. Histological quantification confirmed loss of podocyte, endothelial, and tubular markers, correlating with DKD progression. Altered expression patterns of prominin-1, protein-tyrosine phosphatase receptor type O, and coronin 2B were validated, in agreement with reported literature. Conclusions The nPOD-K cohort provides a unique open resource opportunity to not only validate putative drug targets, but also better understand DKD pathophysiology. A broad range of pathogenesis can be visualized in each case, providing a simulated timeline of DKD progression. We conclude that organ donor-derived tissues serve as high-quality samples, provide a comprehensive view of tissue pathology, and address the need for human kidney tissues available for research.
Collapse
Affiliation(s)
- Heather Hilary Ward
- Immunobiology, Global Drug Discovery, Novo Nordisk, Lexington, Massachusetts
| | - Florence Anquetil
- Type 1 Diabetes and Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Vivek Das
- Systems Biology and Target Discovery, Digital Science and Innovation, Novo Nordisk A/S, Måløv, Denmark
| | - Claire Blanche Gibson
- Type 1 Diabetes and Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Tobias Højgaard Dovmark
- Computational Precision Health DK, Digital Science and Innovation, Novo Nordisk A/S, Måløv, Denmark
| | - Irina Kusmartseva
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida
| | - Mingder Yang
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida
| | - Maria Beery
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida
| | - Mark Alvin Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida
| | - Xu Zeng
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida
| | - Charles Edward Alpers
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Johnna Dane Wesley
- Type 1 Diabetes and Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| | - Anil Karihaloo
- Type 1 Diabetes and Kidney Disease, Global Drug Discovery, Novo Nordisk Research Center Seattle, Inc., Seattle, Washington
| |
Collapse
|
11
|
Janosevic D, De Luca T, Eadon MT. The Kidney Precision Medicine Project and Single-Cell Biology of the Injured Proximal Tubule. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:7-22. [PMID: 39332674 PMCID: PMC11686451 DOI: 10.1016/j.ajpath.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has led to major advances in our understanding of proximal tubule subtypes in health and disease. The proximal tubule serves essential functions in overall homeostasis, but pathologic or physiological perturbations can affect its transcriptomic signature and corresponding tasks. These alterations in proximal tubular cells are often described within a scRNA-seq atlas as cell states, which are pathophysiological subclassifications based on molecular and morphologic changes in a cell's response to that injury compared with its native state. This review describes the major cell states defined in the Kidney Precision Medicine Project's scRNA-seq atlas. It then identifies the overlap between the Kidney Precision Medicine Project and other seminal works that may use different nomenclature or cluster proximal tubule cells at different resolutions to define cell state subtypes. The goal is for the reader to understand the key transcriptomic markers of important cellular injury and regeneration processes across this highly dynamic and evolving field.
Collapse
Affiliation(s)
- Danielle Janosevic
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas De Luca
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
12
|
McElliott MC, Telang AC, Ference-Salo JT, Al-Suraimi A, Chowdhury M, Otto EA, Soofi A, Dressler GR, Beamish JA. Pax proteins mediate segment-specific functions in proximal tubule survival and response to ischemic injury. Am J Physiol Renal Physiol 2025; 328:F95-F106. [PMID: 39620904 PMCID: PMC11918291 DOI: 10.1152/ajprenal.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury. However, their function during the response to AKI remains incompletely defined. In this report, we develop a model of ischemic AKI in female mice with mosaic nephrons comprised of both Pax2 and Pax8 mutant and wild-type proximal tubule cells with fixed lineages. Each population therefore experiences identical physiological and injury conditions in the same animal. In these female mice, we show that before injury the S1 and S2 segments of the proximal tubule are depleted of Pax-mutant cells, whereas mutant cells are preserved in the S3 segment. Retained S3 Pax-mutant cells develop a preconditioned phenotype that overlaps with gene expression signatures in AKI. In response to ischemic AKI, which most strongly damages the S3 proximal tubule, injury-resistant mutant S3 cells are more likely to proliferate. Pax-mutant cells then preferentially repopulate the S3 segment of the proximal tubule. Our results indicate that Pax2 and Pax8 are not required for regeneration of the S3 proximal tubule after ischemic AKI. Together, our findings indicate that Pax proteins play a critical role in determining the segment-specific proximal tubule gene expression patterns that dictate vulnerability to ischemic injury.NEW & NOTEWORTHY Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. In this report, we identify a novel and proximal tubule segment-specific role for the Pax family of transcription factors in the differential sensitivity of proximal tubule segments to ischemic AKI. These results may lead to new therapeutic targets for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Anas Al-Suraimi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
13
|
Son SS, Jeong HS, Lee SW, Lee ES, Lee JG, Lee JH, Yi J, Park MJ, Choi MS, Lee D, Choi SY, Ha J, Kang JS, Cho NJ, Park S, Gil HW, Chung CH, Park JS, Kim MH, Park J, Lee EY. EPRS1-mediated fibroblast activation and mitochondrial dysfunction promote kidney fibrosis. Exp Mol Med 2024; 56:2673-2689. [PMID: 39623092 DOI: 10.1038/s12276-024-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024] Open
Abstract
Kidney fibrosis causes irreversible structural damage in chronic kidney disease and is characterized by aberrant extracellular matrix (ECM) accumulation. Although glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is a crucial enzyme involved in proline-rich protein synthesis, its role in kidney fibrosis remains unclear. The present study revealed that EPRS1 expression levels were increased in the fibrotic kidneys of patients and mice, especially in fibroblasts and proximal tubular epithelial cells, on the basis of single-cell analysis and immunostaining of fibrotic kidneys. Moreover, C57BL/6 EPRS1tm1b heterozygous knockout (Eprs1+/-) and pharmacological EPRS1 inhibition with the first-in-class EPRS1 inhibitor DWN12088 protected against kidney fibrosis and dysfunction by preventing fibroblast activation and proximal tubular injury. Interestingly, in vitro assays demonstrated that EPRS1-mediated nontranslational pathways in addition to translational pathways under transforming growth factor β-treated conditions by phosphorylating SMAD family member 3 in fibroblasts and signal transducers and activators of transcription 3 in injured proximal tubules. EPRS1 knockdown and catalytic inhibition suppressed these pathways, preventing fibroblast activation, proliferation, and subsequent collagen production. Additionally, we revealed that EPRS1 caused mitochondrial damage in proximal tubules but that this damage was attenuated by EPRS1 inhibition. Our findings suggest that the EPRS1-mediated ECM accumulation induces kidney fibrosis via fibroblast activation and mitochondrial dysfunction. Therefore, targeting EPRS1 could be a potential therapeutic target for alleviating fibrotic injury in chronic kidney disease.
Collapse
Affiliation(s)
- Seung Seob Son
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hee Seul Jeong
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Seong-Woo Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jeong Geon Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Mi Ju Park
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Min Sun Choi
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Donghyeong Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jiheon Ha
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nam-Jun Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Samel Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Yongin, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Young Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea.
