1
|
Hahn HJ, Pashkova N, Cianfrocco MA, Weisman LS. Cargo adaptors use a handhold mechanism to engage with myosin V for organelle transport. J Cell Biol 2025; 224:e202408006. [PMID: 40377475 DOI: 10.1083/jcb.202408006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/28/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025] Open
Abstract
Myo2, a class V myosin motor, is essential for organelle transport in budding yeast. Its association with cargo is regulated by adaptor proteins that mediate both attachment and release. Vac17, a vacuole-specific adaptor, links Myo2 to the vacuole membrane protein Vac8 and plays a key role in assembling and disassembling the Myo2-Vac17-Vac8 complex during vacuole inheritance. Using genetics, cryo-EM, and structure prediction, we find that Vac17 interacts with Myo2 at two distinct sites rather than a single interface. Similarly, the peroxisome adaptor Inp2 engages two separate regions of Myo2, one of which overlaps with a Vac17-binding site. These findings support a "handhold" model, in which cargo adaptors occupy multiple surfaces on the Myo2 tail, which likely enhances motor-cargo associations as well as provide additional regulatory control over motor recruitment.
Collapse
Affiliation(s)
- Hye Jee Hahn
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
| | - Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
2
|
Hahn HJ, Pashkova N, Cianfrocco MA, Weisman LS. Cargo adaptors use a handhold mechanism to engage with myosin V for organelle transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645041. [PMID: 40196620 PMCID: PMC11974856 DOI: 10.1101/2025.03.24.645041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Myo2, a myosin V motor, is essential for organelle transport in budding yeast. Its attachment to and detachment from cargo are mediated by adaptor molecules. Vac17, a vacuole-specific adaptor, links Myo2 to Vac8 on the vacuole membrane, and plays a key role in the formation and dissociation of the Myo2-Vac17-Vac8 complex. Using genetics, cryo-electron microscopy and structure prediction, we find that Vac17 interacts with Myo2 through two distinct sites rather than a single interface. Similarly, the peroxisome adapter Inp2 engages two separate regions of Myo2, one of which overlaps with Vac17. These findings support a "handhold" model, in which cargo adaptors occupy multiple sites on the Myo2 tail, enhancing motor-cargo interactions and likely providing additional regulatory control over motor recruitment. Summary This study provides insights into how cargo adaptors bind myosin V. Genetics, cell-based assays, cryo-EM, and AlphaFold, reveal that the vacuole-specific adaptor uses a handhold mechanism to attach to two areas on the myosin V tail. Moreover, evidence is presented that other adaptors use a similar strategy.
Collapse
|
3
|
Kollmar M, Welz T, Ravi A, Kaufmann T, Alzahofi N, Hatje K, Alghamdi A, Kim J, Briggs DA, Samol-Wolf A, Pylypenko O, Hume AN, Burkhardt P, Faix J, Kerkhoff E. Actomyosin organelle functions of SPIRE actin nucleators precede animal evolution. Commun Biol 2024; 7:832. [PMID: 38977899 PMCID: PMC11231147 DOI: 10.1038/s42003-024-06458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals.
Collapse
Affiliation(s)
- Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Aishwarya Ravi
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Noura Alzahofi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Biology Department, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Klas Hatje
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Asmahan Alghamdi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Jiyu Kim
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
- Department of Anatomy, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Annette Samol-Wolf
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Pan J, Zhou R, Yao LL, Zhang J, Zhang N, Cao QJ, Sun S, Li XD. Identification of a third myosin-5a-melanophilin interaction that mediates the association of myosin-5a with melanosomes. eLife 2024; 13:RP93662. [PMID: 38900147 PMCID: PMC11189624 DOI: 10.7554/elife.93662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.
Collapse
Affiliation(s)
- Jiabin Pan
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Zhou
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qing-Juan Cao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Shaopeng Sun
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiang-dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Chocano-Coralla EJ, Vidali L. Myosin XI, a model of its conserved role in plant cell tip growth. Biochem Soc Trans 2024; 52:505-515. [PMID: 38629612 DOI: 10.1042/bst20220783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.
Collapse
Affiliation(s)
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, U.S.A
| |
Collapse
|
6
|
Yao LL, Hou WD, Liang Y, Li XD, Ji HH. Spire2 and Rab11a synergistically activate myosin-5b motor function. Biochem Biophys Res Commun 2024; 703:149653. [PMID: 38364682 DOI: 10.1016/j.bbrc.2024.149653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Cellular vesicle long-distance transport along the cytoplasmic actin network has recently been uncovered in several cell systems. In metaphase mouse oocytes, the motor protein myosin-5b (Myo5b) and the actin nucleation factor Spire are recruited to the Rab11a-positive vesicle membrane, forming a ternary complex of Myo5b/Spire/Rab11a that drives the vesicle long-distance transport to the oocyte cortex. However, the mechanism underlying the intermolecular regulation of the Myo5b/Spire/Rab11a complex remains unknown. In this study, we expressed and purified Myo5b, Spire2, and Rab11a proteins, and performed ATPase activity measurements, pulldown and single-molecule motility assays. Our results demonstrate that both Spire2 and Rab11a are required to activate Myo5b motor activity under physiological ionic conditions. The GTBM fragment of Spire2 stimulates the ATPase activity of Myo5b, while Rab11a enhances this activation. This activation occurs by disrupting the head-tail interaction of Myo5b. Furthermore, at the single-molecule level, we observed that the GTBM fragment of Spire2 and Rab11a coordinate to stimulate the Myo5b motility activity. Based on our results, we propose that upon association with the vesicle membrane, Myo5b, Spire2 and Rab11a form a ternary complex, and the inhibited Myo5b is synergistically activated by Spire2 and Rab11a, thereby triggering the long-distance transport of vesicles.
Collapse
Affiliation(s)
- Lin-Lin Yao
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Wei-Dong Hou
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yi Liang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huan-Hong Ji
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
7
|
McParland ED, Butcher TA, Gurley NJ, Johnson RI, Slep KC, Peifer M. The Dilute domain in Canoe is not essential for linking cell junctions to the cytoskeleton but supports morphogenesis robustness. J Cell Sci 2024; 137:jcs261734. [PMID: 38323935 PMCID: PMC11006394 DOI: 10.1242/jcs.261734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Robust linkage between adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The Drosophila multidomain protein Canoe and its mammalian homolog afadin are crucial for this, as in their absence many events of morphogenesis fail. To define the mechanism of action for Canoe, we are taking it apart. Canoe has five folded protein domains and a long intrinsically disordered region. The largest is the Dilute domain, which is shared by Canoe and myosin V. To define the roles of this domain in Canoe, we combined biochemical, genetic and cell biological assays. AlphaFold was used to predict its structure, providing similarities and contrasts with Myosin V. Biochemical data suggested one potential shared function - the ability to dimerize. We generated Canoe mutants with the Dilute domain deleted (CnoΔDIL). Surprisingly, they were viable and fertile. CnoΔDIL localized to adherens junctions and was enriched at junctions under tension. However, when its dose was reduced, CnoΔDIL did not provide fully wild-type function. Furthermore, canoeΔDIL mutants had defects in the orchestrated cell rearrangements of eye development. This reveals the robustness of junction-cytoskeletal connections during morphogenesis and highlights the power of natural selection to maintain protein structure.
