1
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
2
|
Singh M, Indurthi DC, Mittal L, Auerbach A, Asthana S. Conformational dynamics of a nicotinic receptor neurotransmitter site. eLife 2024; 13:RP92418. [PMID: 39693137 DOI: 10.7554/elife.92418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α-δ nicotinic acetylcholine receptor neurotransmitter site. Using four agonists spanning three η-classes, the simulations reveal the structural basis of the L→H transition where: the agonist pivots around its cationic center ('flip'), loop C undergoes staged downward displacement ('flop'), and a compact, stable high-affinity pocket forms ('fix'). The η derived from binding energies calculated in silico matched exact values measured experimentally in vitro. Intermediate states of the orthosteric site during receptor activation are apparent only in simulations, but could potentially be observed experimentally via time-resolved structural studies.
Collapse
Affiliation(s)
- Mrityunjay Singh
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| | - Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Lovika Mittal
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center,Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
3
|
Cecchini M, Corringer PJ, Changeux JP. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level. Annu Rev Biochem 2024; 93:339-366. [PMID: 38346274 DOI: 10.1146/annurev-biochem-030122-033116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo-electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.
Collapse
Affiliation(s)
- Marco Cecchini
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France
| | - Jean-Pierre Changeux
- Department of Neuroscience, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France;
| |
Collapse
|
4
|
Bharambe N, Li Z, Seiferth D, Balakrishna AM, Biggin PC, Basak S. Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment. Nat Commun 2024; 15:2967. [PMID: 38580666 PMCID: PMC10997623 DOI: 10.1038/s41467-024-47370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 - 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.
Collapse
Affiliation(s)
- Nikhil Bharambe
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhuowen Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - David Seiferth
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
5
|
Felt K, Stauffer M, Salas-Estrada L, Guzzo PR, Xie D, Huang J, Filizola M, Chakrapani S. Structural basis for partial agonism in 5-HT 3A receptors. Nat Struct Mol Biol 2024; 31:598-609. [PMID: 38177669 DOI: 10.1038/s41594-023-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/26/2023] [Indexed: 01/06/2024]
Abstract
Hyperactivity of serotonin 3 receptors (5-HT3R) underlies pathologies associated with irritable bowel syndrome and chemotherapy-induced nausea and vomiting. Setrons, a class of high-affinity competitive antagonists, are used in the treatment of these conditions. Although generally effective for chemotherapy-induced nausea and vomiting, the use of setrons for treating irritable bowel syndrome has been impaired by adverse side effects. Partial agonists are now being considered as an alternative strategy, with potentially less severe side effects than full antagonists. However, a structural understanding of how these ligands work is lacking. Here, we present high-resolution cryogenic electron microscopy structures of the mouse 5-HT3AR in complex with partial agonists (SMP-100 and ALB-148471) captured in pre-activated and open-like conformational states. Molecular dynamics simulations were used to assess the stability of drug-binding poses and interactions with the receptor over time. Together, these studies reveal mechanisms for the functional differences between orthosteric partial agonists, full agonists and antagonists of the 5-HT3AR.