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea.
| |
Collapse
|
14
|
Lee Y, Kim KH, Park J, Kang HM, Kim SH, Jeong H, Lee B, Lee N, Cho Y, Kim GD, Yu S, Gee HY, Bok J, Hamilton MS, Gewin L, Aronow BJ, Lim KM, Coffey RJ, Nam KT. Regenerative Role of Lrig1+ Cells in Kidney Repair. J Am Soc Nephrol 2024; 35:1702-1714. [PMID: 39120954 PMCID: PMC11617485 DOI: 10.1681/asn.0000000000000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 08/11/2024] Open
Abstract
Key Points Lrig1 + cells exist long term during kidney homeostasis and become activated upon injury, contributing to regeneration. Lrig1 + cells and their progeny emerge during tubulogenesis and contribute to proximal tubule and inner medullary collecting duct development. Lrig1 + cells expand and differentiate into a mature nephron lineage in response to AKI to repair the proximal tubule. Background In response to severe kidney injury, the kidney epithelium displays remarkable regenerative capabilities driven by adaptable resident epithelial cells. To date, it has been widely considered that the adult kidney lacks multipotent stem cells; thus, the cellular lineages responsible for repairing proximal tubule damage are incompletely understood. Leucine-rich repeats and immunoglobulin-like domain protein 1–expressing cells (Lrig1 + cells) have been identified as a long-lived cell in various tissues that can induce epithelial tissue repair. Therefore, we hypothesized that Lrig1 + cells participate in kidney development and tissue regeneration. Methods We investigated the role of Lrig1 + cells in kidney injury using mouse models. The localization of Lrig1 + cells in the kidney was examined throughout mouse development. The function of Lrig1 + progeny cells in AKI repair was examined in vivo using a tamoxifen-inducible Lrig1 -specific Cre recombinase-based lineage tracing in three different kidney injury mouse models. In addition, we conducted single-cell RNA sequencing to characterize the transcriptional signature of Lrig1 + cells and trace their progeny. Results Lrig1 + cells were present during kidney development and contributed to formation of the proximal tubule and collecting duct structures in mature mouse kidneys. In three-dimensional culture, single Lrig1 + cells demonstrated long-lasting propagation and differentiated into the proximal tubule and collecting duct lineages. These Lrig1 + proximal tubule cells highly expressed progenitor-like and quiescence-related genes, giving rise to a novel cluster of cells with regenerative potential in adult kidneys. Moreover, these long-lived Lrig1 + cells expanded and repaired damaged proximal tubule in response to three types of AKIs in mice. Conclusions These findings highlight the critical role of Lrig1 + cells in kidney regeneration.
Collapse
Affiliation(s)
- Yura Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H. Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hyun Mi Kang
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Buhyun Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Nakyum Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seyoung Yu
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Maxwell S. Hamilton
- Epithelial Biology Center and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Leslie Gewin
- Division of Nephrology and Hypertension, Department of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Bruce J. Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Robert J. Coffey
- Epithelial Biology Center and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Feola K, Venable AH, Broomfield T, Llamas CB, Mishra P, Huen SC. Cell-specific oxidative metabolism of the renal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.622516. [PMID: 39651228 PMCID: PMC11623503 DOI: 10.1101/2024.11.24.622516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The metabolic health of the kidney is a primary determinant of the risk of progressive kidney disease. Our understanding of the metabolic processes that fuel kidney functions is limited by the kidney's structural and functional heterogeneity. As the kidney contains many different cell types, we hypothesize that intra-renal mitochondrial heterogeneity contributes to cell-specific metabolism. To interrogate this, we utilized a recently developed mitochondrial tagging technique to isolate kidney cell-type specific mitochondria. Here, we investigate mitochondrial functional capacities and the metabolomes of the early and late proximal tubule (PT) and the distal convoluted tubule (DCT). The conditional MITO-Tag allele was combined with Slc34a1-CreERT2 , Ggt1-Cre , or Pvalb-Cre alleles to generate mouse models capable of cell-specific isolation of hemagglutinin (HA)-tagged mitochondria from the early PT, late PT, or the DCT, respectively. Functional assays measuring mitochondrial respiratory and fatty acid oxidation (FAO) capacities and metabolomics were performed on anti-HA immunoprecipitated mitochondria from kidneys of ad libitum fed and 24-hour fasted male mice. The renal MITO-Tag models targeting the early PT, late PT, and DCT revealed differential mitochondrial respiratory and FAO capacities which dynamically changed during fasting conditions. Changes with mitochondrial metabolomes induced by fasting suggest that the late PT significantly increases FAO during fasting. The renal MITO-Tag model captured differential mitochondrial metabolism and functional capacities across the early PT, late PT, and DCT at baseline and in response to fasting. Translational Statement While the renal cortex is often considered a single metabolic compartment, we discovered significant diversity of mitochondrial metabolomes and functional capacities across the proximal tubule and the distal convoluted tubule. As mitochondrial dysfunction is a major biochemical pathway related to kidney disease progression, understanding the differences in mitochondrial metabolism across distinct kidney cell populations is thus critical in the development of effective and targeted therapeutic therapies for acute and chronic kidney disease.
Collapse
|
16
|
Lu Q, Ding J, Li L, Chang Y. Graph contrastive learning of subcellular-resolution spatial transcriptomics improves cell type annotation and reveals critical molecular pathways. Brief Bioinform 2024; 26:bbaf020. [PMID: 39883515 PMCID: PMC11781232 DOI: 10.1093/bib/bbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type. However, current cell type annotation approaches of iST primarily utilize gene expression information while neglecting the spatial distribution of RNAs within cells. In this work, we introduce a semi-supervised graph contrastive learning method called Focus, the first method, to the best of our knowledge, that explicitly models RNA's subcellular distribution and community to improve cell type annotation. Focus demonstrates significant improvements over state-of-the-art algorithms across a range of spatial transcriptomics platforms, achieving improvements up to 27.8% in terms of accuracy and 51.9% in terms of F1-score for cell type annotation. Furthermore, Focus enjoys the advantages of intricate cell type-specific subcellular spatial gene patterns and providing interpretable subcellular gene analysis, such as defining the gene importance score. Importantly, with the importance score, Focus identifies genes harboring strong relevance to cell type-specific pathways, indicating its potential in uncovering novel regulatory programs across numerous biological systems.