Collapse
Affiliation(s)
- Emily D. McParland
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, Zhou B, Guo S, Fang W. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed Pharmacother 2024; 171:116118. [PMID: 38181716 DOI: 10.1016/j.biopha.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.
Collapse
Affiliation(s)
- Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology hospital, Shenzhen 518000, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Yinhao Wen
- Department of Oncology, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou 510315, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; The People's Hospital of Gaozhou, Gaozhou 525200, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
9
|
Sun M, Pylypenko O, Zhou Z, Xu M, Li Q, Houdusse A, van IJzendoorn SCD. Uncovering the Relationship Between Genes and Phenotypes Beyond the Gut in Microvillus Inclusion Disease. Cell Mol Gastroenterol Hepatol 2024; 17:983-1005. [PMID: 38307491 PMCID: PMC11041842 DOI: 10.1016/j.jcmgh.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Zhe Zhou
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mingqian Xu
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Cao YY, Wu LL, Li XN, Yuan YL, Zhao WW, Qi JX, Zhao XY, Ward N, Wang J. Molecular Mechanisms of AMPA Receptor Trafficking in the Nervous System. Int J Mol Sci 2023; 25:111. [PMID: 38203282 PMCID: PMC10779435 DOI: 10.3390/ijms25010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Synaptic plasticity enhances or reduces connections between neurons, affecting learning and memory. Postsynaptic AMPARs mediate greater than 90% of the rapid excitatory synaptic transmission in glutamatergic neurons. The number and subunit composition of AMPARs are fundamental to synaptic plasticity and the formation of entire neural networks. Accordingly, the insertion and functionalization of AMPARs at the postsynaptic membrane have become a core issue related to neural circuit formation and information processing in the central nervous system. In this review, we summarize current knowledge regarding the related mechanisms of AMPAR expression and trafficking. The proteins related to AMPAR trafficking are discussed in detail, including vesicle-related proteins, cytoskeletal proteins, synaptic proteins, and protein kinases. Furthermore, significant emphasis was placed on the pivotal role of the actin cytoskeleton, which spans throughout the entire transport process in AMPAR transport, indicating that the actin cytoskeleton may serve as a fundamental basis for AMPAR trafficking. Additionally, we summarize the proteases involved in AMPAR post-translational modifications. Moreover, we provide an overview of AMPAR transport and localization to the postsynaptic membrane. Understanding the assembly, trafficking, and dynamic synaptic expression mechanisms of AMPAR may provide valuable insights into the cognitive decline associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Ling-Ling Wu
- School of Medicine, Shanghai University, Shanghai 200444, China;
| | - Xiao-Nan Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Yu-Lian Yuan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Wan-Wei Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Jing-Xuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Xu-Yu Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Natalie Ward
- Medical Laboratory, Exceptional Community Hospital, 19060 N John Wayne Pkwy, Maricopa, AZ 85139, USA;
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| |
Collapse
|
11
|
McParland ED, Amber Butcher T, Gurley NJ, Johnson RI, Slep KC, Peifer M. The Dilute domain of Canoe is not essential for Canoe's role in linking adherens junctions to the cytoskeleton but contributes to robustness of morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562854. [PMID: 37905001 PMCID: PMC10614895 DOI: 10.1101/2023.10.18.562854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Robust linkage between cell-cell adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The multidomain protein Drosophila Canoe and its mammalian homolog Afadin are critical for this linkage, and in their absence many events of morphogenesis fail. To define underlying mechanisms, we are taking Canoe apart, using Drosophila as our model. Canoe and Afadin share five folded protein domains, followed by a large intrinsically disordered region. The largest of these folded domains is the Dilute domain, which is found in Canoe/Afadin, their paralogs, and members of the MyosinV family. To define the roles of Canoe's Dilute domain we have combined biochemical, genetic and cell biological assays. Use of the AlphaFold tools revealed the predicted structure of the Canoe/Afadin Dilute domain, providing similarities and contrasts with that of MyosinV. Our biochemical data suggest one potential shared function: the ability to dimerize. We next generated Drosophila mutants with the Dilute domain cleanly deleted. Surprisingly, these mutants are viable and fertile, and CanoeΔDIL protein localizes to adherens junctions and is enriched at junctions under tension. However, when we reduce the dose of CanoeΔDIL protein in a sensitized assay, it becomes clear it does not provide full wildtype function. Further, canoeΔDIL mutants have defects in pupal eye development, another process that requires orchestrated cell rearrangements. Together, these data reveal the robustness in AJ-cytoskeletal connections during multiple embryonic and postembryonic events, and the power of natural selection to maintain protein structure even in robust systems.
Collapse
Affiliation(s)
- Emily D. McParland
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | | | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
12
|
Tsuneura Y, Kawai T, Yamada K, Aoki S, Nakashima M, Eda S, Matsuki T, Nishikawa M, Nagata KI, Enokido Y, Saitsu H, Nakayama A. A Novel Constitutively Active c.98 G > C, p.(R33P) Variant in RAB11A Associated with Intellectual Disability Promotes Neuritogenesis and Affects Oligodendroglial Arborization. Hum Mutat 2023; 2023:8126544. [PMID: 40225156 PMCID: PMC11918571 DOI: 10.1155/2023/8126544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 04/15/2025]
Abstract
Whole exome sequencing/whole genome sequencing has accelerated the identification of novel genes associated with intellectual disabilities (ID), and RAB11A which encodes an endosomal small GTPase is among them. However, consequent neural abnormalities have not been studied, and pathophysiological mechanisms underlying the ID and other clinical features in patients harboring RAB11A variants remain to be clarified. In this study, we report a novel de novo missense variant in RAB11A, NM_004663.5: c.98G > C, which would result in NP_004654.1: p.(R33P) substitution, in a Japanese boy with severe ID and hypomyelination. Biochemical analyses indicated that the RAB11A-R33P is a gain-of-function, constitutively active variant. Accordingly, the introduction of the RAB11A-R33P promoted neurite extension in neurons like a known constitutively active variant Rab11A-Q70L. In addition, the RAB11A-R33P induced excessive branching with thinner processes in oligodendrocytes. These results indicate that the gain-of-function RAB11A-R33P variant in association with ID and hypomyelination affects neural cells and can be deleterious to them, especially to oligodendrocytes, and strongly suggest the pathogenic role of the RAB11A-R33P variant in neurodevelopmental impairments, especially in the hypomyelination.
Collapse
Affiliation(s)
- Yumi Tsuneura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Taeko Kawai
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Central Hospital, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Shintaro Aoki
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
13
|
Thibodeau MC, Harris NJ, Jenkins ML, Parson MAH, Evans JT, Scott MK, Shaw AL, Pokorný D, Leonard TA, Burke JE. Molecular basis for the recruitment of the Rab effector protein WDR44 by the GTPase Rab11. J Biol Chem 2023; 299:102764. [PMID: 36463963 PMCID: PMC9808001 DOI: 10.1016/j.jbc.2022.102764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.