Collapse
Affiliation(s)
- Kevin Felt
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Madeleine Stauffer
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter R Guzzo
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Dejian Xie
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Jinkun Huang
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Thompson MJ, Mansoub Bekarkhanechi F, Ananchenko A, Nury H, Baenziger JE. A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor. Nat Commun 2024; 15:1803. [PMID: 38413583 PMCID: PMC10899235 DOI: 10.1038/s41467-024-46028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Synaptic receptors respond to neurotransmitters by opening an ion channel across the post-synaptic membrane to elicit a cellular response. Here we use recent Torpedo acetylcholine receptor structures and functional measurements to delineate a key feature underlying allosteric communication between the agonist-binding extracellular and channel-gating transmembrane domains. Extensive mutagenesis at this inter-domain interface re-affirms a critical energetically coupled role for the principal α subunit β1-β2 and M2-M3 loops, with agonist binding re-positioning a key β1-β2 glutamate/valine to facilitate the outward motions of a conserved M2-M3 proline to open the channel gate. Notably, the analogous structures in non-α subunits adopt a locally active-like conformation in the apo state even though each L9' hydrophobic gate residue in each pore-lining M2 α-helix is closed. Agonist binding releases local conformational heterogeneity transitioning all five subunits into a conformationally symmetric open state. A release of conformational heterogeneity provides a framework for understanding allosteric communication in pentameric ligand-gated ion channels.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Anna Ananchenko
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
7
|
Bergh C, Rovšnik U, Howard R, Lindahl E. Discovery of lipid binding sites in a ligand-gated ion channel by integrating simulations and cryo-EM. eLife 2024; 12:RP86016. [PMID: 38289224 PMCID: PMC10945520 DOI: 10.7554/elife.86016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Ligand-gated ion channels transduce electrochemical signals in neurons and other excitable cells. Aside from canonical ligands, phospholipids are thought to bind specifically to the transmembrane domain of several ion channels. However, structural details of such lipid contacts remain elusive, partly due to limited resolution of these regions in experimental structures. Here, we discovered multiple lipid interactions in the channel GLIC by integrating cryo-electron microscopy and large-scale molecular simulations. We identified 25 bound lipids in the GLIC closed state, a conformation where none, to our knowledge, were previously known. Three lipids were associated with each subunit in the inner leaflet, including a buried interaction disrupted in mutant simulations. In the outer leaflet, two intrasubunit sites were evident in both closed and open states, while a putative intersubunit site was preferred in open-state simulations. This work offers molecular details of GLIC-lipid contacts particularly in the ill-characterized closed state, testable hypotheses for state-dependent binding, and a multidisciplinary strategy for modeling protein-lipid interactions.
Collapse
Affiliation(s)
- Cathrine Bergh
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
| | - Urška Rovšnik
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Rebecca Howard
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Erik Lindahl
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of TechnologyStockholmSweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| |
Collapse
|
8
|
Indurthi DC, Auerbach A. Agonist efficiency links binding and gating in a nicotinic receptor. eLife 2023; 12:e86496. [PMID: 37399234 DOI: 10.7554/elife.86496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Receptors signal by switching between resting (C) and active (O) shapes ('gating') under the influence of agonists. The receptor's maximum response depends on the difference in agonist binding energy, O minus C. In nicotinic receptors, efficiency (η) represents the fraction of agonist binding energy applied to a local rearrangement (an induced fit) that initiates gating. In this receptor, free energy changes in gating and binding can be interchanged by the conversion factor η. Efficiencies estimated from concentration-response curves (23 agonists, 53 mutations) sort into five discrete classes (%): 0.56 (17), 0.51(32), 0.45(13), 0.41(26), and 0.31(12), implying that there are 5 C versus O binding site structural pairs. Within each class efficacy and affinity are corelated linearly, but multiple classes hide this relationship. η unites agonist binding with receptor gating and calibrates one link in a chain of coupled domain rearrangements that comprises the allosteric transition of the protein.
Collapse
Affiliation(s)
- Dinesh C Indurthi
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, United States
| |
Collapse
|
9
|
Illumination of a progressive allosteric mechanism mediating the glycine receptor activation. Nat Commun 2023; 14:795. [PMID: 36781912 PMCID: PMC9925812 DOI: 10.1038/s41467-023-36471-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Pentameric ligand-gated ion channel mediate signal transduction at chemical synapses by transiting between resting and open states upon neurotransmitter binding. Here, we investigate the gating mechanism of the glycine receptor fluorescently labeled at the extracellular-transmembrane interface by voltage-clamp fluorometry (VCF). Fluorescence reports a glycine-elicited conformational change that precedes pore opening. Low concentrations of glycine, partial agonists or specific mixtures of glycine and strychnine trigger the full fluorescence signal while weakly activating the channel. Molecular dynamic simulations of a partial agonist bound-closed Cryo-EM structure show a highly dynamic nature: a marked structural flexibility at both the extracellular-transmembrane interface and the orthosteric site, generating docking properties that recapitulate VCF data. This work illuminates a progressive propagating transition towards channel opening, highlighting structural plasticity within the mechanism of action of allosteric effectors.
