1
|
Avstrikova M, Milán Rodríguez P, Burke SM, Hibbs RE, Changeux JP, Cecchini M. Hidden complexity of α7 nicotinic acetylcholine receptor desensitization revealed by MD simulations and Markov state modeling. Proc Natl Acad Sci U S A 2025; 122:e2420993122. [PMID: 39946538 PMCID: PMC11848294 DOI: 10.1073/pnas.2420993122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in neuronal signaling throughout the nervous system. Its implication in neurological disorders and inflammation has spurred the development of numerous compounds that enhance channel activation. However, the therapeutic potential of these compounds has been limited by the characteristically fast desensitization of the α7 receptor. Using recent high-resolution structures from cryo-EM, and all-atom molecular dynamic simulations augmented by Markov state modeling, here we explore the mechanism of α7 receptor desensitization and its implication on allosteric modulation. The results provide a precise characterization of the desensitization gate and illuminate the mechanism of ion-pore opening/closing with an agonist bound. In addition, the simulations reveal the existence of a short-lived, open-channel intermediate between the activated and desensitized states that rationalizes the paradoxical pharmacology of the L247T mutant and may be relevant to type-II allosteric modulation. This analysis provides an interpretation of the signal transduction mechanism and its regulation in α7 receptors.
Collapse
Affiliation(s)
- Mariia Avstrikova
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Paula Milán Rodríguez
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| | - Sean M. Burke
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Ryan E. Hibbs
- Department of Neurobiology, University of California, San Diego, La Jolla, CA92093
| | - Jean-Pierre Changeux
- Neuroscience Department, Institut Pasteur, Collège de France, ParisF-75005, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg CedexF-67083, France
| |
Collapse
|
2
|
Godellas NE, Cymes GD, Grosman C. Electrically silent mutants unravel the mechanism of binding-gating coupling in Cys-loop receptors. SCIENCE ADVANCES 2024; 10:eadq8048. [PMID: 39602532 PMCID: PMC11601209 DOI: 10.1126/sciadv.adq8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The transduction of extracellular chemical signals into intracellular events relies on the communication between neighboring domains of membrane receptors. In the particular case of Cys-loop receptor channels, five short stretches of amino acids, one per subunit, link the extracellular and transmembrane domains in such a way that the ion permeability of the latter and the affinity for neurotransmitters of the former become tied to each other. Here, using direct functional approaches, we set out to understand the molecular bases of this crucial interdependence through the characterization of total loss-of-current mutations at the interface between domains. Our results indicate that domain-domain proximity plays a previously unnoticed critical role inasmuch as inserting a single residue in each linker rendered the two domains independent of each other. In marked contrast, loss-of-current mutations that leave the linkers' length unaltered did not compromise the interdomain coupling, but rather, seemed to cause agonist-bound closed receptors to desensitize without appreciably opening.
Collapse
Affiliation(s)
- Nicole E. Godellas
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gisela D. Cymes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Zheng C, Tang E. A topological mechanism for robust and efficient global oscillations in biological networks. Nat Commun 2024; 15:6453. [PMID: 39085205 PMCID: PMC11291491 DOI: 10.1038/s41467-024-50510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Long and stable timescales are often observed in complex biochemical networks, such as in emergent oscillations. How these robust dynamics persist remains unclear, given the many stochastic reactions and shorter time scales demonstrated by underlying components. We propose a topological model that produces long oscillations around the network boundary, reducing the system dynamics to a lower-dimensional current in a robust manner. Using this to model KaiC, which regulates the circadian rhythm in cyanobacteria, we compare the coherence of oscillations to that in other KaiC models. Our topological model localizes currents on the system edge, with an efficient regime of simultaneously increased precision and decreased cost. Further, we introduce a new predictor of coherence from the analysis of spectral gaps, and show that our model saturates a global thermodynamic bound. Our work presents a new mechanism and parsimonious description for robust emergent oscillations in complex biological networks.
Collapse
Affiliation(s)
- Chongbin Zheng
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA
| | - Evelyn Tang
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
4
|
Verma S, Singh V, Nagampalli V, Ponsky LE, Li CSR, Chao H, Gupta S. Ligand-gated ion channels as potential biomarkers for ADT-mediated cognitive decline in prostate cancer patients. Mol Carcinog 2024; 63:1051-1063. [PMID: 38482990 PMCID: PMC11096008 DOI: 10.1002/mc.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/16/2024]
Abstract
Men with prostate cancer are at increased risk of developing cognitive decline by the use of second-generation androgen signaling inhibitors. To date, reliable and sensitive biomarkers that could distinguish men at high risk of cognitive dysfunction under androgen deprivation therapy (ADT) have not been characterized. We used high-throughput transcriptional profiling utilizing human prostate cancer cell culture models mimicking ADT, biomarker selection using minimal common oncology data elements-cytoscape, and bioinformatic analyses employing Advaita® iPathwayGuide and DisGeNET for identification of disease-related gene associations. Validation analysis of genes was performed on brain neuronal and glial cells by quantitative real-time polymerase chain reaction assay. Our systematic analysis of androgen deprivation-associated genes involved multiple biological processes, including neuroactive ligand-receptor interaction, axon guidance, cytokine-cytokine receptor interaction, and metabolic and cancer signaling pathways. Genes associated with neuroreceptor ligand interaction, including gamma-aminobutyric acid (GABA) A and B receptors and nuclear core proteins, were identified as top upstream regulators. Functional enrichment and protein-protein interaction network analysis highlighted the role of ligand-gated ion channels (LGICs) and their receptors in cognitive dysfunction. Gene-disease association assigned forgetfulness, intellectual disability, visuospatial deficit, bipolar disorder, and other neurocognitive impairment with upregulation of type-1 angiotensin II receptor, brain-derived neurotrophic factor, GABA type B receptor subunit 2 (GABBR2), GABRA3, GABRA5, GABRB1, glycine receptor beta, glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 1, glutamate ionotropic receptor NMDA type subunit 2D, 5-hydroxytryptamine receptor 1D, interferon beta 1, and nuclear receptor subfamily 3 group C member 1 as top differentially expressed genes. Validation studies of brain glial cells, neurons, and patients on ADT demonstrated the association of these genes with cognitive decline. Our findings highlight LGICs as potential biomarkers for ADT-mediated cognitive decline. Further validation of these biomarkers may lead to future practical clinical use.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Vaibhav Singh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | | - Lee E Ponsky
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Chiang-Shan R Li
- Department of Psychiatry and of Neuroscience, Yale University School of Medicine, New Haven, CT 06519
| | - Herta Chao
- Department of Medicine & Yale Comprehensive Cancer Center, Yale University, New Haven, CT 06510, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106 USA
| |
Collapse
|
5
|
Bharambe N, Li Z, Seiferth D, Balakrishna AM, Biggin PC, Basak S. Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment. Nat Commun 2024; 15:2967. [PMID: 38580666 PMCID: PMC10997623 DOI: 10.1038/s41467-024-47370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 - 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.