Collapse
Affiliation(s)
- Matthew C Thibodeau
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John T Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Pokorný
- Max Perutz Labs, Department of Structural and Computational Biology, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Thomas A Leonard
- Max Perutz Labs, Department of Structural and Computational Biology, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Niu F, Liu Y, Sun K, Xu S, Dong J, Yu C, Yan K, Wei Z. Autoinhibition and activation mechanisms revealed by the triangular-shaped structure of myosin Va. SCIENCE ADVANCES 2022; 8:eadd4187. [PMID: 36490350 PMCID: PMC9733927 DOI: 10.1126/sciadv.add4187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
As the prototype of unconventional myosin motor family, myosin Va (MyoVa) transport cellular cargos along actin filaments in diverse cellular processes. The off-duty MyoVa adopts a closed and autoinhibited state, which can be relieved by cargo binding. The molecular mechanisms governing the autoinhibition and activation of MyoVa remain unclear. Here, we report the cryo-electron microscopy structure of the two full-length, closed MyoVa heavy chains in complex with 12 calmodulin light chains at 4.78-Å resolution. The MyoVa adopts a triangular structure with multiple intra- and interpolypeptide chain interactions in establishing the closed state with cargo binding and adenosine triphosphatase activity inhibited. Structural, biochemical, and cellular analyses uncover an asymmetric autoinhibition mechanism, in which the cargo-binding sites in the two MyoVa heavy chains are differently protected. Thus, specific and efficient MyoVa activation requires coincident binding of multiple cargo adaptors, revealing an intricate and elegant activity regulation of the motor in response to cargos.
Collapse
Affiliation(s)
- Fengfeng Niu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- SUSTech-HIT Joint PhD Program, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Kang Sun
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shun Xu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayuan Dong
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Kaige Yan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Rep15 interacts with several Rab GTPases and has a distinct fold for a Rab effector. Nat Commun 2022; 13:4262. [PMID: 35871249 PMCID: PMC9308819 DOI: 10.1038/s41467-022-31831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn their GTP-bound (active) form, Rab proteins interact with effector proteins that control downstream signaling. One such Rab15 effector is Rep15, which is known to have a role in receptor recycling from the endocytic recycling compartment but otherwise remains poorly characterized. Here, we report the characterization of the Rep15:Rab15 interaction and identification of Rab3 paralogs and Rab34 as Rep15 interacting partners from a yeast two-hybrid assay. Biochemical validation of the interactions is presented and crystal structures of the Rep15:Rab3B and Rep15:Rab3C complexes provide additional mechanistic insight. We find that Rep15 adopts a globular structure that is distinct from other reported Rab15, Rab3 and Rab34 effectors. Structure-based mutagenesis experiments explain the Rep15:Rab interaction specificity. Rep15 depletion in U138MG glioblastoma cells impairs cell proliferation, cell migration and receptor recycling, underscoring the need for further clarification of the role of Rep15 in cancer.
Collapse
|
16
|
Pinar M, Alonso A, de los Ríos V, Bravo-Plaza I, de la Gandara Á, Galindo A, Arias-Palomo E, Peñalva MÁ. The type V myosin-containing complex HUM is a RAB11 effector powering movement of secretory vesicles. iScience 2022; 25:104514. [PMID: 35754728 PMCID: PMC9213775 DOI: 10.1016/j.isci.2022.104514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
In the apex-directed RAB11 exocytic pathway of Aspergillus nidulans, kinesin-1/KinA conveys secretory vesicles (SVs) to the hyphal tip, where they are transferred to the type V myosin MyoE. MyoE concentrates SVs at an apical store located underneath the PM resembling the presynaptic active zone. A rod-shaped RAB11 effector, UDS1, and the intrinsically disordered and coiled-coil HMSV associate with MyoE in a stable HUM (HMSV-UDS1-MyoE) complex recruited by RAB11 to SVs through an interaction network involving RAB11 and HUM components, with the MyoE globular tail domain (GTD) binding both HMSV and RAB11-GTP and RAB11-GTP binding both the MyoE-GTD and UDS1. UDS1 bridges RAB11-GTP to HMSV, an avid interactor of the MyoE-GTD. The interaction between the UDS1-HMSV sub-complex and RAB11-GTP can be reconstituted in vitro. Ablating UDS1 or HMSV impairs actomyosin-mediated transport of SVs to the apex, resulting in spreading of RAB11 SVs across the apical dome as KinA/microtubule-dependent transport gains prominence.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Alonso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Álvaro de la Gandara
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Ernesto Arias-Palomo
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Á. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Corresponding author
| |
Collapse
|
17
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Pepper I, Galkin VE. Actomyosin Complex. Subcell Biochem 2022; 99:421-470. [PMID: 36151385 PMCID: PMC9710302 DOI: 10.1007/978-3-031-00793-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
19
|
Turowski VR, Ruiz DM, Nascimento AFZ, Millán C, Sammito MD, Juanhuix J, Cremonesi AS, Usón I, Giuseppe PO, Murakami MT. Structure of the class XI myosin globular tail reveals evolutionary hallmarks for cargo recognition in plants. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:522-533. [PMID: 33825712 DOI: 10.1107/s2059798321001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022]
Abstract
The plant-specific class XI myosins (MyoXIs) play key roles at the molecular, cellular and tissue levels, engaging diverse adaptor proteins to transport cargoes along actin filaments. To recognize their cargoes, MyoXIs have a C-terminal globular tail domain (GTD) that is evolutionarily related to those of class V myosins (MyoVs) from animals and fungi. Despite recent advances in understanding the functional roles played by MyoXI in plants, the structure of its GTD, and therefore the molecular determinants for cargo selectivity and recognition, remain elusive. In this study, the first crystal structure of a MyoXI GTD, that of MyoXI-K from Arabidopsis thaliana, was elucidated at 2.35 Å resolution using a low-identity and fragment-based phasing approach in ARCIMBOLDO_SHREDDER. The results reveal that both the composition and the length of the α5-α6 loop are distinctive features of MyoXI-K, providing evidence for a structural stabilizing role for this loop, which is otherwise carried out by a molecular zipper in MyoV GTDs. The crystal structure also shows that most of the characterized cargo-binding sites in MyoVs are not conserved in plant MyoXIs, pointing to plant-specific cargo-recognition mechanisms. Notably, the main elements involved in the self-regulation mechanism of MyoVs are conserved in plant MyoXIs, indicating this to be an ancient ancestral trait.