Collapse
|
10
|
Nutt DJ, Tyacke RJ, Spriggs M, Jacoby V, Borthwick AD, Belelli D. Functional Alternatives to Alcohol. Nutrients 2022; 14:nu14183761. [PMID: 36145137 PMCID: PMC9505959 DOI: 10.3390/nu14183761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The consumption of alcohol is associated with well-known health harms and many governments worldwide are actively engaged in devising approaches to reduce them. To this end, a common proposed strategy aims at reducing alcohol consumption. This approach has led to the development of non-alcoholic drinks, which have been especially welcome by younger, wealthier, health-conscious consumers, who have been turning away from alcohol to look toward alternatives. However, a drawback of non-alcoholic drinks is that they do not facilitate social interaction in the way alcohol does, which is the main reason behind social drinking. Therefore, an alternative approach is to develop functional drinks that do not use alcohol yet mimic the positive, pro-social effects of alcohol without the associated harms. This article will discuss (1) current knowledge of how alcohol mediates its effects in the brain, both the desirable, e.g., antistress to facilitate social interactions, and the harmful ones, with a specific focus on the pivotal role played by the gamma-aminobutyric acid (GABA) neurotransmitter system and (2) how this knowledge can be exploited to develop functional safe alternatives to alcohol using either molecules already existing in nature or synthetic ones. This discussion will be complemented by an analysis of the regulatory challenges associated with the novel endeavour of bringing safe, functional alternatives to alcohol from the bench to bars.
Collapse
|
11
|
Structural and dynamic mechanisms of GABA A receptor modulators with opposing activities. Nat Commun 2022; 13:4582. [PMID: 35933426 PMCID: PMC9357065 DOI: 10.1038/s41467-022-32212-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels abundant in the central nervous system and are prolific drug targets for treating anxiety, sleep disorders and epilepsy. Diverse small molecules exert a spectrum of effects on γ-aminobutyric acid type A (GABAA) receptors by acting at the classical benzodiazepine site. They can potentiate the response to GABA, attenuate channel activity, or counteract modulation by other ligands. Structural mechanisms underlying the actions of these drugs are not fully understood. Here we present two high-resolution structures of GABAA receptors in complex with zolpidem, a positive allosteric modulator and heavily prescribed hypnotic, and DMCM, a negative allosteric modulator with convulsant and anxiogenic properties. These two drugs share the extracellular benzodiazepine site at the α/γ subunit interface and two transmembrane sites at β/α interfaces. Structural analyses reveal a basis for the subtype selectivity of zolpidem that underlies its clinical success. Molecular dynamics simulations provide insight into how DMCM switches from a negative to a positive modulator as a function of binding site occupancy. Together, these findings expand our understanding of how GABAA receptor allosteric modulators acting through a common site can have diverging activities. GABAA receptors are important targets for anxiety, sedation and anesthesia. Here, the authors present structures bound by zolpidem (Ambien), the most prescribed hypnotic in the US, and DMCM, a negative modulator, providing insights into receptor modulation.
Collapse
|
12
|
Bergh C, Heusser SA, Howard R, Lindahl E. Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel. eLife 2021; 10:68369. [PMID: 34652272 PMCID: PMC8635979 DOI: 10.7554/elife.68369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.