Collapse
Affiliation(s)
- Nikhil Bharambe
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhuowen Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - David Seiferth
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
6
|
Thompson MJ, Mansoub Bekarkhanechi F, Ananchenko A, Nury H, Baenziger JE. A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor. Nat Commun 2024; 15:1803. [PMID: 38413583 PMCID: PMC10899235 DOI: 10.1038/s41467-024-46028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Synaptic receptors respond to neurotransmitters by opening an ion channel across the post-synaptic membrane to elicit a cellular response. Here we use recent Torpedo acetylcholine receptor structures and functional measurements to delineate a key feature underlying allosteric communication between the agonist-binding extracellular and channel-gating transmembrane domains. Extensive mutagenesis at this inter-domain interface re-affirms a critical energetically coupled role for the principal α subunit β1-β2 and M2-M3 loops, with agonist binding re-positioning a key β1-β2 glutamate/valine to facilitate the outward motions of a conserved M2-M3 proline to open the channel gate. Notably, the analogous structures in non-α subunits adopt a locally active-like conformation in the apo state even though each L9' hydrophobic gate residue in each pore-lining M2 α-helix is closed. Agonist binding releases local conformational heterogeneity transitioning all five subunits into a conformationally symmetric open state. A release of conformational heterogeneity provides a framework for understanding allosteric communication in pentameric ligand-gated ion channels.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Anna Ananchenko
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
7
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
8
|
Coste A, Slejko E, Zavadlav J, Praprotnik M. Developing an Implicit Solvation Machine Learning Model for Molecular Simulations of Ionic Media. J Chem Theory Comput 2024; 20:411-420. [PMID: 38118122 PMCID: PMC10782447 DOI: 10.1021/acs.jctc.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Molecular dynamics (MD) simulations of biophysical systems require accurate modeling of their native environment, i.e., aqueous ionic solution, as it critically impacts the structure and function of biomolecules. On the other hand, the models should be computationally efficient to enable simulations of large spatiotemporal scales. Here, we present the deep implicit solvation model for sodium chloride solutions that satisfies both requirements. Owing to the use of the neural network potential, the model can capture the many-body potential of mean force, while the implicit water treatment renders the model inexpensive. We demonstrate our approach first for pure ionic solutions with concentrations ranging from physiological to 2 M. We then extend the model to capture the effective ion interactions in the vicinity and far away from a DNA molecule. In both cases, the structural properties are in good agreement with all-atom MD, showcasing a general methodology for the efficient and accurate modeling of ionic media.
Collapse
Affiliation(s)
- Amaury Coste
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Ema Slejko
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Julija Zavadlav
- Professorship
of Multiscale Modeling of Fluid Materials, TUM School of Engineering
and Design, Technical University of Munich, Garching Near Munich DE-85748, Germany
| | - Matej Praprotnik
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
9
|
Ghosh A, Karmakar S, Dey A, Maji TK. Modular Gating of Ion Transport by Postsynthetic Charge Transfer Complexation in a Metal-Organic Framework. J Am Chem Soc 2023. [PMID: 38051543 DOI: 10.1021/jacs.3c11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Nature's design of biological ion channels that demonstrates efficient gating and selectivity brings to light a very promising model to mimic and design for achieving selective and tunable ion transport. Functionalized nanopores that permit modulation of the pore wall charges are a compelling approach to gain control over the ion transport mechanism through the pores. This makes way for employing a noncovalent supramolecular approach for attaining charge reversal of the MOF pore walls using donor-acceptor pairs that can demonstrate strong charge transfer interactions. Herein, robust Zr4+-based mesoporous MOF-808 was postsynthetically modified into an anion-selective nanochannel (MOF-808-MV) by modification with dicationic viologen-based motifs. Charge modulation and even reversal of the MOF-808-MV pore walls were then explored taking advantage of strong charge transfer interactions between the grafted dicationic viologen acceptor moieties and anionic, π-electron-rich donor guest molecules such as pyranine (PYR) and tetrathiafulvalene tetrabenzoic acid (TTF-TA). Tunability of the MOF pore charge from positive to neutral to negative was achieved via simple methodologies such as diffusion control in case of guest molecule like PYR and by pH modulation for pH-responsive guest like TTF-TA. This results in a concomitant modulation in the selectivity of the nanochannel, rendering it from anion-selective to ambipolar to cation-selective. Furthermore, as a real-time application of this ion channel, Na+ ion conductivity (σ = 3.5 × 10-5 S cm-1) was studied at ambient temperature.
Collapse
|
10
|
Legesse DH, Fan C, Teng J, Zhuang Y, Howard RJ, Noviello CM, Lindahl E, Hibbs RE. Structural insights into opposing actions of neurosteroids on GABA A receptors. Nat Commun 2023; 14:5091. [PMID: 37607940 PMCID: PMC10444788 DOI: 10.1038/s41467-023-40800-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors mediate fast inhibitory signaling in the brain and are targets of numerous drugs and endogenous neurosteroids. A subset of neurosteroids are GABAA receptor positive allosteric modulators; one of these, allopregnanolone, is the only drug approved specifically for treating postpartum depression. There is a consensus emerging from structural, physiological and photolabeling studies as to where positive modulators bind, but how they potentiate GABA activation remains unclear. Other neurosteroids are negative modulators of GABAA receptors, but their binding sites remain debated. Here we present structures of a synaptic GABAA receptor bound to allopregnanolone and two inhibitory sulfated neurosteroids. Allopregnanolone binds at the receptor-bilayer interface, in the consensus potentiator site. In contrast, inhibitory neurosteroids bind in the pore. MD simulations and electrophysiology support a mechanism by which allopregnanolone potentiates channel activity and suggest the dominant mechanism for sulfated neurosteroid inhibition is through pore block.
Collapse
Affiliation(s)
| | - Chen Fan
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Yuxuan Zhuang
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Colleen M Noviello
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Erik Lindahl
- Dept. of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden.
- Dept. of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
| | - Ryan E Hibbs
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, Chakrapani S. Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Nat Commun 2023; 14:1363. [PMID: 36914669 PMCID: PMC10011588 DOI: 10.1038/s41467-023-37106-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and β subunits. Here we present cryo-EM structures of full-length zebrafish α1βBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the β-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1β stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1βGlyR and provide a framework for further study of this physiologically important channel.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Emily Klemm
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - David Seiferth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York, NY, 10027, USA
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
12
|
Gc JB, Szlenk CT, Diyaolu A, Obi P, Wei H, Shi X, Gibson KM, Natesan S, Roullet JB. Allosteric modulation of α1β3γ2 GABA A receptors by farnesol through the neurosteroid sites. Biophys J 2023; 122:849-867. [PMID: 36721367 PMCID: PMC10027449 DOI: 10.1016/j.bpj.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
In mammalian cells, all-trans farnesol, a 15-carbon isoprenol, is a product of the mevalonate pathway. It is the natural substrate of alcohol dehydrogenase and a substrate for CYP2E1, two enzymes implicated in ethanol metabolism. Studies have shown that farnesol is present in the human brain and inhibits voltage-gated Ca2+ channels at much lower concentrations than ethanol. Here we show that farnesol modulates the activity of γ-aminobutyric acid type A receptors (GABAARs), some of which also mediate the sedative activity of ethanol. Electrophysiology experiments performed in HEK cells expressing human α1β3γ2 or α6β3γ2 GABAARs revealed that farnesol increased chloride currents through positive allosteric modulation of these receptors and showed dependence on both the alcoholic functional group of farnesol and the length of the alkyl chain for activity. In silico studies using long-timescale unbiased all-atom molecular dynamics (MD) simulations of the human α1β3γ2 GABAA receptors revealed that farnesol modulates the channel by directly binding to the transmembrane neurosteroid-binding site, after partitioning into the surrounding membrane and reaching the receptor by lateral diffusion. Channel activation by farnesol was further characterized by several structural and dynamic variables, such as global twisting of the receptor's extracellular domain, tilting of the transmembrane M2 helices, radius, cross-sectional area, hydration status, and electrostatic potential of the channel pore. Our results expand the pharmacological activities of farnesol to yet another class of ion channels implicated in neurotransmission, thus providing a novel path for understanding and treatment of diseases involving GABAA receptor dysfunction.