Collapse
Affiliation(s)
- Valeria R Turowski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Diego M Ruiz
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Andrey F Z Nascimento
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Claudia Millán
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Massimo D Sammito
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Judith Juanhuix
- XALOC Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Aline Sampaio Cremonesi
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Isabel Usón
- Structural Biology, Instituto de Biología Molecular de Barcelona, CSIC, Carrer de Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Priscila O Giuseppe
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| | - Mario T Murakami
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP 13083-100, Brazil
| |
Collapse
|
20
|
Dhekne HS, Yanatori I, Vides EG, Sobu Y, Diez F, Tonelli F, Pfeffer SR. LRRK2-phosphorylated Rab10 sequesters Myosin Va with RILPL2 during ciliogenesis blockade. Life Sci Alliance 2021; 4:4/5/e202101050. [PMID: 33727250 PMCID: PMC7994366 DOI: 10.26508/lsa.202101050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Pathogenic LRRK2 phosphorylation of Rab10 GTPase dramatically redistributes Myosin Va and RILPL2 proteins to the mother centriole and sequesters Myosin Va at that location in a manner that likely interferes with its role in ciliogenesis. Activating mutations in LRRK2 kinase causes Parkinson’s disease. Pathogenic LRRK2 phosphorylates a subset of Rab GTPases and blocks ciliogenesis. Thus, defining novel phospho-Rab interacting partners is critical to our understanding of the molecular basis of LRRK2 pathogenesis. RILPL2 binds with strong preference to LRRK2-phosphorylated Rab8A and Rab10. RILPL2 is a binding partner of the motor protein and Rab effector, Myosin Va. We show here that the globular tail domain of Myosin Va also contains a high affinity binding site for LRRK2-phosphorylated Rab10. In the presence of pathogenic LRRK2, RILPL2 and MyoVa relocalize to the peri-centriolar region in a phosphoRab10-dependent manner. PhosphoRab10 retains Myosin Va over pericentriolar membranes as determined by fluorescence loss in photobleaching microscopy. Without pathogenic LRRK2, RILPL2 is not essential for ciliogenesis but RILPL2 over-expression blocks ciliogenesis in RPE cells independent of tau tubulin kinase recruitment to the mother centriole. These experiments show that LRRK2 generated-phosphoRab10 dramatically redistributes a significant fraction of Myosin Va and RILPL2 to the mother centriole in a manner that likely interferes with Myosin Va’s role in ciliogenesis.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Izumi Yanatori
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Edmundo G Vides
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuriko Sobu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Federico Diez
- Medical Research Council Lab of Protein Phosphorylation and Ubiquitylation, University of Dundee, Dundee, Scotland
| | - Francesca Tonelli
- Medical Research Council Lab of Protein Phosphorylation and Ubiquitylation, University of Dundee, Dundee, Scotland
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
21
|
Rai A, Vang D, Ritt M, Sivaramakrishnan S. Dynamic multimerization of Dab2-Myosin VI complexes regulates cargo processivity while minimizing cortical actin reorganization. J Biol Chem 2021; 296:100232. [PMID: 33372034 PMCID: PMC7948593 DOI: 10.1074/jbc.ra120.012703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Myosin VI ensembles on endocytic cargo facilitate directed transport through a dense cortical actin network. Myosin VI is recruited to clathrin-coated endosomes via the cargo adaptor Dab2. Canonically, it has been assumed that the interactions between a motor and its cargo adaptor are stable. However, it has been demonstrated that the force generated by multiple stably attached motors disrupts local cytoskeletal architecture, potentially compromising transport. In this study, we demonstrate that dynamic multimerization of myosin VI-Dab2 complexes facilitates cargo processivity without significant reorganization of cortical actin networks. Specifically, we find that Dab2 myosin interacting region (MIR) binds myosin VI with a moderate affinity (184 nM) and single-molecule kinetic measurements demonstrate a high rate of turnover (1 s−1) of the Dab2 MIR–myosin VI interaction. Single-molecule motility shows that saturating Dab2-MIR concentration (2 μM) promotes myosin VI homodimerization and processivity with run lengths comparable with constitutive myosin VI dimers. Cargo-mimetic DNA origami scaffolds patterned with Dab2 MIR-myosin VI complexes are weakly processive, displaying sparse motility on single actin filaments and “stop-and-go” motion on a cellular actin network. On a minimal actin cortex assembled on lipid bilayers, unregulated processive movement by either constitutive myosin V or VI dimers results in actin remodeling and foci formation. In contrast, Dab2 MIR–myosin VI interactions preserve the integrity of a minimal cortical actin network. Taken together, our study demonstrates the importance of dynamic motor–cargo association in enabling cargo transportation without disrupting cytoskeletal organization.
Collapse
Affiliation(s)
- Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.
| |
Collapse
|
22
|
Wong S, Weisman LS. Roles and regulation of myosin V interaction with cargo. Adv Biol Regul 2021; 79:100787. [PMID: 33541831 PMCID: PMC7920922 DOI: 10.1016/j.jbior.2021.100787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 05/08/2023]
Abstract
A major question in cell biology is, how are organelles and large macromolecular complexes transported within a cell? Myosin V molecular motors play critical roles in the distribution of organelles, vesicles, and mRNA. Mis-localization of organelles that depend on myosin V motors underlie diseases in the skin, gut, and brain. Thus, the delivery of organelles to their proper destination is important for animal physiology and cellular function. Cargoes attach to myosin V motors via cargo specific adaptor proteins, which transiently bridge motors to their cargoes. Regulation of these adaptor proteins play key roles in the regulation of cargo transport. Emerging studies reveal that cargo adaptors play additional essential roles in the activation of myosin V, and the regulation of actin filaments. Here, we review how motor-adaptor interactions are controlled to regulate the proper loading and unloading of cargoes, as well as roles of adaptor proteins in the regulation of myosin V activity and the dynamics of actin filaments.
Collapse
Affiliation(s)
- Sara Wong
- Cell and Molecular Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Lois S Weisman
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
23
|
Abstract
Unconventional myosins are a large superfamily of actin-based molecular motors that use ATP as fuel to generate mechanical motions/forces. The distinct tails in different unconventional myosin subfamilies can recognize various cargoes including proteins and lipids. Thus, they can play diverse roles in many biological processes such as cellular trafficking, mechanical supports, force sensing, etc. This chapter focuses on some recent advances on the structural studies of how unconventional myosins specifically bind to cargoes with their cargo-binding domains.
Collapse
|
24
|
Dolce LG, Ohbayashi N, Silva DFD, Ferrari AJ, Pirolla RA, Schwarzer ACDA, Zanphorlin LM, Cabral L, Fioramonte M, Ramos CH, Gozzo FC, Fukuda M, Giuseppe POD, Murakami MT. Unveiling the interaction between the molecular motor Myosin Vc and the small GTPase Rab3A. J Proteomics 2020; 212:103549. [DOI: 10.1016/j.jprot.2019.103549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
|
25
|
Unconventional Myosins: How Regulation Meets Function. Int J Mol Sci 2019; 21:ijms21010067. [PMID: 31861842 PMCID: PMC6981383 DOI: 10.3390/ijms21010067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Unconventional myosins are multi-potent molecular motors that are assigned important roles in fundamental cellular processes. Depending on their mechano-enzymatic properties and structural features, myosins fulfil their roles by acting as cargo transporters along the actin cytoskeleton, molecular anchors or tension sensors. In order to perform such a wide range of roles and modes of action, myosins need to be under tight regulation in time and space. This is achieved at multiple levels through diverse regulatory mechanisms: the alternative splicing of various isoforms, the interaction with their binding partners, their phosphorylation, their applied load and the composition of their local environment, such as ions and lipids. This review summarizes our current knowledge of how unconventional myosins are regulated, how these regulatory mechanisms can adapt to the specific features of a myosin and how they can converge with each other in order to ensure the required tight control of their function.