Collapse
Affiliation(s)
- Cathrine Bergh
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Stephanie A Heusser
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Rebecca Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| |
Collapse
|
13
|
Lefebvre SN, Taly A, Menny A, Medjebeur K, Corringer PJ. Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation. eLife 2021; 10:60682. [PMID: 34590583 PMCID: PMC8504973 DOI: 10.7554/elife.60682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate chemical signaling through a succession of allosteric transitions that are yet not completely understood as intermediate states remain poorly characterized by structural approaches. In a previous study on the prototypic bacterial proton-gated channel GLIC, we generated several fluorescent sensors of the protein conformation that report a fast transition to a pre-active state, which precedes the slower process of activation with pore opening. Here, we explored the phenotype of a series of allosteric mutations, using simultaneous steady-state fluorescence and electrophysiological measurements over a broad pH range. Our data, fitted to a three-state Monod-Wyman-Changeux model, show that mutations at the subunit interface in the extracellular domain (ECD) principally alter pre-activation, while mutations in the lower ECD and in the transmembrane domain principally alter activation. We also show that propofol alters both transitions. Data are discussed in the framework of transition pathways generated by normal mode analysis (iModFit). It further supports that pre-activation involves major quaternary compaction of the ECD, and suggests that activation involves principally a reorganization of a ‘central gating region’ involving a contraction of the ECD β-sandwich and the tilt of the channel lining M2 helix.
Collapse
Affiliation(s)
- Solène N Lefebvre
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Antoine Taly
- Institut de Biologie Physico-chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.,Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
| | - Anaïs Menny
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Karima Medjebeur
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris, CNRS UMR 3571,Channel-Receptors Unit, Paris, France
| |
Collapse
|
14
|
Lycksell M, Rovšnik U, Bergh C, Johansen NT, Martel A, Porcar L, Arleth L, Howard RJ, Lindahl E. Probing solution structure of the pentameric ligand-gated ion channel GLIC by small-angle neutron scattering. Proc Natl Acad Sci U S A 2021; 118:e2108006118. [PMID: 34504004 PMCID: PMC8449418 DOI: 10.1073/pnas.2108006118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.
Collapse
Affiliation(s)
- Marie Lycksell
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Urška Rovšnik
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Cathrine Bergh
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Nicolai T Johansen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anne Martel
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden;
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
15
|
Natarajan K, Mukhtasimova N, Corradi J, Lasala M, Bouzat C, Sine SM. Mechanism of calcium potentiation of the α7 nicotinic acetylcholine receptor. J Gen Physiol 2021; 152:151971. [PMID: 32702089 PMCID: PMC7478872 DOI: 10.1085/jgp.202012606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is among the most abundant types of nAChR in the brain, yet the ability of nerve-released ACh to activate α7 remains enigmatic. In particular, a major population of α7 resides in extra-synaptic regions where the ACh concentration is reduced, owing to dilution and enzymatic hydrolysis, yet ACh shows low potency in activating α7. Using high-resolution single-channel recording techniques, we show that extracellular calcium is a powerful potentiator of α7 activated by low concentrations of ACh. Potentiation manifests as robust increases in the frequency of channel opening and the average duration of the openings. Molecular dynamics simulations reveal that calcium binds to the periphery of the five ligand binding sites and is framed by a pair of anionic residues from the principal and complementary faces of each site. Mutation of residues identified by simulation prevents calcium from potentiating ACh-elicited channel opening. An anionic residue is conserved at each of the identified positions in all vertebrate species of α7. Thus, calcium associates with a novel structural motif on α7 and is an obligate cofactor in regions of limited ACh concentration.