Collapse
Affiliation(s)
- Jeevan B Gc
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christopher T Szlenk
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Ayobami Diyaolu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Peter Obi
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Haiyang Wei
- Eurofins Panlabs, Inc., St. Charles, Missouri
| | - Xutong Shi
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - K Michael Gibson
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| | - Jean-Baptiste Roullet
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| |
Collapse
|
13
|
Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PLoS One 2023; 18:e0281507. [PMID: 36857360 PMCID: PMC9977066 DOI: 10.1371/journal.pone.0281507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Collapse
|
14
|
Wang G, Xu L, Chen H, Liu Y, Pan P, Hou T. Recent advances in computational studies on voltage‐gated sodium channels: Drug design and mechanism studies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Gaoang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou Jiangsu China
| | - Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Yifei Liu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
15
|
Li Z, Chan KC, Nickels JD, Cheng X. Molecular Dynamics Refinement of Open State Serotonin 5-HT 3A Receptor Structures. J Chem Inf Model 2023; 63:1196-1207. [PMID: 36757760 DOI: 10.1021/acs.jcim.2c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pentameric ligand-gated ion channels play an important role in mediating fast neurotransmissions. As a member of this receptor family, cation-selective 5-HT3 receptors are a clinical target for treating nausea and vomiting associated with chemotherapy and radiation therapy (Thompson and Lummis, 2006). Multiple cryo-electron microscopy (cryo-EM) structures of 5-HT3 receptors have been determined in distinct functional states (e.g., open, closed, etc.) (Basak et al., 2018; Basak et al., 2018; Polovinkin et al., 2018; Zhang et al., 2015). However, recent work has shown that the transmembrane pores of the open 5-HT3 receptor structures rapidly collapse and become artificially asymmetric in molecular dynamics (MD) simulations. To avoid this hydrophobic collapse, Dämgen and Biggin developed an equilibration protocol that led to a stable open state structure of the glycine receptor in MD simulations (Dämgen and Biggin, 2020). However, the protocol failed to yield open-like structures of the 5-HT3 receptor in our simulations. Here, we present a refined equilibration protocol that involves the rearrangement of the transmembrane helices to achieve stable open state structures of the 5-HT3 receptor that allow both water and ion permeation through the channel. Notably, channel gating is mediated through collective movement of the transmembrane helices, involving not only pore lining M2 helices but also their cross-talk with the adjacent M1 and M3 helices. Thus, the successful application of our refined equilibration protocol underscores the importance of the conformational coupling between the transmembrane helices in stabilizing open-like structures of the 5-HT3 receptor.
Collapse
Affiliation(s)
- Zoe Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin C Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, Ohio 43210, United States
| | - Jonathan D Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy at The Ohio State University, Columbus, Ohio 43210, United States.,Translational Data Analytics Institute (TDAI) at The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Illumination of a progressive allosteric mechanism mediating the glycine receptor activation. Nat Commun 2023; 14:795. [PMID: 36781912 PMCID: PMC9925812 DOI: 10.1038/s41467-023-36471-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Pentameric ligand-gated ion channel mediate signal transduction at chemical synapses by transiting between resting and open states upon neurotransmitter binding. Here, we investigate the gating mechanism of the glycine receptor fluorescently labeled at the extracellular-transmembrane interface by voltage-clamp fluorometry (VCF). Fluorescence reports a glycine-elicited conformational change that precedes pore opening. Low concentrations of glycine, partial agonists or specific mixtures of glycine and strychnine trigger the full fluorescence signal while weakly activating the channel. Molecular dynamic simulations of a partial agonist bound-closed Cryo-EM structure show a highly dynamic nature: a marked structural flexibility at both the extracellular-transmembrane interface and the orthosteric site, generating docking properties that recapitulate VCF data. This work illuminates a progressive propagating transition towards channel opening, highlighting structural plasticity within the mechanism of action of allosteric effectors.
Collapse
|
17
|
Wordom update 2: A user-friendly program for the analysis of molecular structures and conformational ensembles. Comput Struct Biotechnol J 2023; 21:1390-1402. [PMID: 36817953 PMCID: PMC9929209 DOI: 10.1016/j.csbj.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
We present the second update of Wordom, a user-friendly and efficient program for manipulation and analysis of conformational ensembles from molecular simulations. The actual update expands some of the existing modules and adds 21 new modules to the update 1 published in 2011. The new adds can be divided into three sets that: 1) analyze atomic fluctuations and structural communication; 2) explore ion-channel conformational dynamics and ionic translocation; and 3) compute geometrical indices of structural deformation. Set 1 serves to compute correlations of motions, find geometrically stable domains, identify a dynamically invariant core, find changes in domain-domain separation and mutual orientation, perform wavelet analysis of large-scale simulations, process the output of principal component analysis of atomic fluctuations, perform functional mode analysis, infer regions of mechanical rigidity, analyze overall fluctuations, and perform the perturbation response scanning. Set 2 includes modules specific for ion channels, which serve to monitor the pore radius as well as water or ion fluxes, and measure functional collective motions like receptor twisting or tilting angles. Finally, set 3 includes tools to monitor structural deformations by computing angles, perimeter, area, volume, β-sheet curvature, radial distribution function, and center of mass. The ring perception module is also included, helpful to monitor supramolecular self-assemblies. This update places Wordom among the most suitable, complete, user-friendly, and efficient software for the analysis of biomolecular simulations. The source code of Wordom and the relative documentation are available under the GNU general public license at http://wordom.sf.net.
Collapse
|
18
|
Kaczor PT, Michałowski MA, Mozrzymas JW. α 1 Proline 277 Residues Regulate GABA AR Gating through M2-M3 Loop Interaction in the Interface Region. ACS Chem Neurosci 2022; 13:3044-3056. [PMID: 36219829 PMCID: PMC9634794 DOI: 10.1021/acschemneuro.2c00401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cys-loop receptors are a superfamily of transmembrane, pentameric receptors that play a crucial role in mammalian CNS signaling. Physiological activation of these receptors is typically initiated by neurotransmitter binding to the orthosteric binding site, located at the extracellular domain (ECD), which leads to the opening of the channel pore (gate) at the transmembrane domain (TMD). Whereas considerable knowledge on molecular mechanisms of Cys-loop receptor activation was gathered for the acetylcholine receptor, little is known with this respect about the GABAA receptor (GABAAR), which mediates cellular inhibition. Importantly, several static structures of GABAAR were recently described, paving the way to more in-depth molecular functional studies. Moreover, it has been pointed out that the TMD-ECD interface region plays a crucial role in transduction of conformational changes from the ligand binding site to the channel gate. One of the interface structures implicated in this transduction process is the M2-M3 loop with a highly conserved proline (P277) residue. To address this issue specifically for α1β2γ2L GABAAR, we choose to substitute proline α1P277 with amino acids with different physicochemical features such as electrostatic charge or their ability to change the loop flexibility. To address the functional impact of these mutations, we performed macroscopic and single-channel patch-clamp analyses together with modeling. Our findings revealed that mutation of α1P277 weakly affected agonist binding but was critical for all transitions of GABAAR gating: opening/closing, preactivation, and desensitization. In conclusion, we provide evidence that conservative α1P277 at the interface is strongly involved in regulating the receptor gating.
