1
|
Holler S, Bartlett S, Löffler RJG, Casiraghi F, Diaz CIS, Cartwright JHE, Hanczyc MM. Hybrid organic-inorganic structures trigger the formation of primitive cell-like compartments. Proc Natl Acad Sci U S A 2023; 120:e2300491120. [PMID: 37561785 PMCID: PMC10438843 DOI: 10.1073/pnas.2300491120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Alkaline hydrothermal vents have become a candidate setting for the origins of life on Earth and beyond. This is due to several key features including the presence of gradients of temperature, redox potential, pH, the availability of inorganic minerals, and the existence of a network of inorganic pore spaces that could have served as primitive compartments. Chemical gardens have long been used as experimental proxies for hydrothermal vents. This paper investigates-10pc]Please note that the spelling of the following author name in the manuscript differs from the spelling provided in the article metadata: Richard J. G. Löffler. The spelling provided in the manuscript has been retained; please confirm. a set of prebiotic interactions between such inorganic structures and fatty alcohols. The integration of a medium-chain fatty alcohol, decanol, within these inorganic minerals, produced a range of emergent 3 dimensions structures at both macroscopic and microscopic scales. Fatty alcohols can be considered plausible prebiotic amphiphiles that might have assisted the formation of protocellular structures such as vesicles. The experiments presented herein show that neither chemical gardens nor decanol alone promote vesicle formation, but chemical gardens grown in the presence of decanol, which is then integrated into inorganic mineral structures, support vesicle formation. These observations suggest that the interaction of fatty alcohols and inorganic mineral structures could have played an important role in the emergence of protocells, yielding support for the evolution of living cells.
Collapse
Affiliation(s)
- Silvia Holler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Richard J. G. Löffler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Federica Casiraghi
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Claro Ignacio Sainz Diaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
| | - Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada18071, Spain
| | - Martin M. Hanczyc
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM87106
| |
Collapse
|
2
|
Dong Y, Zhang S, Zhao L. Unraveling the Structural Development of
Peptide‐Coordinated Iron‐Sulfur
Clusters: Prebiotic Evolution and Biosynthetic Strategies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yijun Dong
- School of Life Sciences, Tsinghua University Beijing 100084 China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
3
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
4
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
5
|
Fornaro T, Brucato JR, Feuillie C, Sverjensky DA, Hazen RM, Brunetto R, D'Amore M, Barone V. Binding of Nucleic Acid Components to the Serpentinite-Hosted Hydrothermal Mineral Brucite. ASTROBIOLOGY 2018; 18:989-1007. [PMID: 30048146 DOI: 10.1089/ast.2017.1784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adsorption of nucleic acid components onto the serpentinite-hosted hydrothermal mineral brucite has been investigated experimentally by determining the equilibrium adsorption isotherms in aqueous solution. Thermodynamic characterization of the adsorption data has been performed using the extended triple-layer model (ETLM) to establish a model for the stoichiometry and equilibrium constants of surface complexes. Infrared characterization of the molecule-mineral complexes has helped gain insight into the molecular functional groups directly interacting with the mineral surface. Quantum mechanical calculations have been carried out to identify the possible complexes formed on surfaces by nucleic acid components and their binding configurations on mineral surfaces, both in the presence of water molecules and in water-free conditions. The results indicate that brucite favors adsorption of nucleotides with respect to nucleosides and nucleobases from dilute aqueous environments. The surface of this mineral is able to induce well-defined orientations of the molecules through specific molecule-mineral interactions. This result suggests plausible roles of the mineral brucite in assisting prebiotic molecular self-organization. Furthermore, the detection of the infrared spectroscopic features of such building blocks of life adsorbed on brucite at very low degrees of coverage provides important support to life detection investigations.
Collapse
Affiliation(s)
- Teresa Fornaro
- 1 Geophysical Laboratory, Carnegie Institution for Science , Washington, District of Columbia, United States
- 2 INAF-Astrophysical Observatory of Arcetri , Firenze, Italy
- 3 Scuola Normale Superiore , Pisa, Italy
| | - John R Brucato
- 2 INAF-Astrophysical Observatory of Arcetri , Firenze, Italy
| | - Cécile Feuillie
- 4 Louvain Institute of Biomolecular Science and Technology, University Catholique de Louvain , Louvain-la-Neuve, Belgium
| | - Dimitri A Sverjensky
- 5 Department of Earth and Planetary Sciences, Johns Hopkins University , Baltimore, Maryland, United States
| | - Robert M Hazen
- 1 Geophysical Laboratory, Carnegie Institution for Science , Washington, District of Columbia, United States
| | - Rosario Brunetto
- 6 Institut d'Astrophysique Spatiale, UMR8617 CNRS-Univ. Paris-Sud, Université Paris-Saclay , Orsay, France
| | | | | |
Collapse
|
6
|
Identification of the Radical SAM Enzymes Involved in the Biosynthesis of Methanopterin and Coenzyme F 420 in Methanogens. Methods Enzymol 2018; 606:461-483. [DOI: 10.1016/bs.mie.2018.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|