Collapse
Affiliation(s)
- Kathiresan Natarajan
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas, Departamento de Biologia, Bioquimica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Matías Lasala
- Instituto de Investigaciones Bioquímicas, Departamento de Biologia, Bioquimica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas, Departamento de Biologia, Bioquimica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
16
|
Rovšnik U, Zhuang Y, Forsberg BO, Carroni M, Yvonnesdotter L, Howard RJ, Lindahl E. Dynamic closed states of a ligand-gated ion channel captured by cryo-EM and simulations. Life Sci Alliance 2021; 4:e202101011. [PMID: 34210687 PMCID: PMC8326787 DOI: 10.26508/lsa.202101011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. Biophysical and pharmacological characterization of these receptor proteins relies on high-quality structures in multiple, subtly distinct functional states. However, structural data in this family remain limited, particularly for resting and intermediate states on the activation pathway. Here, we report cryo-electron microscopy (cryo-EM) structures of the proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC) under three pH conditions. Decreased pH was associated with improved resolution and side chain rearrangements at the subunit/domain interface, particularly involving functionally important residues in the β1-β2 and M2-M3 loops. Molecular dynamics simulations substantiated flexibility in the closed-channel extracellular domains relative to the transmembrane ones and supported electrostatic remodeling around E35 and E243 in proton-induced gating. Exploration of secondary cryo-EM classes further indicated a low-pH population with an expanded pore. These results allow us to define distinct protonation and activation steps in pH-stimulated conformational cycling in GLIC, including interfacial rearrangements largely conserved in the pentameric channel family.
Collapse
Affiliation(s)
- Urška Rovšnik
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Björn O Forsberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Linnea Yvonnesdotter
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
17
|
Nakao T, Banba S. Important amino acids for function of the insect Rdl GABA receptor. PEST MANAGEMENT SCIENCE 2021; 77:3753-3762. [PMID: 33002317 DOI: 10.1002/ps.6121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Insect Rdl GABA receptor is an important insecticide target. To design a novel insecticide, studies on the structures of homologous pentameric ligand-gated ion channels provide information about important amino acids that are necessary for the function of insect Rdl GABA receptors. RESULTS L9'A, T12'A, T13'A, T13'S, M15'S, and M15'N mutations in the Drosophila Rdl GABA receptor subunit caused the protein to spontaneously adopt the open state conformation. In contrast, the S16'A, S16'T, S17'A, and S17'H mutant homomers showed the same levels of agonist and antagonist sensitivity as the wild-type receptor. The G336M mutation in the Drosophila Rdl GABA receptor abolished the agonist activities of ivermectin and milbemectin, but the F339M mutation did not. Additionally, the F339M mutation caused spontaneous opening of the receptor. In the Drosophila Rdl model, the hydrophobic girdle plays an important role in stabilization of the closed state. Mutations which decrease hydrophobic interactions resulted in spontaneous opening, supporting the importance of the hydrophobic girdle for keeping the channel closed. Through a mutational study of transmembrane 3 (TM3) cytoplasmic domain and Rdl GABA receptor modeling, hydrophobic interactions between TM3 and TM4 and intersubunit interaction were demonstrated to be important for channel gating. Alternatively, the intrasubunit interaction between TM2 and TM3 domains were less important for channel gating in case of Drosophila Rdl GABA receptor. CONCLUSION This study demonstrates important amino acids critical to the function of the Drosophila Rdl GABA receptor based on the mutational studies and Drosophila Rdl GABA receptor modeling approach. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Toshifumi Nakao
- Organic Chemistry G, Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| | - Shinichi Banba
- Organic Chemistry G, Agrochemicals Research Center, Mitsui Chemicals Agro, Inc., Chiba, Japan
| |
Collapse
|
18
|
Terejko K, Michałowski MA, Iżykowska I, Dominik A, Brzóstowicz A, Mozrzymas JW. Mutations at the M2 and M3 Transmembrane Helices of the GABA ARs α 1 and β 2 Subunits Affect Primarily Late Gating Transitions Including Opening/Closing and Desensitization. ACS Chem Neurosci 2021; 12:2421-2436. [PMID: 34101432 PMCID: PMC8291490 DOI: 10.1021/acschemneuro.1c00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
![]()
GABA type A receptors
(GABAARs) belong to the pentameric
ligand-gated ion channel (pLGIC) family and play a crucial role in
mediating inhibition in the adult mammalian brain. Recently, a major
progress in determining the static structure of GABAARs
was achieved, although precise molecular scenarios underlying conformational
transitions remain unclear. The ligand binding sites (LBSs) are located
at the extracellular domain (ECD), very distant from the receptor