Collapse
|
19
|
Mhashal AR, Yoluk O, Orellana L. Exploring the Conformational Impact of Glycine Receptor TM1-2 Mutations Through Coarse-Grained Analysis and Atomistic Simulations. Front Mol Biosci 2022; 9:890851. [PMID: 35836931 PMCID: PMC9275627 DOI: 10.3389/fmolb.2022.890851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pentameric ligand-gated ion channels (PLGICs) are a family of proteins that convert chemical signals into ion fluxes through cellular membranes. Their structures are highly conserved across all kingdoms from bacteria to eukaryotes. Beyond their classical roles in neurotransmission and neurological disorders, PLGICs have been recently related to cell proliferation and cancer. Here, we focus on the best characterized eukaryotic channel, the glycine receptor (GlyR), to investigate its mutational patterns in genomic-wide tumor screens and compare them with mutations linked to hyperekplexia (HPX), a Mendelian neuromotor disease that disrupts glycinergic currents. Our analysis highlights that cancer mutations significantly accumulate across TM1 and TM2, partially overlapping with HPX changes. Based on 3D-clustering, conservation, and phenotypic data, we select three mutations near the pore, expected to impact GlyR conformation, for further study by molecular dynamics (MD). Using principal components from experimental GlyR ensembles as framework, we explore the motions involved in transitions from the human closed and desensitized structures and how they are perturbed by mutations. Our MD simulations show that WT GlyR spontaneously explores opening and re-sensitization transitions that are significantly impaired by mutations, resulting in receptors with altered permeability and desensitization properties in agreement with HPX functional data.
Collapse
Affiliation(s)
| | | | - Laura Orellana
- Protein Dynamics and Cancer Lab, Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
20
|
Sato K, Sasaki R, Matsuda R, Nakagawa M, Ekimoto T, Yamane T, Ikeguchi M, Tabata KV, Noji H, Kinbara K. Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane. J Am Chem Soc 2022; 144:11802-11809. [PMID: 35727684 DOI: 10.1021/jacs.2c04118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inspired by mechanosensitive potassium channels found in nature, we developed a fluorinated amphiphilic cyclophane composed of fluorinated rigid aromatic units connected via flexible hydrophilic octa(ethylene glycol) chains. Microscopic and emission spectroscopic studies revealed that the cyclophane could be incorporated into the hydrophobic layer of the lipid bilayer membranes and self-assembled to form a supramolecular transmembrane ion channel. Current recording measurements using cyclophane-containing planer lipid bilayer membranes successfully demonstrated an efficient transmembrane ion transport. We also demonstrated that the ion transport property was sensitive to the mechanical forces applied to the membranes. In addition, ion transport assays using pH-sensitive fluorescence dye revealed that the supramolecular channel possesses potassium ion selectivity. We also performed all-atom hybrid quantum-mechanical/molecular mechanical simulations to assess the channel structures at atomic resolution and the mechanism of selective potassium ion transport. This research demonstrated the first example of a synthetic mechanosensitive potassium channel, which would open a new door to sensing and manipulating biologically important processes and purification of key materials in industries.
Collapse
Affiliation(s)
- Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryo Sasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryoto Matsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mayuko Nakagawa
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsutomu Yamane
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
21
|
O’Halloran DM. Database of glutamate-gated chloride (GluCl) subunits across 125 nematode species: patterns of gene accretion and sequence diversification. G3 GENES|GENOMES|GENETICS 2022; 12:6472361. [PMID: 35100348 PMCID: PMC9210312 DOI: 10.1093/g3journal/jkab438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Glutamate-gated chloride channels belong to the Cys-loop receptor superfamily. Glutamate-gated chloride channels are activated by glutamate and form substrates for the antiparasitic drugs from the avermectin family. Glutamate-gated chloride channels are pentameric, and each subunit contains an N-terminal extracellular domain that binds glutamate and 4 helical transmembrane domains, which contain binding sites for avermectin drugs. In order to provide more insight into phylum-wide patterns of glutamate-gated chloride subunit gene expansion and sequence diversity across nematodes, we have developed a database of predicted glutamate-gated chloride subunit genes from 125 nematode species. Our analysis into this dataset described assorted patterns of species-specific glutamate-gated chloride gene counts across different nematodes as well as sequence diversity in key residues thought to be involved in avermectin binding.
Collapse
Affiliation(s)
- Damien M O’Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
22
|
Wei N, Chu Y, Liu H, Xu Q, Jiang T, Yu R. Antagonistic Mechanism of α-Conotoxin BuIA toward the Human α3β2 Nicotinic Acetylcholine Receptor. ACS Chem Neurosci 2021; 12:4535-4545. [PMID: 34738810 DOI: 10.1021/acschemneuro.1c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that are abundantly expressed in the central and peripheral nervous systems, playing an important role in mediating neurotransmitter release and inter-synaptic signaling. Dysfunctional nAChRs are associated with neurological disorders, and studying the structure and function of nAChRs is essential for development of drugs or strategies for treatment of related diseases. α-Conotoxins are selective antagonists of the nAChR and are an important class of drug leads. So far, the antagonistic mechanism of α-conotoxins toward the nAChRs is still unclear. In this study, we built an α3β2 nAChR homology model and investigated its conformational transition mechanism upon binding with a highly potent inhibitor, α-conotoxin BuIA, through μs molecular dynamic simulations and site-directed mutagenesis studies. The results suggested that the α3β2 nAChR underwent global conformational transitions and was stabilized into a closed state with three hydrophobic gates present in the transmembrane domain by BuIA. Finally, the probable antagonistic mechanism of BuIA was proposed. Overall, the closed-state model of the α3β2 nAChR bound with BuIA is not only essential for understanding the antagonistic mechanism of α-conotoxins but also particularly valuable for development of therapeutic inhibitors in future.
Collapse
Affiliation(s)
- Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yanyan Chu
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266100, China
| | - Huijie Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Qingliang Xu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Tao Jiang
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Rilei Yu
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266100, China
| |
Collapse
|
23
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
24
|
Bergh C, Heusser SA, Howard R, Lindahl E. Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel. eLife 2021; 10:68369. [PMID: 34652272 PMCID: PMC8635979 DOI: 10.7554/elife.68369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.