Collapse
|
26
|
Cao QJ, Zhang N, Zhou R, Yao LL, Li XD. The cargo adaptor proteins RILPL2 and melanophilin co-regulate myosin-5a motor activity. J Biol Chem 2019; 294:11333-11341. [PMID: 31175157 DOI: 10.1074/jbc.ra119.007384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/03/2019] [Indexed: 11/06/2022] Open
Abstract
Vertebrate myosin-5a is an ATP-utilizing processive motor associated with the actin network and responsible for the transport and localization of several vesicle cargoes. To transport cargo efficiently and prevent futile ATP hydrolysis, myosin-5a motor function must be tightly regulated. The globular tail domain (GTD) of myosin-5a not only functions as the inhibitory domain but also serves as the binding site for a number of cargo adaptor proteins, including melanophilin (Mlph) and Rab-interacting lysosomal protein-like 2 (RILPL2). In this study, using various biochemical approaches, including ATPase, single-molecule motility, GST pulldown assays, and analytical ultracentrifugation, we demonstrate that the binding of both Mlph and RILPL2 to the GTD of myosin-5a is required for the activation of myosin-5a motor function under physiological ionic conditions. We also found that this activation is regulated by the small GTPase Rab36, a binding partner of RILPL2. In summary, our results indicate that RILPL2 is required for Mlph-mediated activation of Myo5a motor activity under physiological conditions and that Rab36 promotes this activation. We propose that Rab36 stimulates RILPL2 to interact with the myosin-5a GTD; this interaction then induces exposure of the Mlph-binding site in the GTD, enabling Mlph to interact with the GTD and activate myosin-5a motor activity.
Collapse
Affiliation(s)
- Qing-Juan Cao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Zhou
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Myosin Va and spermine synthase: partners in exosome transport. Biosci Rep 2019; 39:BSR20190326. [PMID: 30967493 PMCID: PMC6488853 DOI: 10.1042/bsr20190326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
A recent paper in Bioscience Reports (BSR20182189) describes the discovery of an
interaction between the motor protein myosin Va and the metabolic enzyme
spermine synthase. Myosin Va is a molecular motor which plays a key role in
vesicle transport. Mutations in the gene which encodes this protein are
associated with Griscelli syndrome type 1 and the ‘dilute’
phenotype in animals. Spermine synthase catalyzes the conversion of spermidine
to spermine. This largely cytoplasmic enzyme can also be localized to the
soluble fraction in exosomes. Mutations in the spermine synthase gene are
associated with Snyder Robinson mental retardation syndrome. The interaction
between the two proteins was detected using the yeast two hybrid method and
verified by microscale thermophoresis of recombinant proteins. Knockdown of the
MYO5A gene reduced the expression of mRNA coding for
spermine synthase. The amount of this transcript was also reduced in cells
derived from a patient with Griscelli syndrome type 1. This suggests that, in
addition to a direct physical interaction between the two proteins, myosin Va
also modulates the transcription of the spermine synthase gene. The mechanism
for this modulation is currently unknown. These findings have implications for
Griscelli syndrome type 1 and Snyder Robinson mental retardation syndrome. They
also suggest that interactions between myosin Va and soluble exosome proteins
such as spermine synthase may be important in the mechanism of exosome
transport.
Collapse
|
28
|
Tang K, Li Y, Yu C, Wei Z. Structural mechanism for versatile cargo recognition by the yeast class V myosin Myo2. J Biol Chem 2019; 294:5896-5906. [PMID: 30804213 PMCID: PMC6463705 DOI: 10.1074/jbc.ra119.007550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
Class V myosins are actin-dependent motors, which recognize numerous cellular cargos mainly via the C-terminal globular tail domain (GTD). Myo2, a yeast class V myosin, can transport a broad range of organelles. However, little is known about the capacity of Myo2-GTD to recognize such a diverse array of cargos specifically at the molecular level. Here, we solved crystal structures of Myo2-GTD (at 1.9-3.1 Å resolutions) in complex with three cargo adaptor proteins: Smy1 (for polarization of secretory vesicles), Inp2 (for peroxisome transport), and Mmr1 (for mitochondria transport). The structures of Smy1- and Inp2-bound Myo2-GTD, along with site-directed mutagenesis experiments, revealed a binding site in subdomain-I having a hydrophobic groove with high flexibility enabling Myo2-GTD to accommodate different protein sequences. The Myo2-GTD-Mmr1 complex structure confirmed and complemented a previously identified mitochondrion/vacuole-specific binding region. Moreover, differences between the conformations and locations of cargo-binding sites identified here for Myo2 and those reported for mammalian MyoVA (MyoVA) suggest that class V myosins potentially have co-evolved with their specific cargos. Our structural and biochemical analysis not only uncovers a molecular mechanism that explains the diverse cargo recognition by Myo2-GTD, but also provides structural information useful for future functional studies of class V myosins in cargo transport.
Collapse
Affiliation(s)
- Kun Tang
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055 and , To whom correspondence may be addressed. E-mail:
| | - Yujie Li
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055 and
| | - Cong Yu
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055 and ,the Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China 518055
| | - Zhiyi Wei
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055 and , Member of the Neural and Cognitive Sciences Research Center, SUSTech. To whom correspondence may be addressed. Tel.:
86-88018411; E-mail:
| |
Collapse
|
29
|
Motor-cargo adaptors at the organelle-cytoskeleton interface. Curr Opin Cell Biol 2019; 59:16-23. [PMID: 30952037 DOI: 10.1016/j.ceb.2019.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023]
Abstract
Cytoskeletal motors of the dynein, kinesin and myosin superfamilies maintain and adapt subcellular organelle organization to meet functional demands and support the vesicular transport of material between organelles. These motors require the capacity to specifically recognize the vesicle/organelle to be transported and are capable of selective recognition of multiple cargo. Recent studies have begun to uncover the molecular basis for motor recruitment and have highlighted the role of organelle-associated 'cargo-adaptor' proteins in cellular transport. These adaptors possess sequences and/or structural features that enable both motor recruitment and activation from regulated, inactive, states to enable motility on the cytoskeleton. Motor-cargo adaptor interactions define a key organelle-cytoskeleton interface, acting as crucial regulatory hubs to enable the cell to finely control membrane trafficking and organelle dynamics. Understanding the molecular basis of these interactions may offer new opportunities to control and manipulate cytoskeletal and organelle dynamics for the development of new research tools and potentially therapeutics.
Collapse
|
30
|
Goto-Ito S, Morooka N, Yamagata A, Sato Y, Sato K, Fukai S. Structural basis of guanine nucleotide exchange for Rab11 by SH3BP5. Life Sci Alliance 2019; 2:e201900297. [PMID: 30872413 PMCID: PMC6419104 DOI: 10.26508/lsa.201900297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/30/2023] Open
Abstract
The Rab GTPase family is a major regulator of membrane traffic in eukaryotic cells. The Rab11 subfamily plays important roles in specific trafficking events such as exocytosis, endosomal recycling, and cytokinesis. SH3BP5 and SH3BP5-like (SH3BP5L) proteins have recently been found to serve as guanine nucleotide exchange factors (GEF) for Rab11. Here, we report the crystal structures of the SH3BP5 GEF domain alone and its complex with Rab11a. SH3BP5 exhibits a V-shaped structure comprising two coiled coils. The coiled coil composed of α1, and α4 is solely responsible for the Rab11a binding and GEF activity. SH3BP5 pulls out and deforms switch I of Rab11a so as to facilitate the GDP release from Rab11a. SH3BP5 interacts with the N-terminal region, switch I, interswitch, and switch II of Rab11a. SH3BP5 and SH3BP5L localize to Rab11-positive recycling endosomes and show GEF activity for all of the Rab11 family but not for Rab14. Fluorescence-based GEF assays combined with site-directed mutagenesis reveal the essential interactions between SH3BP5 and Rab11 family proteins for the GEF reaction on recycling endosomes.