gate at the channel pore. GABAAR gating is complex, comprising
three major categories of transitions: openings/closings, preactivation,
and desensitization. Interestingly, mutations at, e.g., the ligand
binding site affect not only binding but often also more than one
gating category, suggesting that structural determinants for distinct
conformational transitions are shared. Gielen and co-workers (2015)
proposed that the GABAAR desensitization gate is located
at the second and third transmembrane segment. However, studies of
our and others’ groups indicated that other parts of the GABAAR macromolecule might be involved in this process. In the
present study, we asked how selected point mutations (β2G254V, α1G258V, α1L300V,
and β2L296V) at the M2 and M3 transmembrane segments
affect gating transitions of the α1β2γ2 GABAAR. Using high resolution macroscopic
and single-channel recordings and analysis, we report that these substitutions,
besides affecting desensitization, also profoundly altered openings/closings,
having some minor effect on preactivation and agonist binding. Thus,
the M2 and M3 segments primarily control late gating transitions of
the receptor (desensitization, opening/closing), providing a further
support for the concept of diffuse gating mechanisms for conformational
transitions of GABAAR.
Collapse
Affiliation(s)
- Katarzyna Terejko
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Michał A. Michałowski
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
- Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Ilona Iżykowska
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Anna Dominik
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Aleksandra Brzóstowicz
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Jerzy W. Mozrzymas
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
- Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
19
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
20
|
Crnjar A, Mesoy SM, Lummis SCR, Molteni C. A Single Mutation in the Outer Lipid-Facing Helix of a Pentameric Ligand-Gated Ion Channel Affects Channel Function Through a Radially-Propagating Mechanism. Front Mol Biosci 2021; 8:644720. [PMID: 33996899 PMCID: PMC8119899 DOI: 10.3389/fmolb.2021.644720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic transmission and are crucial drug targets. Their gating mechanism is triggered by ligand binding in the extracellular domain that culminates in the opening of a hydrophobic gate in the transmembrane domain. This domain is made of four α-helices (M1 to M4). Recently the outer lipid-facing helix (M4) has been shown to be key to receptor function, however its role in channel opening is still poorly understood. It could act through its neighboring helices (M1/M3), or via the M4 tip interacting with the pivotal Cys-loop in the extracellular domain. Mutation of a single M4 tyrosine (Y441) to alanine renders one pLGIC-the 5-HT3A receptor-unable to function despite robust ligand binding. Using Y441A as a proxy for M4 function, we here predict likely paths of Y441 action using molecular dynamics, and test these predictions with functional assays of mutant receptors in HEK cells and Xenopus oocytes using fluorescent membrane potential sensitive dye and two-electrode voltage clamp respectively. We show that Y441 does not act via the M4 tip or Cys-loop, but instead connects radially through M1 to a residue near the ion channel hydrophobic gate on the pore-lining helix M2. This demonstrates the active role of the M4 helix in channel opening.
Collapse
Affiliation(s)
| | - Susanne M. Mesoy
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Carla Molteni
- Physics Department, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Agonist efficiency from concentration-response curves: Structural implications and applications. Biophys J 2021; 120:1800-1813. [PMID: 33675765 DOI: 10.1016/j.bpj.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Agonists are evaluated by a concentration-response curve (CRC), with a midpoint (EC50) that indicates potency, a high-concentration asymptote that indicates efficacy, and a low-concentration asymptote that indicates constitutive activity. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that η can be calculated from EC50 and the asymptotes of a CRC derived from either single-channel or whole-cell responses. For 20 agonists of skeletal muscle nicotinic receptors, the distribution of η-values is bimodal with population means at 51% (including acetylcholine, nornicotine, and dimethylphenylpiperazinium) and 40% (including epibatidine, varenicline, and cytisine). The value of η is related inversely to the size of the agonist's headgroup, with high- versus low-efficiency ligands having an average volume of 70 vs. 102 Å3. Most binding site mutations have only a small effect on acetylcholine efficiency, except for αY190A (35%), αW149A (60%), and those at αG153 (42%). If η is known, the EC50 and high-concentration asymptote can be calculated from each other. Hence, an entire CRC can be estimated from the response to a single agonist concentration, and efficacy can be estimated from EC50 of a CRC that has been normalized to 1. Given η, the level of constitutive activity can be estimated from a single CRC.