Collapse
Affiliation(s)
- Qiaolin Lu
- School of Artificial Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China
| | - Jiayuan Ding
- Department of Computer Science and Engineering, Michigan State University, 220 Trowbridge Rd, East Lansing, MI 48824, United States
| | - Lingxiao Li
- Department, Boston University, Commonwealth Ave, Boston, MA 02215, United States
| | - Yi Chang
- School of Artificial Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China
- International Center of Future Science, Jilin University, Qianjin Street 2699, 130010 Changchun, China
- Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China
| |
Collapse
|
17
|
Jones AC, Palygin O, Ilatovskaya DV. Commentary: the perspectives of harnessing the power of scattered tubular-like cells for renal repair. Clin Sci (Lond) 2024; 138:1371-1375. [PMID: 39469928 PMCID: PMC12077570 DOI: 10.1042/cs20241405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
The commentary discusses the regenerative capacity of the kidneys; recent studies reveal that renal cells can regenerate when exposed to certain conditions. A major focus is on scattered tubular-like cells (STCs), which can dedifferentiate and acquire progenitor-like properties in response to injury. These cells exhibit a glycolytic metabolism, making them resilient to hypoxic conditions and capable of repairing damaged renal tissues. Despite their potential, STCs are difficult to isolate and exist in small numbers. Here we highlight the need for more research into STC function, metabolic profiles, mechanisms limiting STC injury repair capacity, and methods of their pharmacological activation. Understanding these mechanisms could lead to novel therapies for kidney diseases.
Collapse
Affiliation(s)
- Adam C. Jones
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
18
|
Lyu P, Yadav MK, Yoo KW, Jiang C, Li Q, Atala A, Lu B. Gene therapy of Dent disease type 1 in newborn ClC-5 null mice for sustained transgene expression and gene therapy effects. Gene Ther 2024; 31:563-571. [PMID: 39322766 DOI: 10.1038/s41434-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.
Collapse
Affiliation(s)
- Pin Lyu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Manish Kumar Yadav
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kyung Whan Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cuili Jiang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Qingqi Li
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
19
|
Convento MB, de Oliveira AS, Boim MA, Borges FT. Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles as Natural Nanocarriers in the Treatment of Nephrotoxic Injury In Vitro. Cells 2024; 13:1658. [PMID: 39404421 PMCID: PMC11475496 DOI: 10.3390/cells13191658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-EVs) are valuable in nanomedicine as natural nanocarriers, carrying information molecules from their parent cells and fusing with targeted cells. miRNA-126, specific to endothelial cells and derived from these vesicles, supports vascular integrity and angiogenesis and has protective effects in kidney diseases. OBJECTIVE This study investigates the delivery of miRNA-126 and anti-miRNA-126 via UC-EVs as natural nanocarriers for treating nephrotoxic injury in vitro. METHOD The umbilical cord-derived mesenchymal stem cell and UC-EVs were characterized according to specific guidelines. Rat kidney proximal tubular epithelial cells (tubular cells) were exposed to nephrotoxic injury through of gentamicin and simultaneously treated with UC-EVs carrying miRNA-126 or anti-miRNA-126. Specific molecules that manage cell cycle progression, proliferation cell assays, and newly synthesized DNA and DNA damage markers were evaluated. RESULTS We observed significant increases in the expression of cell cycle markers, including PCNA, p53, and p21, indicating a positive cell cycle regulation with newly synthesized DNA via BrDU. The treatments reduced the expression of DNA damage marker, such as H2Ax, suggesting a lower rate of cellular damage. CONCLUSIONS The UC-EVs, acting as natural nanocarriers of miRNA-126 and anti-miRNA-126, offer nephroprotective effects in vitro. Additionally, other components in UC-EVs, such as proteins, lipids, and various RNAs, might also contribute to these effects.
Collapse
Affiliation(s)
- Márcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
| | - Andreia Silva de Oliveira
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
| | - Mirian Aparecida Boim
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo 04038-901, Brazil; (A.S.d.O.) (M.A.B.); (F.T.B.)
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| |
Collapse
|
20
|
Park K, Gao WW, Zheng J, Oh KT, Kim IY, You S. Hydrogel-Mediated Local Delivery of Induced Nephron Progenitor Cell-Sourced Molecules as a Cell-Free Approach for Acute Kidney Injury. Int J Mol Sci 2024; 25:10615. [PMID: 39408943 PMCID: PMC11477367 DOI: 10.3390/ijms251910615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a severe condition characterized by a sudden decrease in kidney function. Utilizing lineage-restricted stem/progenitor cells, directly reprogrammed from somatic cells, is a promising therapeutic option in personalized medicine for serious and incurable diseases such as AKI. The present study describes the therapeutic potential of induced nephron progenitor cell-sourced molecules (iNPC-SMs) as a cell-free strategy against cisplatin (CP)-induced nephrotoxicity, employing hyaluronic acid (HA) hydrogel-mediated local delivery to minimize systemic leakage and degradation. iNPC-SMs exhibited anti-apoptotic effects on HK-2 cells by inhibiting CP-induced ROS generation. Additionally, the localized biodistribution facilitated by hydrogel-mediated iNPC-SM delivery contributed to enhanced renal function, anti-inflammatory response, and renal regeneration in AKI mice. This study could serve as a 'proof of concept' for injectable hydrogel-mediated iNPC-SM delivery in AKI and as a model for further exploration of the development of cell-free regenerative medicine strategies.
Collapse
Affiliation(s)
- Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Wei-Wei Gao
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Kyung Taek Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Liu T, Yuan J, Dai C, Chen MX, Fan J, Humphreys BD, Fulton DJR, Kleven DT, Fan X, Dong Z, Chen JK. Pik3c3 expression profiling in the mouse kidney and its role in proximal tubule cell physiology. Am J Physiol Cell Physiol 2024; 327:C1094-C1110. [PMID: 39250817 PMCID: PMC11481994 DOI: 10.1152/ajpcell.00564.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types. Notably, renal interstitial cells exhibit minimal Pik3c3 expression. Further, coimmunofluorescence staining, utilizing nephron segment- or cell type-specific markers, revealed nearly undetectable levels of Pik3c3 expression in glomerular mesangial cells and endothelial cells. Intriguingly, although podocytes exhibit the highest Pik3c3 expression levels among all kidney cell types, the renal proximal tubule cells (RPTCs) express the highest level of Pik3c3 among all renal tubules. RPTCs are known to express the highest level of the epidermal growth factor receptor (EGFR) in adult kidneys; however, the role of Pik3c3 in EGFR signaling within RPTCs remains unexplored. Therefore, we conducted additional cell culture studies. The results demonstrated that Pik3c3 inhibition significantly delayed EGF-stimulated EGFR degradation and the termination of EGFR signaling in RPTCs. Mechanistically, Pik3c3 inhibition surprisingly did not affect the initial endocytosis process but instead impeded the lysosomal degradation of EGFR. In summary, this study defines, for the first time, the expression profile of Pik3c3 in the mouse kidney and also highlights a pivotal role of Pik3c3 in the proximal tubule cells. These findings shed light on the intricate mechanisms underlying Pik3c3-mediated regulation of EGFR signaling, providing valuable insights into the role of Pik3c3 in renal cell physiology. NEW & NOTEWORTHY This is the first report defining the class 3 phosphatidylinositol 3-kinase (Pik3c3) expression profile in the kidney. Pik3c3 is nearly absent in renal interstitial cells, glomerular mesangial cells, and endothelial cells. Remarkably, glomerular podocytes express the highest Pik3c3 level in the kidney. However, the proximal tubule exhibits the highest expression level among all renal tubules. This study also unveils the pivotal role of Pik3c3 in regulating EGFR degradation and signaling termination in RPTCs, furthering our understanding of Pik3c3 in renal cell physiology.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Jialing Yuan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Caihong Dai
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Mystie X Chen
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Jerry Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Lakeside High School, Evans, Georgia, United States
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Daniel T Kleven
- Athens Regional Pathology, Piedmont Athens Regional Hospital, Athens, Georgia, United States
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
22
|
Qin X, Tape CJ. Functional analysis of cell plasticity using single-cell technologies. Trends Cell Biol 2024; 34:854-864. [PMID: 38355348 DOI: 10.1016/j.tcb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metazoan organisms are heterocellular systems composed of hundreds of different cell types, which arise from an isogenic genome through differentiation. Cellular 'plasticity' further enables cells to alter their fate in response to exogenous cues and is involved in a variety of processes, such as wound healing, infection, and cancer. Recent advances in cellular model systems, high-dimensional single-cell technologies, and lineage tracing have sparked a renaissance in plasticity research. Here, we discuss the definition of cell plasticity, evaluate state-of-the-art model systems and techniques to study cell-fate dynamics, and explore the application of single-cell technologies to obtain functional insights into cell plasticity in healthy and diseased tissues. The integration of advanced biomimetic model systems, single-cell technologies, and high-throughput perturbation studies is enabling a new era of research into non-genetic plasticity in metazoan systems.