Collapse
Affiliation(s)
- Cathrine Bergh
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Stephanie A Heusser
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Rebecca Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| |
Collapse
|
25
|
Cecchini M, Changeux JP. Nicotinic receptors: From protein allostery to computational neuropharmacology. Mol Aspects Med 2021; 84:101044. [PMID: 34656371 DOI: 10.1016/j.mam.2021.101044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
We propose an extension and further development of the Monod-Wyman-Changeux model for allosteric transitions of regulatory proteins to brain communications and specifically to neurotransmitters receptors, with the nicotinic acetylcholine receptor (nAChR) as a model of ligand-gated ion channels. The present development offers an expression of the change of the gating isomerization constant caused by pharmacological ligand binding in terms of its value in the absence of ligands and several "modulation factors", which vary with orthosteric ligand binding (agonists/antagonists), allosteric ligand binding (positive allosteric modulators/negative allosteric modulators) and receptor desensitization. The new - explicit - formulation of such "modulation factors", provides expressions for the pharmacological attributes of potency, efficacy, and selectivity for the modulatory ligands (including endogenous neurotransmitters) in terms of their binding affinity for the active, resting, and desensitized states of the receptor. The current formulation provides ways to design neuroactive compounds with a controlled pharmacological profile, opening the field of computational neuro-pharmacology.
Collapse
Affiliation(s)
- Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083, Strasbourg Cedex, France.
| | - Jean-Pierre Changeux
- Kavli Institute for Brain & Mind University of California, San Diego La Jolla, CA, 92093, USA; Institut Pasteur, URA 2182, CNRS, F-75015, France; Collège de France, F-75005 Paris, France.
| |
Collapse
|
26
|
Lefebvre SN, Taly A, Menny A, Medjebeur K, Corringer PJ. Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation. eLife 2021; 10:60682. [PMID: 34590583 PMCID: PMC8504973 DOI: 10.7554/elife.60682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using simultaneous steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a three-state Monod-Wyman-Changeux model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit). It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a reorganization of a ‘central gating region’ involving a contraction of the ECD β-sandwich and the tilt of the channel lining M2 helix.
Collapse
Affiliation(s)
- Solène N Lefebvre
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Antoine Taly
- Institut de Biologie Physico-chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.,Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
| | - Anaïs Menny
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Karima Medjebeur
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France
| |
Collapse
|
27
|
Zhan FX, Wang SG, Cao L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 2021; 42:4095-4107. [PMID: 34379238 DOI: 10.1007/s10072-021-05493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.
Collapse
Affiliation(s)
- Fei-Xia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Shi-Ge Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
28
|
Li M, Cao Y, Zhang X, Wang D, Qian S, Li G, Zhang F, Xiong Y, Qing G. Biomimetic calcium-inactivated ion/molecular channel. Chem Commun (Camb) 2021; 57:7914-7917. [PMID: 34279527 DOI: 10.1039/d1cc03058b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A phosphopeptide-modified nanochannel was prepared based on a conical polymeric nanopore. It shows a reversible Ca2+-induced inactivation effect toward the ion flow and molecular transport, resulting from Ca2+ binding-caused surface charge neutralization and hydrophilicity reduction, and Ca2+ removal by the competitive binding.
Collapse
Affiliation(s)
- Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China. and CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yuchen Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xin Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Shengxu Qian
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guodong Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, China. and CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
29
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
30
|
Arias HR, Targowska-Duda KM, García-Colunga J, Ortells MO. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules 2021; 26:molecules26082149. [PMID: 33917953 PMCID: PMC8068400 DOI: 10.3390/molecules26082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022] Open
Abstract
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
- Correspondence: ; Tel.: +1-918-525-6324; Fax: +1-918-280-2515
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina;
| |
Collapse
|
31
|
Yuan X, Zhang D, Mao S, Wang Q. Filling the Gap in Understanding the Mechanism of GABA AR and Propofol Using Computational Approaches. J Chem Inf Model 2021; 61:1889-1901. [PMID: 33823589 DOI: 10.1021/acs.jcim.0c01290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
γ-Aminobutyric acid type-A receptors (GABAARs) play a critical role in neural transmission by mediating the inhibitory neural firing and are the target of many psychiatric drugs. Among them, propofol is one of the most widely used and important general anesthetics in clinics. Recent advances in structural biology revealed the structure of a human GABAAR in both open and closed states. Yet, the detailed mechanism of the receptor and propofol remains to be fully understood. Therefore, in this study, based on the previous successes in structural biology, a variety of computational techniques were applied to fill the gap between previous experimental studies. This study investigated the ion-conducting mechanism of GABAAR, predicted the possible binding mechanism of propofol, and revealed a new motion mechanism of transmembrane domain (TMD) helices. We hope that this study may contribute to future studies on ion-channel receptors, general anesthetics, and drug development.
Collapse
Affiliation(s)
- Xinghang Yuan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Signal transduction through Cys-loop receptors is mediated by the nonspecific bumping of closely apposed domains. Proc Natl Acad Sci U S A 2021; 118:2021016118. [PMID: 33785596 DOI: 10.1073/pnas.2021016118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most fundamental questions in the field of Cys-loop receptors (pentameric ligand-gated ion channels, pLGICs) is how the affinity for neurotransmitters and the conductive/nonconductive state of the transmembrane pore are correlated despite the ∼60-Å distance between the corresponding domains. Proposed mechanisms differ, but they all converge into the idea that interactions between wild-type side chains across the extracellular-transmembrane-domain (ECD-TMD) interface are crucial for this phenomenon. Indeed, the successful design of fully functional chimeras that combine intact ECD and TMD modules from different wild-type pLGICs has commonly been ascribed to the residual conservation of sequence that exists at the level of the interfacial loops even between evolutionarily distant parent channels. Here, using mutagenesis, patch-clamp electrophysiology, and radiolabeled-ligand binding experiments, we studied the effect of eliminating this residual conservation of sequence on ion-channel function and cell-surface expression. From our results, we conclude that proper state interconversion ("gating") does not require conservation of sequence-or even physicochemical properties-across the ECD-TMD interface. Wild-type ECD and TMD side chains undoubtedly interact with their surroundings, but the interactions between them-straddling the interface-do not seem to be more important for gating than those occurring elsewhere in the protein. We propose that gating of pLGICs requires, instead, that the overall structure of the interfacial loops be conserved, and that their relative orientation and distance be the appropriate ones for changes in one side to result in changes in the other, in a phenomenon akin to the nonspecific "bumping" of closely apposed domains.
Collapse
|
33
|
Rao S, Klesse G, Lynch CI, Tucker SJ, Sansom MSP. Molecular Simulations of Hydrophobic Gating of Pentameric Ligand Gated Ion Channels: Insights into Water and Ions. J Phys Chem B 2021; 125:981-994. [PMID: 33439645 PMCID: PMC7869105 DOI: 10.1021/acs.jpcb.0c09285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/13/2020] [Indexed: 12/30/2022]
Abstract
Ion channels are proteins which form gated nanopores in biological membranes. Many channels exhibit hydrophobic gating, whereby functional closure of a pore occurs by local dewetting. The pentameric ligand gated ion channels (pLGICs) provide a biologically important example of hydrophobic gating. Molecular simulation studies comparing additive vs polarizable models indicate predictions of hydrophobic gating are robust to the model employed. However, polarizable models suggest favorable interactions of hydrophobic pore-lining regions with chloride ions, of relevance to both synthetic carriers and channel proteins. Electrowetting of a closed pLGIC hydrophobic gate requires too high a voltage to occur physiologically but may inform designs for switchable nanopores. Global analysis of ∼200 channels yields a simple heuristic for structure-based prediction of (closed) hydrophobic gates. Simulation-based analysis is shown to provide an aid to interpretation of functional states of new channel structures. These studies indicate the importance of understanding the behavior of water and ions within the nanoconfined environment presented by ion channels.