Collapse
|
22
|
Cholesterol content in the membrane promotes key lipid-protein interactions in a pentameric serotonin-gated ion channel. Biointerphases 2021; 15:061018. [PMID: 33397116 DOI: 10.1116/6.0000561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs), embedded in the lipid membranes of nerve cells, mediate fast synaptic transmission and are major pharmaceutical targets. Because of their complexity and the limited knowledge of their structure, their working mechanisms have still to be fully unraveled at the molecular level. Over the past few years, evidence that the lipid membrane may modulate the function of membrane proteins, including pLGICs, has emerged. Here, we investigate, by means of molecular dynamics simulations, the behavior of the lipid membrane at the interface with the 5-HT3A receptor (5-HT3AR), a representative pLGIC which is the target of nausea-suppressant drugs, in a nonconductive state. Three lipid compositions are studied, spanning different concentrations of the phospholipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, and of cholesterol, hence a range of viscosities. A variety of lipid interactions and persistent binding events to different parts of the receptor are revealed in the investigated models, providing snapshots of the dynamical environment at the membrane-receptor interface. Some of these events result in lipid intercalation within the transmembrane domain, and others reach out to protein key sections for signal transmission and receptor activation, such as the Cys-loop and the M2-M3 loop. In particular, phospholipids, with their long hydrophobic tails, play an important role in these interactions, potentially providing a bridge between these two structures. A higher cholesterol content appears to promote lipid persistent binding to the receptor.
Collapse
|
23
|
Interaction between GABA A receptor α 1 and β 2 subunits at the N-terminal peripheral regions is crucial for receptor binding and gating. Biochem Pharmacol 2020; 183:114338. [PMID: 33189674 DOI: 10.1016/j.bcp.2020.114338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Pentameric ligand gated ion channels (pLGICs) are crucial in electrochemical signaling but exact molecular mechanisms of their activation remain elusive. So far, major effort focused on the top-down molecular pathway between the ligand binding site and the channel gate. However, recent studies revealed that pLGIC activation is associated with coordinated subunit twisting in the membrane plane. This suggests a key role of intersubunit interactions but the underlying mechanisms remain largely unknown. Herein, we investigated a "peripheral" subunit interface region of GABAA receptor where structural modeling indicated interaction between N-terminal α1F14 and β2F31 residues. Our experiments underscored a crucial role of this interaction in ligand binding and gating, especially preactivation and opening, showing that the intersubunit cross-talk taking place outside (above) the top-down pathway can be strongly involved in receptor activation. Thus, described here intersubunit interaction appears to operate across a particularly long distance, affecting vast portions of the macromolecule.