Collapse
Affiliation(s)
- Xiao Qin
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Oxford, OX3 9DS, UK.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
23
|
Polonsky M, Gerhardt LMS, Yun J, Koppitch K, Colón KL, Amrhein H, Wold B, Zheng S, Yuan GC, Thomson M, Cai L, McMahon AP. Spatial transcriptomics defines injury specific microenvironments and cellular interactions in kidney regeneration and disease. Nat Commun 2024; 15:7010. [PMID: 39237549 PMCID: PMC11377535 DOI: 10.1038/s41467-024-51186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Kidney injury disrupts the intricate renal architecture and triggers limited regeneration, together with injury-invoked inflammation and fibrosis. Deciphering the molecular pathways and cellular interactions driving these processes is challenging due to the complex tissue structure. Here, we apply single cell spatial transcriptomics to examine ischemia-reperfusion injury in the mouse kidney. Spatial transcriptomics reveals injury-specific and spatially-dependent gene expression patterns in distinct cellular microenvironments within the kidney and predicts Clcf1-Crfl1 in a molecular interplay between persistently injured proximal tubule cells and their neighboring fibroblasts. Immune cell types play a critical role in organ repair. Spatial analysis identifies cellular microenvironments resembling early tertiary lymphoid structures and associated molecular pathways. Collectively, this study supports a focus on molecular interactions in cellular microenvironments to enhance understanding of injury, repair and disease.
Collapse
Affiliation(s)
- Michal Polonsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Louisa M S Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Katsuya Lex Colón
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Henry Amrhein
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Barbara Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
24
|
Li ZL, Li XY, Zhou Y, Wang B, Lv LL, Liu BC. Renal tubular epithelial cells response to injury in acute kidney injury. EBioMedicine 2024; 107:105294. [PMID: 39178744 PMCID: PMC11388183 DOI: 10.1016/j.ebiom.2024.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin-Yan Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
26
|
Chen A, Zhang J, Yan Z, Lu Y, Chen W, Sun Y, Gu Q, Li F, Yang Y, Qiu S, Lin X, Zhang D, Teng J, Fang Y, Shen B, Song N, Ding X. Acidic preconditioning induced intracellular acid adaptation to protect renal injury via dynamic phosphorylation of focal adhesion kinase-dependent activation of sodium hydrogen exchanger 1. Cell Commun Signal 2024; 22:393. [PMID: 39118129 PMCID: PMC11308338 DOI: 10.1186/s12964-024-01773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.
Collapse
Affiliation(s)
- Annan Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yingxue Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Qiuyu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Fang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yan Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Shanfang Qiu
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xueping Lin
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Dong Zhang
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Fudan Zhangjiang Institute, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
27
|
Kazeminia S, Eirin A. Role of mitochondria in endogenous renal repair. Clin Sci (Lond) 2024; 138:963-973. [PMID: 39076039 PMCID: PMC11410300 DOI: 10.1042/cs20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| |
Collapse
|
28
|
Beamish JA, Watts JA, Dressler GR. Gene regulation in regeneration after acute kidney injury. J Biol Chem 2024; 300:107520. [PMID: 38950862 PMCID: PMC11325799 DOI: 10.1016/j.jbc.2024.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Acute kidney injury (AKI) is a common condition associated with significant morbidity, mortality, and cost. Injured kidney tissue can regenerate after many forms of AKI. However, there are no treatments in routine clinical practice to encourage recovery. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that orchestrate kidney recovery. The advent of high-throughput sequencing technologies and genetic mouse models has opened an unprecedented window into the transcriptional dynamics that accompany both successful and maladaptive repair. AKI recovery shares similar cell-state transformations with kidney development, which can suggest common mechanisms of gene regulation. Several powerful bioinformatic strategies have been developed to infer the activity of gene regulatory networks by combining multiple forms of sequencing data at single-cell resolution. These studies highlight not only shared stress responses but also key changes in gene regulatory networks controlling metabolism. Furthermore, chromatin immunoprecipitation studies in injured kidneys have revealed dynamic epigenetic modifications at enhancer elements near target genes. This review will highlight how these studies have enhanced our understanding of gene regulation in injury response and regeneration.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
29
|
Kira S, Namba T, Hiraishi M, Nakamura T, Otani Y, Kon Y, Ichii O. Species-specific histological characterizations of renal tubules and collecting ducts in the kidneys of cats and dogs. PLoS One 2024; 19:e0306479. [PMID: 38959226 PMCID: PMC11221681 DOI: 10.1371/journal.pone.0306479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
The histomorphological features of normal kidneys in cats and dogs have been revealed despite the high susceptibility of cats to tubulointerstitial damage. Herein, the histological characteristics of the two species were compared. Cytoplasmic lipid droplets (LDs) were abundant in the proximal convoluted tubules (PCTs) of cats aged 23-27 months but scarce in dogs aged 24-27 months. LDs were rarely observed in the distal tubules (DTs) and collecting ducts (CDs) of either species, as visualized by the expression of Tamm-Horsfall protein 1, calbindin-D28K, and aquaporin 2. The occupational area ratio of proximal tubules (PTs) in the renal cortex was higher, but that of DTs or CDs was significantly lower in adult cats than in dogs. Single PT epithelial cells were larger, but PCT, DT, and CD lumens were significantly narrower in adult cats than in dogs. Unlike adults, young cats at 6 months exhibited significantly abundant cytoplasmic LDs in proximal straight tubules, indicating lipid metabolism-related development. Histochemistry of the 21 lectins also revealed variations in glycosylation across different renal tubules and CDs in both species. Sodium-glucose cotransporter 2 was expressed only in PTs, excluding the proximal straight tubules with few LDs in adult cats or the PCTs of young cats and adult dogs. These findings are crucial for understanding species-specific characteristics of renal histomorphology and pathogenesis.