Collapse
Affiliation(s)
- Shanlin Rao
- Department
of Biochemistry, University of Oxford, Oxford, U.K.
| | - Gianni Klesse
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford, U.K.
| | | | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford, U.K.
| | | |
Collapse
|
34
|
Cholesterol content in the membrane promotes key lipid-protein interactions in a pentameric serotonin-gated ion channel. Biointerphases 2021; 15:061018. [PMID: 33397116 DOI: 10.1116/6.0000561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs), embedded in the lipid membranes of nerve cells, mediate fast synaptic transmission and are major pharmaceutical targets. Because of their complexity and the limited knowledge of their structure, their working mechanisms have still to be fully unraveled at the molecular level. Over the past few years, evidence that the lipid membrane may modulate the function of membrane proteins, including pLGICs, has emerged. Here, we investigate, by means of molecular dynamics simulations, the behavior of the lipid membrane at the interface with the 5-HT3A receptor (5-HT3AR), a representative pLGIC which is the target of nausea-suppressant drugs, in a nonconductive state. Three lipid compositions are studied, spanning different concentrations of the phospholipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, and of cholesterol, hence a range of viscosities. A variety of lipid interactions and persistent binding events to different parts of the receptor are revealed in the investigated models, providing snapshots of the dynamical environment at the membrane-receptor interface. Some of these events result in lipid intercalation within the transmembrane domain, and others reach out to protein key sections for signal transmission and receptor activation, such as the Cys-loop and the M2-M3 loop. In particular, phospholipids, with their long hydrophobic tails, play an important role in these interactions, potentially providing a bridge between these two structures. A higher cholesterol content appears to promote lipid persistent binding to the receptor.
Collapse
|
35
|
Han L, Shan Q. Pair of Residue Substitutions at the Outer Mouth of the Channel Pore Act as Inputs for a Boolean Logic "OR" Gate Based on the Glycine Receptor. ACS Chem Neurosci 2020; 11:3409-3417. [PMID: 32970400 DOI: 10.1021/acschemneuro.0c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glycine receptor (GlyR) is a ligand-activated chloride channel, whose mutations are the major cause of hereditary hyperekplexia. The hyperekplexia-causing R271Q mutation, which is located at the extracellular outer mouth of the channel pore, dramatically impairs the GlyR function manifesting a reduced sensitivity toward glycine. This study reports that a second mutation, S273D, rescues the function of the R271Q GlyR to that of the wild-type (WT) GlyR. Surprisingly, the S273D mutation, when introduced to the WT GlyR, does not further increase the receptor function. In other words, the compromised function of the 271Q 273S GlyR (i.e., the R271Q GlyR) can be rescued to WT levels by the introduction of either, or both, of the Q271R and S273D substitutions. From the perspective of Boolean logic gates, the Q271R and S273D substitutions act as inputs for an OR gate based on the GlyR. Further experiments revealed that the negative-charge carried by the 273 residue is essential for the expression of the OR gate and that the expression of the OR gate is residue-position-specific. In addition, mechanistic investigation implied that the 273 residue influences the 271 residue, which might underpin the unique nonadditive OR gate relationship between these two residues. Such an ion-channel-based OR gate, expressing output in the form of electrical current, could potentially be developed to digitally manipulate neuronal activity.
Collapse
Affiliation(s)
- Lu Han
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
36
|
Lev B, Allen TW. Simulating ion channel activation mechanisms using swarms of trajectories. J Comput Chem 2020; 41:387-401. [PMID: 31743478 DOI: 10.1002/jcc.26102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Atomic-level studies of protein activity represent a significant challenge as a result of the complexity of conformational changes occurring on wide-ranging timescales, often greatly exceeding that of even the longest simulations. A prime example is the elucidation of protein allosteric mechanisms, where localized perturbations transmit throughout a large macromolecule to generate a response signal. For example, the conversion of chemical to electrical signals during synaptic neurotransmission in the brain is achieved by specialized membrane proteins called pentameric ligand-gated ion channels. Here, the binding of a neurotransmitter results in a global conformational change to open an ion-conducting pore across the nerve cell membrane. X-ray crystallography has produced static structures of the open and closed states of the proton-gated GLIC pentameric ligand-gated ion channel protein, allowing for atomistic simulations that can uncover changes related to activation. We discuss a range of enhanced sampling approaches that could be used to explore activation mechanisms. In particular, we describe recent application of an atomistic string method, based on Roux's "swarms of trajectories" approach, to elucidate the sequence and interdependence of conformational changes during activation. We illustrate how this can be combined with transition analysis and Brownian dynamics to extract thermodynamic and kinetic information, leading to understanding of what controls ion channel function. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
37
|
Guros NB, Balijepalli A, Klauda JB. Microsecond-timescale simulations suggest 5-HT-mediated preactivation of the 5-HT 3A serotonin receptor. Proc Natl Acad Sci U S A 2020; 117:405-414. [PMID: 31871207 PMCID: PMC6955379 DOI: 10.1073/pnas.1908848117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aided by efforts to improve their speed and efficiency, molecular dynamics (MD) simulations provide an increasingly powerful tool to study the structure-function relationship of pentameric ligand-gated ion channels (pLGICs). However, accurate reporting of the channel state and observation of allosteric regulation by agonist binding with MD remains difficult due to the timescales necessary to equilibrate pLGICs from their artificial and crystalized conformation to a more native, membrane-bound conformation in silico. Here, we perform multiple all-atom MD simulations of the homomeric 5-hydroxytryptamine 3A (5-HT3A) serotonin receptor for 15 to 20 μs to demonstrate that such timescales are critical to observe the equilibration of a pLGIC from its crystalized conformation to a membrane-bound conformation. These timescales, which are an order of magnitude longer than any previous simulation of 5-HT3A, allow us to observe the dynamic binding and unbinding of 5-hydroxytryptamine (5-HT) (i.e., serotonin) to the binding pocket located on the extracellular domain (ECD) and allosteric regulation of the transmembrane domain (TMD) from synergistic 5-HT binding. While these timescales are not long enough to observe complete activation of 5-HT3A, the allosteric regulation of ion gating elements by 5-HT binding is indicative of a preactive state, which provides insight into molecular mechanisms that regulate channel activation from a resting state. This mechanistic insight, enabled by microsecond-timescale MD simulations, will allow a careful examination of the regulation of pLGICs at a molecular level, expanding our understanding of their function and elucidating key structural motifs that can be targeted for therapeutic regulation.
