1
|
Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Ganesh MR, Mahesh A, Dhayalan A, Pasupuleti M, Arockiaraj J. Pellino-1 derived cationic antimicrobial prawn peptide: Bactericidal activity, toxicity and mode of action. Mol Immunol 2016; 78:171-182. [PMID: 27648859 DOI: 10.1016/j.molimm.2016.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
The antimicrobial peptides (AMPs) are multifunctional molecules which represent significant roles in the innate immune system. These molecules have been well known for decades because of their role as natural antibiotics in both invertebrates and vertebrates. The development of multiple drug resistance against conventional antibiotics brought a greater focus on AMPs in recent years. The cationic peptides, in particular, proven as host defense peptides and are considered as effectors of innate immunity. Among the various innate immune molecules, functions of pellino-1 (Peli-1) have been recently studied for its remarkable role in specific immune functions. In our study, we have identified Peli-1 from the cDNA library of freshwater prawn Macrobrachium rosenbergii (Mr) and analyzed its features using various in-silico methods. Real time PCR analysis showed an induced expression of MrPeli-1 during white spot syndrome virus (WSSV), bacteria (Vibrio harveyi) and lipopolysaccharide (LPS) from Escherichia coli challenge. Also, a cationic AMP named MrDN was derived from MrPeli-1 protein sequence and its activity was confirmed against various pathogenic bacteria. The mode of action of MrDN was determined to be its membrane permeabilization ability against Bacillus cereus ATCC 2106 as well as its DNA binding ability. Further, scanning electron microscopic (SEM) images showed the membrane disruption and leakage of cellular components of B. cereus cells induced by MrDN. The toxicity of MrDN against normal cells (HEK293 cells) was demonstrated by MTT and hemolysis assays. Overall, the results demonstrated the innate immune function of MrPeli-1 with a potential cationic AMP in prawn.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Vasil’yeva NA, Murzina GB, Pivovarov AS. Habituation-Like Decrease of Acetylcholine-Induced Inward Current in Helix Command Neurons: Role of Microtubule Motor Proteins. Cell Mol Neurobiol 2015; 35:703-12. [PMID: 25687906 PMCID: PMC11486294 DOI: 10.1007/s10571-015-0165-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
The role of kinesin and dynein microtubule-associated molecular motors in the cellular mechanism of depression of acetylcholine-induced inward chloride current (ACh-current) was examined in command neurons of land snails (Helix lucorum) in response to repeated applications of ACh to neuronal soma. This pharmacological stimulation imitated the protocol of tactile stimulation evoking behavioural habituation of the defensive reaction. In this system, a dynein inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine, 50 µM) decreased the ACh-current depression rate. Kinesin Eg5 inhibitors (Eg5 inhibitor III, 10 µM and Eg5 inhibitor V, trans-24, 15 µM) reduced the degree of current depression, and Eg5 inhibitor V also reduced the initial rate of depression. The results of electrophysiological experiments in combination with mathematical modelling provided evidence of the participation of dyneins and kinesin Eg5 proteins in the radial transport of acetylcholine receptors in command neurons of H. lucorum in the cellular analogue of habituation. Furthermore, these results suggest that the reciprocal interaction between dynein and kinesin proteins located on the same vesicle can lead to reverse their usual direction of transport (dyneins-in exocytosis and kinesin Eg5-in endocytosis).
Collapse
Affiliation(s)
- Natal’ya A. Vasil’yeva
- Department of Higher Nervous Activity, Faculty of Biology, Moscow Lomonosov State University, Leninskie Gory dom 1, Stroenie 12, Moscow, 119991 Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Ulitsa Butlerova, dom 5A, Moscow, 117485 Russia
| | - Galina B. Murzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Ulitsa Butlerova, dom 5A, Moscow, 117485 Russia
| | - Arkady S. Pivovarov
- Department of Higher Nervous Activity, Faculty of Biology, Moscow Lomonosov State University, Leninskie Gory dom 1, Stroenie 12, Moscow, 119991 Russia
| |
Collapse
|
3
|
Abstract
The adult brain is much more resilient and adaptable than previously believed, and adaptive structural plasticity involves growth and shrinkage of dendritic trees, turnover of synapses, and limited amounts of neurogenesis in the forebrain, especially the dentate gyrus of the hippocampal formation. Stress and sex hormones help to mediate adaptive structural plasticity, which has been extensively investigated in the hippocampus and to a lesser extent in the prefrontal cortex and amygdala, all brain regions that are involved in cognitive and emotional functions. Stress and sex hormones exert their effects on brain structural remodeling through both classical genomic as well as non-genomic mechanisms, and they do so in collaboration with neurotransmitters and other intra- and extracellular mediators. This review will illustrate the actions of estrogen on synapse formation in the hippocampus and the process of stress-induced remodeling of dendrites and synapses in the hippocampus, amygdala, and prefrontal cortex. The influence of early developmental epigenetic events, such as early life stress and brain sexual differentiation, is noted along with the interactions between sex hormones and the effects of stress on the brain. Because hormones influence brain structure and function and because hormone secretion is governed by the brain, applied molecular neuroscience techniques can begin to reveal the role of hormones in brain-related disorders and the treatment of these diseases. A better understanding of hormone-brain interactions should promote more flexible approaches to the treatment of psychiatric disorders, as well as their prevention through both behavioral and pharmaceutical interventions.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
4
|
Abstract
Discrete classes of mRNAs that encode functionally related proteins are associated with sequence-specific RNA-binding proteins in yeast and mammalian cells. recently reported that pre-mRNAs encoding components of inhibitory synapses are bound to neuron-specific Nova RNA-binding proteins.