Collapse
Affiliation(s)
- Shunnosuke Kira
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaya Hiraishi
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Teppei Nakamura
- Laboratory of Laboratory Animal Science and Medicine, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
30
|
Zuo X, Winkler B, Lerner K, Ilatovskaya DV, Zamaro AS, Dang Y, Su Y, Deng P, Fitzgibbon W, Hartman J, Park KM, Lipschutz JH. Cilia-deficient renal tubule cells are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. Am J Physiol Renal Physiol 2024; 327:F61-F76. [PMID: 38721661 PMCID: PMC11390130 DOI: 10.1152/ajprenal.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The exocyst and Ift88 are necessary for primary ciliogenesis. Overexpression of Exoc5 (OE), a central exocyst component, resulted in longer cilia and enhanced injury recovery. Mitochondria are involved in acute kidney injury (AKI). To investigate cilia and mitochondria, basal respiration and mitochondrial maximal and spare respiratory capacity were measured in Exoc5 OE, Exoc5 knockdown (KD), Exoc5 ciliary targeting sequence mutant (CTS-mut), control Madin-Darby canine kidney (MDCK), Ift88 knockout (KO), and Ift88 rescue cells. In Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells, these parameters were decreased. In Exoc5 OE and Ift88 rescue cells they were increased. Reactive oxygen species were higher in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells compared with Exoc5 OE, control, and Ift88 rescue cells. By electron microscopy, mitochondria appeared abnormal in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells. A metabolomics screen of control, Exoc5 KD, Exoc5 CTS-mut, Exoc5 OE, Ift88 KO, and Ift88 rescue cells showed a marked increase in tryptophan levels in Exoc5 CTS-mut (113-fold) and Exoc5 KD (58-fold) compared with control cells. A 21% increase was seen in Ift88 KO compared with rescue cells. In Exoc5 OE compared with control cells, tryptophan was decreased 59%. To determine the effects of ciliary loss on AKI, we generated proximal tubule-specific Exoc5 and Ift88 KO mice. These mice had loss of primary cilia, decreased mitochondrial ATP synthase, and increased tryptophan in proximal tubules with greater injury following ischemia-reperfusion. These data indicate that cilia-deficient renal tubule cells are primed for injury with mitochondrial defects in tryptophan metabolism.NEW & NOTEWORTHY Mitochondria are centrally involved in acute kidney injury (AKI). Here, we show that cilia-deficient renal tubule cells both in vitro in cell culture and in vivo in mice are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. These data suggest therapeutic strategies such as enhancing ciliogenesis or improving mitochondrial function to protect patients at risk for AKI.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Brennan Winkler
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kasey Lerner
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Aleksandra S Zamaro
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yanhui Su
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Peifeng Deng
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wayne Fitzgibbon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jessica Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Medicine, Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina, United States
| |
Collapse
|
31
|
Xiao X, Wang W, Guo C, Wu J, Zhang S, Shi H, Kwon S, Chen J, Dong Z. Hypermethylation leads to the loss of HOXA5, resulting in JAG1 expression and NOTCH signaling contributing to kidney fibrosis. Kidney Int 2024; 106:98-114. [PMID: 38521405 DOI: 10.1016/j.kint.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Epigenetic regulations, including DNA methylation, are critical to the development and progression of kidney fibrosis, but the underlying mechanisms remain elusive. Here, we show that fibrosis of the mouse kidney was associated with the induction of DNA methyltransferases and increases in global DNA methylation and was alleviated by the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza). Genome-wide analysis demonstrated the hypermethylation of 94 genes in mouse unilateral ureteral obstruction kidneys, which was markedly reduced by 5-Aza. Among these genes, Hoxa5 was hypermethylated at its gene promoter, and this hypermethylation was associated with reduced HOXA5 expression in fibrotic mouse kidneys after ureteral obstruction or unilateral ischemia-reperfusion injury. 5-Aza prevented Hoxa5 hypermethylation, restored HOXA5 expression, and suppressed kidney fibrosis. Downregulation of HOXA5 was verified in human kidney biopsies from patients with chronic kidney disease and correlated with the increased kidney fibrosis and DNA methylation. Kidney fibrosis was aggravated by conditional knockout of Hoxa5 and alleviated by conditional knockin of Hoxa5 in kidney proximal tubules of mice. Mechanistically, we found that HOXA5 repressed Jag1 transcription by directly binding to its gene promoter, resulting in the suppression of JAG1-NOTCH signaling during kidney fibrosis. Thus, our results indicate that loss of HOXA5 via DNA methylation contributes to fibrogenesis in kidney diseases by inducing JAG1 and consequent activation of the NOTCH signaling pathway.
Collapse
MESH Headings
- Animals
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Fibrosis
- DNA Methylation
- Signal Transduction
- Humans
- Mice
- Male
- Ureteral Obstruction/complications
- Ureteral Obstruction/pathology
- Ureteral Obstruction/genetics
- Ureteral Obstruction/metabolism
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Promoter Regions, Genetic
- Kidney/pathology
- Kidney/metabolism
- Mice, Knockout
- Mice, Inbred C57BL
- Disease Models, Animal
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Epigenesis, Genetic
- Kidney Diseases/pathology
- Kidney Diseases/genetics
- Kidney Diseases/metabolism
- Kidney Diseases/etiology
- Transcription Factors
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.
| | - Wei Wang
- Department of Urology, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, and Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jiazhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huidong Shi
- Cancer Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sangho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jiankang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
32
|
Kim B, Zhang S, Huang Y, Ko KP, Jung YS, Jang J, Zou G, Zhang J, Jun S, Kim KB, Park KS, Park JI. CRACD loss induces neuroendocrine cell plasticity of lung adenocarcinoma. Cell Rep 2024; 43:114286. [PMID: 38796854 PMCID: PMC11216895 DOI: 10.1016/j.celrep.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, some lung adenocarcinoma (LUAD) cells transform into neuroendocrine (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD (capping protein inhibiting regulator of actin dynamics), a capping protein inhibitor, is frequently inactivated in cancers. CRACD knockout (KO) is sufficient to de-repress NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE cell plasticity is associated with cell de-differentiation and stemness-related pathway activation. The single-cell transcriptomic analysis of LUAD patient tumors recapitulates that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with impaired actin remodeling. This study reveals the crucial role of CRACD in restricting NE cell plasticity that induces cell de-differentiation of LUAD.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinho Jang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Noonan ML, Muto Y, Yoshimura Y, Leckie-Harre A, Wu H, Kalinichenko VV, Humphreys BD, Chang-Panesso M. Injury-induced Foxm1 expression in the mouse kidney drives epithelial proliferation by a cyclin F-dependent mechanism. JCI Insight 2024; 9:e175416. [PMID: 38916959 PMCID: PMC11383596 DOI: 10.1172/jci.insight.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.