Collapse
Affiliation(s)
- Nicholas B Guros
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Arvind Balijepalli
- Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742;
| |
Collapse
|
38
|
Dämgen MA, Biggin PC. A Refined Open State of the Glycine Receptor Obtained via Molecular Dynamics Simulations. Structure 2020; 28:130-139.e2. [PMID: 31753620 PMCID: PMC6945115 DOI: 10.1016/j.str.2019.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023]
Abstract
Pentameric ligand-gated ion channels are key players in mediating fast neurotransmission. Glycine receptors are chloride-selective members of this receptor family that mediate inhibitory synaptic transmission and are implicated in neurological disorders including autism and hyperekplexia. They have been structurally characterized by both X-ray crystallography and cryoelectron microscopy (cryo-EM) studies, with the latter giving rise to what was proposed as a possible open state. However, recent work has questioned the physiological relevance of this open state structure, since it rapidly collapses in molecular dynamics simulations. Here, we show that the collapse can be avoided by a careful equilibration protocol that reconciles the more problematic regions of the original density map and gives a stable open state that shows frequent selective chloride permeation. The protocol developed in this work provides a means to refine open-like structures of the whole pentameric ligand-gated ion channel superfamily and reconciles the previous issues with the cryo-EM structure.
Collapse
Affiliation(s)
- Marc A Dämgen
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
39
|
Várnai C, Irwin BWJ, Payne MC, Csányi G, Chau PL. Functional movements of the GABA type A receptor. Phys Chem Chem Phys 2020; 22:16023-16031. [DOI: 10.1039/d0cp01128b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have performed a Monte Carlo simulation of the GABA type A receptor. We have analysed the configurations and developed a correlation tensor method to predict receptor gating.
Collapse
Affiliation(s)
- Csilla Várnai
- Centre for Computational Biology
- University of Birmingham
- Birmingham
- UK
| | - B. W. J. Irwin
- Theory of Condensed Matter Group
- Cavendish Laboratory, Department of Physics
- University of Cambridge
- Cambridge CB3 0HE
- UK
| | - M. C. Payne
- Theory of Condensed Matter Group
- Cavendish Laboratory, Department of Physics
- University of Cambridge
- Cambridge CB3 0HE
- UK
| | - Gábor Csányi
- Department of Engineering
- University of Cambridge
- Cambridge CB2 1PZ
- UK
| | - P.-L. Chau
- Bioinformatique Structurale
- Institut Pasteur CNRS URA 3528
- CB3I CNRS USR 3756
- 75724 Paris
- France
| |
Collapse
|
40
|
Orellana L. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Front Mol Biosci 2019; 6:117. [PMID: 31750315 PMCID: PMC6848229 DOI: 10.3389/fmolb.2019.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Large-scale conformational changes are essential to link protein structures with their function at the cell and organism scale, but have been elusive both experimentally and computationally. Over the past few years developments in cryo-electron microscopy and crystallography techniques have started to reveal multiple snapshots of increasingly large and flexible systems, deemed impossible only short time ago. As structural information accumulates, theoretical methods become central to understand how different conformers interconvert to mediate biological function. Here we briefly survey current in silico methods to tackle large conformational changes, reviewing recent examples of cross-validation of experiments and computational predictions, which show how the integration of different scale simulations with biological information is already starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding new light onto complex biological problems inaccessible so far.
Collapse
Affiliation(s)
- Laura Orellana
- Institutionen för Biokemi och Biofysik, Stockholms Universitet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
41
|
Mosesso R, Dougherty DA, Lummis SCR. Proline Residues in the Transmembrane/Extracellular Domain Interface Loops Have Different Behaviors in 5-HT 3 and nACh Receptors. ACS Chem Neurosci 2019; 10:3327-3333. [PMID: 31273982 DOI: 10.1021/acschemneuro.9b00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cys-loop receptors are important drug targets that are involved in signaling in the nervous system. The binding of neurotransmitters in the extracellular region of these receptors triggers an allosteric activation mechanism, the full details of which remain elusive, although structurally flexible loops in the interface between the extracellular region of Cys-loop receptors and the pore-forming transmembrane domain are known to play an important role. Here we explore the roles of three largely conserved Pro residues in two of these loops, the Cys-loop and M2-M3 loop, in 5-HT3A and α7 nACh receptors. The data from natural and noncanonical amino acid mutagenesis suggest that in both proteins a Pro is essential in the Cys-loop, probably because of its enhanced ability to form a cis peptide bond, although other factors are also involved. The important characteristics of Pros in the M2-M3 loop, however, differ in these two receptors: in the 5-HT3 receptor, the Pros can be replaced by some charged amino acids resulting in EC50s similar to those of wild-type receptors, while such substitutions in the nACh receptor ablate function. Ala substitution at one of these Pros also has different effects in the two receptors. Thus, our data show that even highly conserved residues can have distinct behaviors in related Cys-loop receptors.
Collapse
Affiliation(s)
- Richard Mosesso
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
42
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
43
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
44
|
Yu R, Tae HS, Xu Q, Craik DJ, Adams DJ, Jiang T, Kaas Q. Molecular dynamics simulations of dihydro-β-erythroidine bound to the human α4β2 nicotinic acetylcholine receptor. Br J Pharmacol 2019; 176:2750-2763. [PMID: 31062355 DOI: 10.1111/bph.14698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The heteromeric α4β2 nicotinic acetylcholine receptor (nAChR) is abundant in the human brain and is associated with a range of CNS disorders. This nAChR subtype has been recently crystallised in a conformation that was proposed to represent a desensitised state. Here, we investigated the conformational transition mechanism of this nAChR from a desensitised to a closed/resting state. EXPERIMENTAL APPROACH The competitive antagonist dihydro-β-erythroidine (DHβE) was modelled by replacement of the agonist nicotine in the α4β2 nAChR experimental structure. DHβE is used both in vitro and in vivo for its ability to block α4β2 nAChRs. This system was studied by three molecular dynamics simulations with a combined simulation time of 2.6 μs. Electrophysiological studies of mutated receptors were performed to validate the simulation results. KEY RESULTS The relative positions of the extracellular and transmembrane domains in the models are distinct from those of the desensitised state structure and are compatible with experimental structures of Cys-loop receptors captured in a closed/resting state. CONCLUSIONS AND IMPLICATIONS Our model suggests that the side chains of α4 L257 (9') and α4 L264 (16') are the main constrictions in the transmembrane pore. The involvement of position 9' in channel gating is well established, but position 16' was only previously identified as a gate for the bacterial channels, ELIC and GLIC. L257 but not L264 was found to influence the slow component of desensitisation. The structure of the antagonist-bound state proposed here should be valuable for the development of therapeutic or insecticide compounds.
Collapse
Affiliation(s)
- Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Qingliang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Crnjar A, Comitani F, Melis C, Molteni C. Mutagenesis computer experiments in pentameric ligand-gated ion channels: the role of simulation tools with different resolution. Interface Focus 2019; 9:20180067. [PMID: 31065340 PMCID: PMC6501341 DOI: 10.1098/rsfs.2018.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs. Mutagenesis electrophysiology experiments, with natural or unnatural amino acids, have provided a large body of functional data that, together with emerging structural information from X-ray spectroscopy and cryo-electron microscopy, are helping unravel the complex working mechanisms of these neuroreceptors. Computer simulations are complementing these mutagenesis experiments, with insights at various levels of accuracy and resolution. Here, we review how a selection of computational tools, including first principles methods, classical molecular dynamics and enhanced sampling techniques, are contributing to construct a picture of how pLGICs function and can be pharmacologically targeted to treat the disorders they are responsible for.