Collapse
Affiliation(s)
- Sakurako Goto-Ito
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, Japan
| | - Nobukatsu Morooka
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Atsushi Yamagata
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yusuke Sato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Shuya Fukai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
31
|
Myosin Va interacts with the exosomal protein spermine synthase. Biosci Rep 2019; 39:BSR20182189. [PMID: 30733278 PMCID: PMC6395372 DOI: 10.1042/bsr20182189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Myosin Va (MyoVa) is an actin-based molecular motor that plays key roles in the final stages of secretory pathways, including neurotransmitter release. Several studies have addressed how MyoVa coordinates the trafficking of secretory vesicles, but why this molecular motor is found in exosomes is still unclear. In this work, using a yeast two-hybrid screening system, we identified the direct interaction between the globular tail domain (GTD) of MyoVa and four protein components of exosomes: the WD repeat-containing protein 48 (WDR48), the cold shock domain-containing protein E1 (CSDE1), the tandem C2 domain-containing protein 1 (TC2N), and the enzyme spermine synthase (SMS). The interaction between the GTD of MyoVa and SMS was further validated in vitro and displayed a Kd in the low micromolar range (3.5 ± 0.5 µM). SMS localized together with MyoVa in cytoplasmic vesicles of breast cancer MCF-7 and neuroblastoma SH-SY5Y cell lines, known to produce exosomes. Moreover, MYO5A knockdown decreased the expression of SMS gene and rendered the distribution of SMS protein diffuse, supporting a role for MyoVa in SMS expression and targeting.
Collapse
|
32
|
Nuckels RJ, Nice CC, García DM. Duplicated Myosin V Genes in Teleosts Show Evolutionary Rate Variations among the Motor and Cargo-Binding Domains. Genome Biol Evol 2019; 11:415-430. [PMID: 30496538 PMCID: PMC6372264 DOI: 10.1093/gbe/evy258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
We analyzed evolutionary rates of conserved, duplicated myosin V (myo5) genes in nine teleost species to examine the outcomes of duplication events. Syntenic analysis and ancestral chromosome mapping suggest one tandem gene duplication event leading to the appearance of myo5a and myo5c, two rounds of whole genome duplication for vertebrates, and an additional round of whole genome duplication for teleosts account for the presence and location of the myo5 genes and their duplicates in teleosts and other vertebrates and the timing of the duplication events. Phylogenetic analyses reveal a previously unidentified myo5 clade that we refer to now as myo5bb. Analysis using dN/dS rate comparisons revealed large regions within duplicated myo5 genes that are highly conserved. Codons identified in other studies as encoding functionally important portions of the Myo5a and Myo5b proteins are shown to be highly conserved within the newly identified myo5bb clade and in other myo5 duplicates. As much as 30% of 319 codons encoding the cargo-binding domain in the myo5aa genes are conserved in all three codon positions in nine teleost species. For the myo5bb cargo-binding domain, 6.6% of 336 codons have zero substitutions in all nine teleost species. Using molecular evolution assays, we identify the myo5bb branch as being subject to evolutionary rate variation with the cargo-binding domain, having 20% of the sites under positive selection and the motor domain having 8% of its sites under positive selection. The high number of invariant codons coupled with relatively high dN/dS values in the region of the myo5 genes encoding the ATP-binding domain suggests the encoded proteins retain function and may have acquired novel functions associated with changes to the cargo-binding domain.
Collapse
Affiliation(s)
- Richard J Nuckels
- Department of Biology, Texas State University, San Marcos.,Department of Biology, The University of Texas at San Antonio
| | - Chris C Nice
- Department of Biology, Texas State University, San Marcos
| | - Dana M García
- Department of Biology, Texas State University, San Marcos
| |
Collapse
|
33
|
Regulation of Myosin-5b by Rab11a and the Rab11 family interacting protein 2. Biosci Rep 2019; 39:BSR20181252. [PMID: 30545898 PMCID: PMC6328864 DOI: 10.1042/bsr20181252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mammalian myosin-5b (Myo5b) plays a critical role in the recycling of endosomes to the plasma membrane via the interactions with Rab11a and the Rab11 family interacting protein 2 (FIP2). However, it remains unclear on how Rab11a and FIP2 are coordinated in tethering Myo5b with the vesicles and activating the motor function of Myo5b. In the present study, we show that Rab11a binds to the globular tail domain (GTD) of Myo5b and this binding abolishes the head–GTD interaction of Myo5b, thus activating the motor function of Myo5b. On the other hand, FIP2 directly interacts with both Rab11a and the tail of Myo5b, and the binding of FIP2 to Myo5b does not affect Myo5b motor function. Moreover, Rab11a displays higher affinity to FIP2 than to Myo5b, suggesting that Rab11a binds preferentially to FIP2 than to Myo5b. Based on the current findings, we propose that the association of Myo5b with vesicles is mediated by FIP2, which bridges Myo5b and the membrane-bound Rab11a, whereas the motor function of Myo5b is regulated by Rab11a.
Collapse
|
34
|
Perico C, Sparkes I. Plant organelle dynamics: cytoskeletal control and membrane contact sites. THE NEW PHYTOLOGIST 2018; 220:381-394. [PMID: 30078196 DOI: 10.1111/nph.15365] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/10/2018] [Indexed: 05/22/2023]
Abstract
Contents Summary 381 I. Introduction 381 II. Basic movement characteristics 382 III. Actin and associated motors, myosins, play a primary role in plant organelle movement and positioning 382 IV. Mechanisms of myosin recruitment: a tightly regulated system? 384 V. Microtubules, associated motors and interplay with actin 386 VI. Role of organelle interactions: tales of tethers 387 VII. Summary model to describe organelle movement in higher plants 390 VIII. Why is organelle movement important? 390 IX. Conclusions and future perspectives 391 Acknowledgements 391 References 391 SUMMARY: Organelle movement and positioning are correlated with plant growth and development. Movement characteristics are seemingly erratic yet respond to external stimuli including pathogens and light. Given these clear correlations, we still do not understand the specific roles that movement plays in these processes. There are few exceptions including organelle inheritance during cell division and photorelocation of chloroplasts to prevent photodamage. The molecular and biophysical components that drive movement can be broken down into cytoskeletal components, motor proteins and tethers, which allow organelles to physically interact with one another. Our understanding of these components and concepts has exploded over the past decade, with recent technological advances allowing an even more in-depth profiling. Here, we provide an overview of the cytoskeletal and tethering components and discuss the mechanisms behind organelle movement in higher plants.