Collapse
Affiliation(s)
- Jack D Keene
- Center for RNA Biology, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Abstract
Ramon y Cajal proclaimed in 1928 that "once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree." (Ramon y Cajal, 1928). In large part, despite the extensive knowledge gained since then, the latter directive has not yet been achieved by 'modern' science. Although we know now that Ramon y Cajal's observation on CNS plasticity is largely true (for lower brain and primary cortical structures), there are mechanisms for recovery from CNS injury. These mechanisms, however, may contribute to the vulnerability to neurodegenerative disease. They may also be exploited therapeutically to help alleviate the suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Bruce Teter
- Department of Medicine, University of California Los Angeles, California and Veteran's Affairs-Greater Los Angeles Healthcare System, Sepulveda, California 91343, USA
| | | |
Collapse
|
6
|
Kindler S, Monshausen M. Candidate RNA-binding proteins regulating extrasomatic mRNA targeting and translation in mammalian neurons. Mol Neurobiol 2002; 25:149-65. [PMID: 11936557 DOI: 10.1385/mn:25:2:149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammalian neurons, long-lasting changes in the efficacy of individual synapses depend on the synthesis of new proteins. To maintain specificity, neuronal cells have to ensure that these newly synthesized proteins accumulate at the appropriate subpopulation of synapses. One way that neurons have solved this challenge appears to be the local translation of extrasomatic mRNAs in dendrites and at postsynaptic sites. Mechanisms, which regulate the targeting, translation, and stability of dendritic mRNAs, involve an organized interaction between cis-acting elements of localized transcripts and trans-acting RNA-binding proteins. The molecular identity and cellular functions of trans-acting factors that are likely to play an important role in post-transcriptional processing of extrasomatic transcripts in mammalian neurons are now being elucidated.
Collapse
Affiliation(s)
- Stefan Kindler
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Eppendorf, University of Hamburg, Germany.
| | | |
Collapse
|
7
|
McEwen BS. Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol (1985) 2001; 91:2785-801. [PMID: 11717247 DOI: 10.1152/jappl.2001.91.6.2785] [Citation(s) in RCA: 480] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Besides their well-established actions on reproductive functions, estrogens exert a variety of actions on many regions of the nervous system that influence higher cognitive function, pain mechanisms, fine motor skills, mood, and susceptibility to seizures; they also appear to have neuroprotective actions in relation to stroke damage and Alzheimer's disease. Estrogen actions are now recognized to occur via two different intracellular estrogen receptors, ER-alpha and ER-beta, that reside in the cell nuclei of some nerve cells, as well as by some less well-characterized mechanisms. In the hippocampus, such nerve cells are sparse in number and yet appear to exert a powerful influence on synapse formation by neurons that do not have high levels of nuclear estrogen receptors. However, we also find nonnuclear estrogen receptors outside of the cell nuclei in dendrites, presynaptic terminals, and glial cells, where estrogen receptors may couple to second messenger systems to regulate a variety of cellular events and signal to the nuclear via transcriptional regulators such as CREB. Sex differences exist in many of the actions of estrogens in the brain, and the process of sexual differentiation appears to affect many brain regions outside of the traditional brain areas involved in reproductive functions. Finally, the aging brain is responsive to actions of estrogens, which have neuroprotective effects both in vivo and in vitro. However, in an animal model, the actions of estrogens on the hippocampus appear to be somewhat attenuated with age. In the future, estrogen actions over puberty and in pregnancy and lactation should be further explored and should be studied in both the hypothalamus and the extrahypothalamic regions.
Collapse
Affiliation(s)
- B S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Ave., New York, NY 10021, USA.
| |
Collapse
|