Collapse
Affiliation(s)
- Megan L Noonan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Aidan Leckie-Harre
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Zhang D, Jiang H, Yang X, Zheng S, Li Y, Liu S, Xu X. Traditional Chinese Medicine and renal regeneration: experimental evidence and future perspectives. Chin Med 2024; 19:77. [PMID: 38831435 PMCID: PMC11149241 DOI: 10.1186/s13020-024-00935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Repair of acute kidney injury (AKI) is a typical example of renal regeneration. AKI is characterized by tubular cell death, peritubular capillary (PTC) thinning, and immune system activation. After renal tubule injury, resident renal progenitor cells, or renal tubule dedifferentiation, give rise to renal progenitor cells and repair the damaged renal tubule through proliferation and differentiation. Mesenchymal stem cells (MSCs) also play an important role in renal tubular repair. AKI leads to sparse PTC, affecting the supply of nutrients and oxygen and indirectly aggravating AKI. Therefore, repairing PTC is important for the prognosis of AKI. The activation of the immune system is conducive for the body to clear the necrotic cells and debris generated by AKI; however, if the immune activation is too strong or lengthy, it will cause damage to renal tubule cells or inhibit their repair. Macrophages have been shown to play an important role in the repair of kidney injury. Traditional Chinese medicine (TCM) has unique advantages in the treatment of AKI and a series of studies have been conducted on the topic in recent years. Herein, the role of TCM in promoting the repair of renal injury and its molecular mechanism is discussed from three perspectives: repair of renal tubular epithelial cells, repair of PTC, and regulation of macrophages to provide a reference for the treatment and mechanistic research of AKI.
Collapse
Affiliation(s)
- Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sanxia Zheng
- Pediatric Department, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
35
|
Yoon B, Kim H, Jung SW, Park J. Single-cell lineage tracing approaches to track kidney cell development and maintenance. Kidney Int 2024; 105:1186-1199. [PMID: 38554991 DOI: 10.1016/j.kint.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024]
Abstract
The kidney is a complex organ consisting of various cell types. Previous studies have aimed to elucidate the cellular relationships among these cell types in developing and mature kidneys using Cre-loxP-based lineage tracing. However, this methodology falls short of fully capturing the heterogeneous nature of the kidney, making it less than ideal for comprehensively tracing cellular progression during kidney development and maintenance. Recent technological advancements in single-cell genomics have revolutionized lineage tracing methods. Single-cell lineage tracing enables the simultaneous tracing of multiple cell types within complex tissues and their transcriptomic profiles, thereby allowing the reconstruction of their lineage tree with cell state information. Although single-cell lineage tracing has been successfully applied to investigate cellular hierarchies in various organs and tissues, its application in kidney research is currently lacking. This review comprehensively consolidates the single-cell lineage tracing methods, divided into 4 categories (clustered regularly interspaced short palindromic repeat [CRISPR]/CRISPR-associated protein 9 [Cas9]-based, transposon-based, Polylox-based, and native barcoding methods), and outlines their technical advantages and disadvantages. Furthermore, we propose potential future research topics in kidney research that could benefit from single-cell lineage tracing and suggest suitable technical strategies to apply to these topics.
Collapse
Affiliation(s)
- Baul Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hayoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea.
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
36
|
Bradford STJ, Wu H, Kirita Y, Chen C, Malvin NP, Yoshimura Y, Muto Y, Humphreys BD. TNIK depletion induces inflammation and apoptosis in injured renal proximal tubule epithelial cells. Am J Physiol Renal Physiol 2024; 326:F827-F838. [PMID: 38482555 PMCID: PMC11386974 DOI: 10.1152/ajprenal.00262.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.
Collapse
Affiliation(s)
- Shayna T J Bradford
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yuhei Kirita
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Changfeng Chen
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Nicole P Malvin
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
37
|
Nerger BA, Sinha S, Lee NN, Cheriyan M, Bertsch P, Johnson CP, Mahadevan L, Bonventre JV, Mooney DJ. 3D Hydrogel Encapsulation Regulates Nephrogenesis in Kidney Organoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308325. [PMID: 38180232 PMCID: PMC10994733 DOI: 10.1002/adma.202308325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Stem cell-derived kidney organoids contain nephron segments that recapitulate morphological and functional aspects of the human kidney. However, directed differentiation protocols for kidney organoids are largely conducted using biochemical signals to control differentiation. Here, the hypothesis that mechanical signals regulate nephrogenesis is investigated in 3D culture by encapsulating kidney organoids within viscoelastic alginate hydrogels with varying rates of stress relaxation. Tubular nephron segments are significantly more convoluted in kidney organoids differentiated in encapsulating hydrogels when compared with those in suspension culture. Hydrogel viscoelasticity regulates the spatial distribution of nephron segments within the differentiating kidney organoids. Consistent with these observations, a particle-based computational model predicts that the extent of deformation of the hydrogel-organoid interface regulates the morphology of nephron segments. Elevated extracellular calcium levels in the culture medium, which can be impacted by the hydrogels, decrease the glomerulus-to-tubule ratio of nephron segments. These findings reveal that hydrogel encapsulation regulates nephron patterning and morphology and suggest that the mechanical microenvironment is an important design variable for kidney regenerative medicine.
Collapse
Affiliation(s)
- Bryan A. Nerger
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sumit Sinha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathan N. Lee
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Cheriyan
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Pascal Bertsch
- Radboud University Medical Center, Department of Dentistry – Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Christopher P. Johnson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - L. Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joseph V. Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
38
|
De Chiara L, Lazzeri E, Romagnani P. Polyploid tubular cells: a shortcut to stress adaptation. Kidney Int 2024; 105:709-716. [PMID: 38199322 DOI: 10.1016/j.kint.2023.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024]
Abstract
Tubular epithelial cells (TCs) compose the majority of kidney parenchyma and play fundamental roles in maintaining homeostasis. Like other tissues, mostly immature TC with progenitor capabilities are able to replace TC lost during injury via clonal expansion and differentiation. In contrast, differentiated TC lack this capacity. However, as the kidney is frequently exposed to toxic injuries, evolution positively selected a response program that endows differentiated TC to maintain residual kidney function during kidney injury. Recently, we and others have described polyploidization of differentiated TC, a mechanism to augment the function of remnant TC after injury by rapid hypertrophy. Polyploidy is a condition characterized by >2 complete sets of chromosomes. Polyploid cells often display an increased functional capacity and are generally more resilient to stress as evidenced by being conserved across many plants and eukaryote species from flies to mammals. Here, we discuss the occurrence of TC polyploidy in different contexts and conditions and how this integrates into existing concepts of kidney cell responses to injury. Collectively, we aim at stimulating the acquisition of novel knowledge in the kidney field as well as accelerating the translation of this basic response mechanism to the clinical sphere.