Collapse
Affiliation(s)
- Chiara Perico
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Imogen Sparkes
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
35
|
Kumar AP, Lukman S. Allosteric binding sites in Rab11 for potential drug candidates. PLoS One 2018; 13:e0198632. [PMID: 29874286 PMCID: PMC5991966 DOI: 10.1371/journal.pone.0198632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
36
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2018. [PMID: 28632484 DOI: 10.1080/215412481336191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
- b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
37
|
Abstract
The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport a wide variety of cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor.
Collapse
Affiliation(s)
- Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
38
|
Dhekne HS, Pylypenko O, Overeem AW, Zibouche M, Ferreira RJ, van der Velde KJ, Rings EHHM, Posovszky C, van der Sluijs P, Swertz MA, Houdusse A, van IJzendoorn SCD. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum Mutat 2018; 39:333-344. [PMID: 29266534 PMCID: PMC5838515 DOI: 10.1002/humu.23386] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open‐access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non‐MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno‐/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID‐associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olena Pylypenko
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Arend W Overeem
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malik Zibouche
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rosaria J Ferreira
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Joeri van der Velde
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Morris A Swertz
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Zhang N, Yao LL, Li XD. Regulation of class V myosin. Cell Mol Life Sci 2018; 75:261-273. [PMID: 28730277 PMCID: PMC11105390 DOI: 10.1007/s00018-017-2599-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Class V myosin (myosin-5) is a molecular motor that functions as an organelle transporter. The activation of myosin-5's motor function has long been known to be associated with a transition from the folded conformation in the off-state to the extended conformation in the on-state, but only recently have we begun to understand the underlying mechanism. The globular tail domain (GTD) of myosin-5 has been identified as the inhibitory domain and has recently been shown to function as a dimer in regulating the motor function. The folded off-state of myosin-5 is stabilized by multiple intramolecular interactions, including head-GTD interactions, GTD-GTD interactions, and interactions between the GTD and the C-terminus of the first coiled-coil segment. Any cellular factor that affects these intramolecular interactions and thus the stability of the folded conformation of myosin-5 would be expected to regulate myosin-5 motor function. Both the adaptor proteins of myosin-5 and Ca2+ are potential regulators of myosin-5 motor function, because they can destabilize its folded conformation. A combination of these regulators provides a versatile scheme in regulating myosin-5 motor function in the cell.
Collapse
Affiliation(s)
- Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Real-Hohn A, Provance DW, Gonçalves RB, Denani CB, de Oliveira AC, Salerno VP, Oliveira Gomes AM. Impairing the function of MLCK, myosin Va or myosin Vb disrupts Rhinovirus B14 replication. Sci Rep 2017; 7:17153. [PMID: 29215055 PMCID: PMC5719429 DOI: 10.1038/s41598-017-17501-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
Together, the three human rhinovirus (RV) species are the most frequent cause of the common cold. Because of their high similarity with other viral species of the genus Enterovirus, within the large family Picornaviridae, studies on RV infectious activities often offer a less pathogenic model for more aggressive enteroviruses, e.g. poliovirus or EV71. Picornaviruses enter via receptor mediated endocytosis and replicate in the cytosol. Most of them depend on functional F-actin, Rab proteins, and probably motor proteins. To assess the latter, we evaluated the role of myosin light chain kinase (MLCK) and two myosin V isoforms (Va and Vb) in RV-B14 infection. We report that ML-9, a very specific MLCK inhibitor, dramatically reduced RV-B14 entry. We also demonstrate that RV-B14 infection in cells expressing dominant-negative forms of myosin Va and Vb was impaired after virus entry. Using immunofluorescent localization and immunoprecipitation, we show that myosin Va co-localized with RV-B14 exclusively after viral entry (15 min post infection) and that myosin Vb was present in the clusters of newly synthesized RNA in infected cells. These clusters, observed at 180 min post infection, are reminiscent of replication sites. Taken together, these results identify myosin light chain kinase, myosin Va and myosin Vb as new players in RV-B14 infection that participate directly or indirectly in different stages of the viral cycle.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Universidade Federal Rio do Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - D William Provance
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Diseases of Neglected Populations, Oswaldo Cruz Foundation/Fiocruz, Rio de Janeiro, Brazil
| | - Rafael Braga Gonçalves
- Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Caio Bidueira Denani
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Andréa Cheble de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Verônica P Salerno
- Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Universidade Federal Rio do Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco Oliveira Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
41
|
Loss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence. Br J Cancer 2017; 117:1689-1701. [PMID: 29024942 PMCID: PMC5729446 DOI: 10.1038/bjc.2017.352] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognised to have a major role in trafficking and polarisation of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. Methods: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of Myosin Vb (MYO5B) and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. Results: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common downregulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease-, and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. Conclusions: Our data identify MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy.
Collapse
|
42
|
Inoshita M, Mima J. Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system. J Biol Chem 2017; 292:18500-18517. [PMID: 28939769 DOI: 10.1074/jbc.m117.811356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Membrane tethering is a fundamental process essential for the compartmental specificity of intracellular membrane trafficking in eukaryotic cells. Rab-family small GTPases and specific sets of Rab-interacting effector proteins, including coiled-coil tethering proteins and multisubunit tethering complexes, are reported to be responsible for membrane tethering. However, whether and how these key components directly and specifically tether subcellular membranes remains enigmatic. Using chemically defined proteoliposomal systems reconstituted with purified human Rab proteins and synthetic liposomal membranes to study the molecular basis of membrane tethering, we established here that Rab-family GTPases have a highly conserved function to directly mediate membrane tethering, even in the absence of any types of Rab effectors such as the so-called tethering proteins. Moreover, we demonstrate that membrane tethering mediated by endosomal Rab11a is drastically and selectively stimulated by its cognate Rab effectors, class V myosins (Myo5A and Myo5B), in a GTP-dependent manner. Of note, Myo5A and Myo5B exclusively recognized and cooperated with the membrane-anchored form of their cognate Rab11a to support membrane tethering mediated by trans-Rab assemblies on opposing membranes. Our findings support the novel concept that Rab-family proteins provide a bona fide membrane tether to physically and specifically link two distinct lipid bilayers of subcellular membranes. They further indicate that Rab-interacting effector proteins, including class V myosins, can regulate these Rab-mediated membrane-tethering reactions.
Collapse
Affiliation(s)
- Motoki Inoshita
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji Mima
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Heissler SM, Chinthalapudi K, Sellers JR. Kinetic signatures of myosin-5B, the motor involved in microvillus inclusion disease. J Biol Chem 2017; 292:18372-18385. [PMID: 28882893 DOI: 10.1074/jbc.m117.801456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Indexed: 11/06/2022] Open
Abstract
Myosin-5B is a ubiquitous molecular motor that transports cargo vesicles of the endomembrane system in intracellular recycling pathways. Myosin-5B malfunction causes the congenital enteropathy microvillus inclusion disease, underlining its importance in cellular homeostasis. Here we describe the interaction of myosin-5B with F-actin, nucleotides, and the pyrazolopyrimidine compound myoVin-1. We show that single-headed myosin-5B is an intermediate duty ratio motor with a kinetic ATPase cycle that is rate-limited by the release of phosphate. The presence of a second head generates strain and gating in the myosin-5B dimer that alters the kinetic signature by reducing the actin-activated ADP release rate to become rate-limiting. This kinetic transition into a high-duty ratio motor is a prerequisite for the proposed transport function of myosin-5B in cellular recycling pathways. Moreover, we show that the small molecule compound myoVin-1 inhibits the enzymatic and functional activity of myosin-5B in vitro Partial inhibition of the actin-activated steady-state ATPase activity and sliding velocity suggests that caution should be used when probing the effect of myoVin-1 on myosin-5-dependent transport processes in cells.