Collapse
Affiliation(s)
- Alessandro Crnjar
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudio Melis
- Universitá degli Studi di Cagliari, Complesso Universitario di Monserrato, Dipartimento di Fisica, S.P. Monserrato-Sestu Km 0,700, Monserrato (CA) 09042, Italy
| | - Carla Molteni
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| |
Collapse
|
46
|
Changeux JP. The nicotinic acetylcholine receptor: a typical 'allosteric machine'. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0174. [PMID: 29735728 DOI: 10.1098/rstb.2017.0174] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
The concept of allosteric interaction was initially proposed to account for the inhibitory feedback mechanism mediated by bacterial regulatory enzymes. In contrast with the classical mechanism of competitive, steric, interaction between ligands for a common site, allosteric interactions take place between topographically distinct sites and are mediated by a discrete and reversible conformational change of the protein. The concept was soon extended to membrane receptors for neurotransmitters and shown to apply to the signal transduction process which, in the case of the acetylcholine nicotinic receptor (nAChR), links the ACh binding site to the ion channel. Pharmacological effectors, referred to as allosteric modulators, such as Ca2+ ions and ivermectin, were discovered that enhance the transduction process when they bind to sites distinct from the orthosteric ACh site and the ion channel. The recent X-ray and electron microscopy structures, at atomic resolution, of the resting and active conformations of several homologues of the nAChR, in combination with atomistic molecular dynamics simulations reveal a stepwise quaternary transition in the transduction process with tertiary changes modifying the boundaries between subunits. These interfaces host orthosteric and allosteric modulatory sites which structural organization changes in the course of the transition. The nAChR appears as a typical allosteric machine. The model emerging from these studies has led to the conception and development of several new pharmacological agents.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, Paris 75724, France .,Communications Cellulaires, Collège de France, Paris 75005, France
| |
Collapse
|
47
|
Wodak SJ, Paci E, Dokholyan NV, Berezovsky IN, Horovitz A, Li J, Hilser VJ, Bahar I, Karanicolas J, Stock G, Hamm P, Stote RH, Eberhardt J, Chebaro Y, Dejaegere A, Cecchini M, Changeux JP, Bolhuis PG, Vreede J, Faccioli P, Orioli S, Ravasio R, Yan L, Brito C, Wyart M, Gkeka P, Rivalta I, Palermo G, McCammon JA, Panecka-Hofman J, Wade RC, Di Pizio A, Niv MY, Nussinov R, Tsai CJ, Jang H, Padhorny D, Kozakov D, McLeish T. Allostery in Its Many Disguises: From Theory to Applications. Structure 2019; 27:566-578. [PMID: 30744993 PMCID: PMC6688844 DOI: 10.1016/j.str.2019.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts.
Collapse
Affiliation(s)
| | | | - Nikolay V Dokholyan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Departments of Pharmacology and Biochemistry & Molecular Biology, Penn State Medical Center, Hershey, PA, USA
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jing Li
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Vincent J Hilser
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Ivet Bahar
- School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Roland H Stote
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Jerome Eberhardt
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Annick Dejaegere
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177 CNRS & Université de Strasbourg, Strasbourg, France
| | | | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Jocelyne Vreede
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Pietro Faccioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Simone Orioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Riccardo Ravasio
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Le Yan
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Matthieu Wyart
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Paraskevi Gkeka
- Structure Design and Informatics, Sanofi R&D, Chilly-Mazarin, France
| | - Ivan Rivalta
- École Normale Supérieure de Lyon, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Giulia Palermo
- Department of Chemistry and Biochemistry, University of California, San Diego, USA; Department of Bioengineering, University of California Riverside, CA 92507, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, USA
| | - Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS) and Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, Robert H Smith Faculty of Agriculture Food and Environment, The Hebrew University, Jerusalem, Israel
| | - Ruth Nussinov
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Hyunbum Jang
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tom McLeish
- Department of Physics, University of York, York, UK
| |
Collapse
|
48
|
Velíšek L. "Are We There Yet?" Quest for Treatment of Refractory Epilepsy. Epilepsy Curr 2019; 19:57-58. [PMID: 30838919 PMCID: PMC6610376 DOI: 10.1177/1535759718822843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biochemical Autoregulatory Gene Therapy for Focal Epilepsy Lieb A, Qiu Y, Dixon CL, Heller JP, Walker MC, Schorge S, Kullmann DM. Nat Med. 2018;24:1324-1329. Despite the introduction of more than one dozen new antiepileptic drugs in the past 20 years, approximately one-third of people who develop epilepsy continue to have seizures on mono- or polytherapy. Viral-vector-mediated gene transfer offers the opportunity to design a rational treatment that builds on mechanistic understanding of seizure generation and that can be targeted to specific neuronal populations in epileptogenic foci. Several such strategies have shown encouraging results in different animal models, although clinical translation is limited by possible effects on circuits underlying cognitive, mnemonic, sensory, or motor function. Here, we describe an autoregulatory antiepileptic gene therapy, which relies on neuronal inhibition in response to elevations in extracellular glutamate. It is effective in a rodent model of focal epilepsy and is well tolerated, thus lowering the barrier to clinical translation.
Collapse
|
49
|
Hernandez CC, Macdonald RL. A structural look at GABA A receptor mutations linked to epilepsy syndromes. Brain Res 2019; 1714:234-247. [PMID: 30851244 DOI: 10.1016/j.brainres.2019.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Understanding the genetic variation in GABAA receptor subunit genes (GABRs), GABRA1-6, GABRB1-3, GABRG1-3 and GABRD, in individuals affected by epilepsy may improve the diagnosis and treatment of epilepsy syndromes through identification of disease-associated variants. However, the lack of functional analysis and validation of many novel and previously reported familial and de novo mutations have made it challenging to address meaningful gene associations with epilepsy syndromes. GABAA receptors belong to the Cys-loop receptor family. Even though GABAA receptor mutant residues are widespread among different GABRs, their frequent occurrence in important structural domains that share common functional features suggests associations between structure and function.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
50
|
Crnjar A, Comitani F, Hester W, Molteni C. Trans- Cis Proline Switches in a Pentameric Ligand-Gated Ion Channel: How They Are Affected by and How They Affect the Biomolecular Environment. J Phys Chem Lett 2019; 10:694-700. [PMID: 30668119 DOI: 10.1021/acs.jpclett.8b03431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are important neuroreceptors, embedded in neuronal membranes, that mediate fast synaptic transmission. The molecular details of their working mechanisms have still to be fully unravelled due to their complexity and limited structural information available. Here we focus on a potential molecular switch in a prototypical pLGIC, the serotonin-activated 5-HT3 receptor, consisting of the trans- cis isomerization of a proline at the interface between the extracellular and transmembrane domain. Mutagenesis electrophysiology experiments previously showed that if such isomerization could not take place, the channel would not open, but the hypothetical role of this mechanism as key to channel gating is still debated. We investigate this switch within the receptor with molecular dynamics and enhanced sampling simulations. We analyze how the isomerization free energy landscape is affected by the receptor environment in comparison to simplified models. Moreover, we reveal how the isomerization, in turn, affects the structural and electrostatic properties of the receptor at the extracellular-transmembrane domain interface, e.g., by tuning the ion selectivity filter.
Collapse
Affiliation(s)
- Alessandro Crnjar
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
| | - Federico Comitani
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
- Chemistry Department , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - William Hester
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
| | - Carla Molteni
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
| |
Collapse
|