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Florence, Italy.
| |
Collapse
|
39
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
40
|
Buse M, Cheng M, Jankowski V, Lellig M, Sterzer V, Strieder T, Leuchtle K, Martin IV, Seikrit C, Brinkkoettter P, Crispatzu G, Floege J, Boor P, Speer T, Kramann R, Ostendorf T, Moeller MJ, Costa IG, Stamellou E. Lineage tracing reveals transient phenotypic adaptation of tubular cells during acute kidney injury. iScience 2024; 27:109255. [PMID: 38444605 PMCID: PMC10914483 DOI: 10.1016/j.isci.2024.109255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Tubular injury is the hallmark of acute kidney injury (AKI) with a tremendous impact on patients and health-care systems. During injury, any differentiated proximal tubular cell (PT) may transition into a specific injured phenotype, so-called "scattered tubular cell" (STC)-phenotype. To understand the fate of this specific phenotype, we generated transgenic mice allowing inducible, reversible, and irreversible tagging of these cells in a murine AKI model, the unilateral ischemia-reperfusion injury (IRI). For lineage tracing, we analyzed the kidneys using single-cell profiling during disease development at various time points. Labeled cells, which we defined by established endogenous markers, already appeared 8 h after injury and showed a distinct expression set of genes. We show that STCs re-differentiate back into fully differentiated PTs upon the resolution of the injury. In summary, we show the dynamics of the phenotypic transition of PTs during injury, revealing a reversible transcriptional program as an adaptive response during disease.
Collapse
Affiliation(s)
- Marc Buse
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Michaela Lellig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Thiago Strieder
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Katja Leuchtle
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ina V. Martin
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Paul Brinkkoettter
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Giuliano Crispatzu
- Department II of Internal Medicine and Centre for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Timotheus Speer
- Medical Clinic 4, Nephrology, University of Frankfurt und Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Marcus J. Moeller
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
41
|
Zhang Y, Xu L, Guo C, Li X, Tian Y, Liao L, Dong J. High CD133 expression in proximal tubular cells in diabetic kidney disease: good or bad? J Transl Med 2024; 22:159. [PMID: 38365731 PMCID: PMC10870558 DOI: 10.1186/s12967-024-04950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Proximal tubular cells (PTCs) play a critical role in the progression of diabetic kidney disease (DKD). As one of important progenitor markers, CD133 was reported to indicate the regeneration of dedifferentiated PTCs in acute kidney disease. However, its role in chronic DKD is unclear. Therefore, we aimed to investigate the expression patterns and elucidate its functional significance of CD133 in DKD. METHODS Data mining was employed to illustrate the expression and molecular function of CD133 in PTCs in human DKD. Subsequently, rat models representing various stages of DKD progression were established. The expression of CD133 was confirmed in DKD rats, as well as in human PTCs (HK-2 cells) and rat PTCs (NRK-52E cells) exposed to high glucose. The immunofluorescence and flow cytometry techniques were utilized to determine the expression patterns of CD133, utilizing proliferative and injury indicators. After overexpression or knockdown of CD133 in HK-2 cells, the cell proliferation and apoptosis were detected by EdU assay, real-time cell analysis and flow analysis. Additionally, the evaluation of epithelial, progenitor cell, and apoptotic indices was performed through western blot and quantitative RT-PCR analyses. RESULTS The expression of CD133 was notably elevated in both human and rat PTCs in DKD, and this expression increased as DKD progressed. CD133 was found to be co-expressed with CD24, KIM-1, SOX9, and PCNA, suggesting that CD133+ cells were damaged and associated with proliferation. In terms of functionality, the knockdown of CD133 resulted in a significant reduction in proliferation and an increase in apoptosis in HK-2 cells compared to the high glucose stimulus group. Conversely, the overexpression of CD133 significantly mitigated high glucose-induced cell apoptosis, but had no impact on cellular proliferation. Furthermore, the Nephroseq database provided additional evidence to support the correlation between CD133 expression and the progression of DKD. Analysis of single-cell RNA-sequencing data revealed that CD133+ PTCs potentially play a role in the advancement of DKD through multiple mechanisms, including heat damage, cell microtubule stabilization, cell growth inhibition and tumor necrosis factor-mediated signaling pathway. CONCLUSION Our study demonstrates that the upregulation of CD133 is linked to cellular proliferation and protects PTC from apoptosis in DKD and high glucose induced PTC injury. We propose that heightened CD133 expression may facilitate cellular self-protective responses during the initial stages of high glucose exposure. However, its sustained increase is associated with the pathological progression of DKD. In conclusion, CD133 exhibits dual roles in the advancement of DKD, necessitating further investigation.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
| | - Lusi Xu
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
42
|
Gao J, Deng Q, Yu J, Wang C, Wei W. Role of renal tubular epithelial cells and macrophages in cisplatin-induced acute renal injury. Life Sci 2024; 339:122450. [PMID: 38262575 DOI: 10.1016/j.lfs.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden and continuous decline in renal function. The drug cisplatin is commonly used as chemotherapy for solid tumors, and cisplatin-induced acute kidney injury (CI-AKI), which is characterized by acute tubular necrosis and inflammation, frequently occurs in tumor patients. Renal tubular epithelial cells (RTECs) are severely damaged early in this process and play an important role in renal tubular injury and the recruitment of immune cells. Macrophages are the most common infiltrating immune cells in the kidney and have a significant impact on CI-AKI and subsequent repair. This article reviews the latest research progress on the effects of RTECs and macrophages on CI-AKI and their interactions in AKI to provide a direction for identifying therapeutic targets for treating AKI.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Qinxiang Deng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Third Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
43
|
DiKun KM, Tang XH, Fu L, Choi ME, Lu C, Gudas LJ. Retinoic acid receptor α activity in proximal tubules prevents kidney injury and fibrosis. Proc Natl Acad Sci U S A 2024; 121:e2311803121. [PMID: 38330015 PMCID: PMC10873609 DOI: 10.1073/pnas.2311803121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, β, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor β1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.
Collapse
Affiliation(s)
- Krysta M. DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Leiping Fu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Mary E. Choi
- New York Presbyterian Hospital, New York, NY10065
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | | | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
- Department of Urology, New York, NY10065
| |
Collapse
|
44
|
Ledru N, Wilson PC, Muto Y, Yoshimura Y, Wu H, Li D, Asthana A, Tullius SG, Waikar SS, Orlando G, Humphreys BD. Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing. Nat Commun 2024; 15:1291. [PMID: 38347009 PMCID: PMC10861555 DOI: 10.1038/s41467-024-45706-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Renal proximal tubule epithelial cells have considerable intrinsic repair capacity following injury. However, a fraction of injured proximal tubule cells fails to undergo normal repair and assumes a proinflammatory and profibrotic phenotype that may promote fibrosis and chronic kidney disease. The healthy to failed repair change is marked by cell state-specific transcriptomic and epigenomic changes. Single nucleus joint RNA- and ATAC-seq sequencing offers an opportunity to study the gene regulatory networks underpinning these changes in order to identify key regulatory drivers. We develop a regularized regression approach to construct genome-wide parametric gene regulatory networks using multiomic datasets. We generate a single nucleus multiomic dataset from seven adult human kidney samples and apply our method to study drivers of a failed injury response associated with kidney disease. We demonstrate that our approach is a highly effective tool for predicting key cis- and trans-regulatory elements underpinning the healthy to failed repair transition and use it to identify NFAT5 as a driver of the maladaptive proximal tubule state.