Collapse
Affiliation(s)
- Sarah M Heissler
- From the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015 and
| | - Krishna Chinthalapudi
- the Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, Scripps Research Institute, Jupiter, Florida 33458
| | - James R Sellers
- From the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8015 and
| |
Collapse
|
44
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2017. [PMID: 28632484 PMCID: PMC5902227 DOI: 10.1080/21541248.2017.1336191] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France.,b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
45
|
Welz T, Kerkhoff E. Exploring the iceberg: Prospects of coordinated myosin V and actin assembly functions in transport processes. Small GTPases 2017; 10:111-121. [PMID: 28394692 DOI: 10.1080/21541248.2017.1281863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Spir actin nucleators and myosin V motor proteins were recently discovered to coexist in a protein complex. The direct interaction allows the coordinated activation of actin motor proteins and actin filament track generation at vesicle membranes. By now the cooperation of myosin V (MyoV) motors and Spir actin nucleation function has only been shown in the exocytic transport of Rab11 vesicles in metaphase mouse oocytes. Next to Rab11, myosin V motors however interact with a variety of Rab GTPases including Rab3, Rab8 and Rab10. As a common theme most of the MyoV interacting Rab GTPases function at different steps along the exocytic transport routes. We here summarize the different transport functions of class V myosins and provide as proof of principle data showing a colocalization of Spir actin nucleators and MyoVa at Rab8a vesicles. This suggests that besides Rab11/MyoV transport also the Rab8/MyoV and possibly other MyoV transport processes recruit Spir actin filament nucleation function.
Collapse
Affiliation(s)
- Tobias Welz
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| | - Eugen Kerkhoff
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| |
Collapse
|
46
|
Jin Y, Richards NG, Waltho JP, Blackburn GM. Metal Fluorides as Analogues for Studies on Phosphoryl Transfer Enzymes. Angew Chem Int Ed Engl 2017; 56:4110-4128. [PMID: 27862756 DOI: 10.1002/anie.201606474] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 12/27/2022]
Abstract
The 1994 structure of a transition-state analogue with AlF4- and GDP complexed to G1α, a small G protein, heralded a new field of research into the structure and mechanism of enzymes that manipulate the transfer of phosphoryl (PO3- ) groups. The number of enzyme structures in the PDB containing metal fluorides (MFx ) as ligands that imitate either a phosphoryl or a phosphate group was 357 at the end of 2016. They fall into three distinct geometrical classes: 1) Tetrahedral complexes based on BeF3- that mimic ground-state phosphates; 2) octahedral complexes, primarily based on AlF4- , which mimic "in-line" anionic transition states for phosphoryl transfer; and 3) trigonal bipyramidal complexes, represented by MgF3- and putative AlF30 moieties, which mimic the geometry of the transition state. The interpretation of these structures provides a deeper mechanistic understanding into the behavior and manipulation of phosphate monoesters in molecular biology. This Review provides a comprehensive overview of these structures, their uses, and their computational development.
Collapse
Affiliation(s)
- Yi Jin
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | - G Michael Blackburn
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
47
|
Jin Y, Richards NG, Waltho JP, Blackburn GM. Metallfluoride als Analoga für Studien an Phosphoryltransferenzymen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201606474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi Jin
- Department of Chemistry; University of York; York YO10 5DD Großbritannien
| | - Nigel G. Richards
- School of Chemistry; Cardiff University; Cardiff CF10 3AT Großbritannien
| | | | - G. Michael Blackburn
- Department of Molecular Biology and Biotechnology; University of Sheffield; Sheffield S10 2TN Großbritannien
| |
Collapse
|
48
|
Metal Fluorides: Tools for Structural and Computational Analysis of Phosphoryl Transfer Enzymes. Top Curr Chem (Cham) 2017; 375:36. [PMID: 28299727 PMCID: PMC5480424 DOI: 10.1007/s41061-017-0130-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/01/2017] [Indexed: 10/31/2022]
Abstract
The phosphoryl group, PO3-, is the dynamic structural unit in the biological chemistry of phosphorus. Its transfer from a donor to an acceptor atom, with oxygen much more prevalent than nitrogen, carbon, or sulfur, is at the core of a great majority of enzyme-catalyzed reactions involving phosphate esters, anhydrides, amidates, and phosphorothioates. The serendipitous discovery that the phosphoryl group could be labeled by "nuclear mutation," by substitution of PO3- by MgF3- or AlF4-, has underpinned the application of metal fluoride (MF x ) complexes to mimic transition states for enzymatic phosphoryl transfer reactions, with sufficient stability for experimental analysis. Protein crystallography in the solid state and 19F NMR in solution have enabled direct observation of ternary and quaternary protein complexes embracing MF x transition state models with precision. These studies have underpinned a radically new mechanistic approach to enzyme catalysis for a huge range of phosphoryl transfer processes, as varied as kinases, phosphatases, phosphomutases, and phosphohydrolases. The results, without exception, have endorsed trigonal bipyramidal geometry (tbp) for concerted, "in-line" stereochemistry of phosphoryl transfer. QM computations have established the validity of tbp MF x complexes as reliable models for true transition states, delivering similar bond lengths, coordination to essential metal ions, and virtually identical hydrogen bond networks. The emergence of protein control of reactant orbital overlap between bond-forming species within enzyme transition states is a new challenging theme for wider exploration.
Collapse
|
49
|
Assis LHP, Silva-Junior RMP, Dolce LG, Alborghetti MR, Honorato RV, Nascimento AFZ, Melo-Hanchuk TD, Trindade DM, Tonoli CCC, Santos CT, Oliveira PSL, Larson RE, Kobarg J, Espreafico EM, Giuseppe PO, Murakami MT. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L. Sci Rep 2017; 7:43692. [PMID: 28266547 PMCID: PMC5339802 DOI: 10.1038/srep43692] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes.
Collapse
Affiliation(s)
- L H P Assis
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - R M P Silva-Junior
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - L G Dolce
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - M R Alborghetti
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - R V Honorato
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - A F Z Nascimento
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - T D Melo-Hanchuk
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - D M Trindade
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - C C C Tonoli
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - C T Santos
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - P S L Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - R E Larson
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - J Kobarg
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - E M Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - P O Giuseppe
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - M T Murakami
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| |
Collapse
|
50
|
Abstract
Rab proteins regulate vesicular transport in eukaryotic cells and establish connections to various cellular structures and processes by interacting with so-called effector molecules. Several of these effectors are known to not only bind a single Rab protein, but to be able to bind multiple different Rabs simultaneously. In this review we will give a short overview of effectors in general and (putative) functions of the aforementioned multivalent Rab:effector interactions.
Collapse
Affiliation(s)
- Amrita Rai
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|