Collapse
Affiliation(s)
- Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Parker C Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
45
|
Slaats GG, Chen J, Levtchenko E, Verhaar MC, Arcolino FO. Advances and potential of regenerative medicine in pediatric nephrology. Pediatr Nephrol 2024; 39:383-395. [PMID: 37400705 PMCID: PMC10728238 DOI: 10.1007/s00467-023-06039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 07/05/2023]
Abstract
The endogenous capacity of the kidney to repair is limited, and generation of new nephrons after injury for adequate function recovery remains a need. Discovery of factors that promote the endogenous regenerative capacity of the injured kidney or generation of transplantable kidney tissue represent promising therapeutic strategies. While several encouraging results are obtained after administration of stem or progenitor cells, stem cell secretome, or extracellular vesicles in experimental kidney injury models, very little data exist in the clinical setting to make conclusions about their efficacy. In this review, we provide an overview of the cutting-edge knowledge on kidney regeneration, including pre-clinical methodologies used to elucidate regenerative pathways and describe the perspectives of regenerative medicine for kidney patients.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Junyu Chen
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Beamish JA, Telang AC, McElliott MC, Al-Suraimi A, Chowdhury M, Ference-Salo JT, Otto EA, Menon R, Soofi A, Weinberg JM, Patel SR, Dressler GR. Pax protein depletion in proximal tubules triggers conserved mechanisms of resistance to acute ischemic kidney injury preventing transition to chronic kidney disease. Kidney Int 2024; 105:312-327. [PMID: 37977366 PMCID: PMC10958455 DOI: 10.1016/j.kint.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anas Al-Suraimi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanjeevkumar R Patel
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
47
|
Wilson PC, Verma A, Yoshimura Y, Muto Y, Li H, Malvin NP, Dixon EE, Humphreys BD. Mosaic loss of Y chromosome is associated with aging and epithelial injury in chronic kidney disease. Genome Biol 2024; 25:36. [PMID: 38287344 PMCID: PMC10823641 DOI: 10.1186/s13059-024-03173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mosaic loss of Y chromosome (LOY) is the most common chromosomal alteration in aging men. Here, we use single-cell RNA and ATAC sequencing to show that LOY is present in the kidney and increases with age and chronic kidney disease. RESULTS The likelihood of a cell having LOY varies depending on its location in the nephron. Cortical epithelial cell types have a greater proportion of LOY than medullary or glomerular cell types, which may reflect their proliferative history. Proximal tubule cells are the most abundant cell type in the cortex and are susceptible to hypoxic injury. A subset of these cells acquires a pro-inflammatory transcription and chromatin accessibility profile associated with expression of HAVCR1, VCAM1, and PROM1. These injured epithelial cells have the greatest proportion of LOY and their presence predicts future kidney function decline. Moreover, proximal tubule cells with LOY are more likely to harbor additional large chromosomal gains and express pro-survival pathways. Spatial transcriptomics localizes injured proximal tubule cells to a pro-fibrotic microenvironment where they adopt a secretory phenotype and likely communicate with infiltrating immune cells. CONCLUSIONS We hypothesize that LOY is an indicator of increased DNA damage and potential marker of cellular senescence that can be applied to single-cell datasets in other tissues.
Collapse
Affiliation(s)
- Parker C Wilson
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Amit Verma
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole P Malvin
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Eryn E Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
48
|
Hussein S, Hasan MM, Saeed AA, Tolba AM, Sameh R, Abdelghany EMA. Effect of human umbilical cord blood-mesenchymal stem cells on cisplatin-induced nephrotoxicity in rats. Mol Biol Rep 2024; 51:234. [PMID: 38282086 DOI: 10.1007/s11033-023-08958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Cisplatin-containing regimen is an effective treatment for several malignancies. However, cisplatin is an important cause of nephrotoxicity. So, many trials were performed to transplant stem cells systemically or locally to control cisplatin-induced nephrotoxicity. Stem cell therapeutic effect may be dependent on the regulation of inflammation and oxidant stress. AIM To investigate the effect of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) on the histological structure, the oxidant stress, and the inflammatory gene expression in an experimental model of cisplatin-induced nephrotoxicity in rats. METHOD The rats were divided into 6 equal groups (each of 10 rats): Group I included normal rats that received no treatment. Group II included healthy rats that received IV hUCB-MSCs. Group III included untreated cisplatin-induced nephrotoxic rats. Group IV included cisplatin-induced nephrotoxic rats that received magnesium (Mg) injections after injury. Group V was injected with hUCB-MSCs after injury. Group VI received both Mg and hUCB-MSCs after injury. In tissue homogenates, reduced glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) activities were measured. Quantitative real-time-polymerase chain reaction (qRT-PCR) was performed to assess iNOS, TLR4, and NF-kB gene expression. Hematoxylin and eosin (H&E) staining was performed to study the histological structure of the kidney. Immunohistochemical staining of iNOS and NF-κB was performed, as well. RESULTS Disturbed kidney functions, oxidative status, and histological structure were seen in the rats that received cisplatin. Treated groups showed improvements in kidney functions, oxidative status, and histological structure, particularly in the combined treatment group. CONCLUSION In the cisplatin-induced nephrotoxicity model, hUCB-MSCs could improve the functional and morphological kidney structure by modulation of oxidative and inflammatory status.
Collapse
Affiliation(s)
- Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Mai M Hasan
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Saeed
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa M Tolba
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Reham Sameh
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M A Abdelghany
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
49
|
Yousef Yengej FA, Pou Casellas C, Ammerlaan CME, Olde Hanhof CJA, Dilmen E, Beumer J, Begthel H, Meeder EMG, Hoenderop JG, Rookmaaker MB, Verhaar MC, Clevers H. Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease. Cell Rep 2024; 43:113614. [PMID: 38159278 DOI: 10.1016/j.celrep.2023.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.
Collapse
Affiliation(s)
- Fjodor A Yousef Yengej
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carla Pou Casellas
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Charlotte J A Olde Hanhof
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Emre Dilmen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Joep Beumer
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands; Institute of Human Biology, Roche Pharma Research and Early Development, 4058 Basel, Switzerland
| | - Harry Begthel
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands
| | - Elise M G Meeder
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute-KNAW, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
50
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Chung E, Park JS, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. Sci Rep 2024; 14:439. [PMID: 38172172 PMCID: PMC10764314 DOI: 10.1038/s41598-023-50195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Mike Adam
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | - Diana M Lindquist
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - S Steven Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|