Collapse
|
24
|
Stuebler AG, Jansen M. Mobility of Lower MA-Helices for Ion Conduction through Lateral Portals in 5-HT 3A Receptors. Biophys J 2020; 119:2593-2603. [PMID: 33157122 PMCID: PMC7822733 DOI: 10.1016/j.bpj.2020.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
The intracellular domain of the serotonin type 3A receptor, a pentameric ligand-gated ion channel, is crucial for regulating conductance. Ion permeation through the extracellular vestibule and the transmembrane channel is well understood, whereas the specific ion conduction pathway through the intracellular domain is less clear. The intracellular domain starts with a short loop after the third transmembrane segment, followed by a short α-helical segment, a large unstructured loop, and finally, the membrane-associated MA-helix that continues into the last transmembrane segment. The MA-helices from all five subunits form the extension of the transmembrane ion channel and shape what has been described as a “closed vestibule,” with their lateral portals obstructed by loops and their cytosolic ends forming a tight hydrophobic constriction. The question remains whether the lateral portals or cytosolic constriction conduct ions upon channel opening. In our study, we used disulfide bond formation between pairs of engineered cysteines to probe the proximity and mobility of segments of the MA-helices most distal to the membrane bilayer. Our results indicate that the proximity and orientation for cysteine pairs at I409C/R410C, in close proximity to the lateral windows, and L402C/L403C, at the cytosolic ends of the MA-helices, are conducive for disulfide bond formation. Although conformational changes associated with gating promote cross-linking for I409C/R410C, which in turn decreases channel currents, cross-linking of L402C/L403C is functionally silent in macroscopic currents. These results support the hypothesis that concerted conformational changes open the lateral portals for ion conduction, rendering ion conduction through the vertical portal unlikely.
Collapse
Affiliation(s)
- Antonia G Stuebler
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas.
| |
Collapse
|
25
|
Rodriguez Araujo N, Fabiani C, Mazzarini Dimarco A, Bouzat C, Corradi J. Orthosteric and Allosteric Activation of Human 5-HT 3A Receptors. Biophys J 2020; 119:1670-1682. [PMID: 32946769 DOI: 10.1016/j.bpj.2020.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonin type 3 receptor (5-HT3) is a ligand-gated ion channel that converts the binding of the neurotransmitter serotonin (5-HT) into a transient cation current that mediates fast excitatory responses in peripheral and central nervous systems. Information regarding the activation and modulation of the human 5-HT3 type A receptor has been based only on macroscopic current measurements because of its low ion conductance. By constructing a high-conductance human 5-HT3A receptor, we here revealed mechanistic information regarding the orthosteric activation by 5-HT and by the partial agonist tryptamine, and the allosteric activation by the terpenoids, carvacrol, and thymol. Terpenoids potentiated macroscopic currents elicited by the orthosteric agonist and directly elicited currents with slow-rising phases and submaximal amplitudes. At the single-channel level, activation by orthosteric and allosteric agonists appeared as openings in quick succession (bursts) that showed no ligand concentration dependence. Bursts were grouped into long-duration clusters in the presence of 5-HT and even longer in the presence of terpenoids, whereas they remained isolated in the presence of tryptamine. Kinetic analysis revealed that allosteric and orthosteric activation mechanisms can be described by the same scheme that includes transitions of the agonist-bound receptor to closed intermediate states before opening (priming). Reduced priming explained the partial agonism of tryptamine; however, equilibrium constants for gating and priming were similar for 5-HT and terpenoid activation. Thus, our kinetic analysis revealed that terpenoids are efficacious agonists for 5-HT3A receptors. These findings not only extend our knowledge about the human 5-HT3A molecular function but also provide novel insights into the mechanisms of action of allosteric ligands, which are of increasing interest as therapeutic drugs in all the superfamily.
Collapse
Affiliation(s)
- Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Albano Mazzarini Dimarco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
26
|
Thompson MJ, Baenziger JE. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183304. [DOI: 10.1016/j.bbamem.2020.183304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
27
|
Fourati Z, Sauguet L, Delarue M. Structural evidence for the binding of monocarboxylates and dicarboxylates at pharmacologically relevant extracellular sites of a pentameric ligand-gated ion channel. Acta Crystallogr D Struct Biol 2020; 76:668-675. [PMID: 32627739 PMCID: PMC7336382 DOI: 10.1107/s205979832000772x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
GLIC is a bacterial homologue of the pentameric ligand-gated ion channels (pLGICs) that mediate the fast chemical neurotransmission of nerve signalling in eukaryotes. Because the activation and allosteric modulation features are conserved among prokaryotic and eukaryotic pLGICs, GLIC is commonly used as a model to study the allosteric transition and structural pharmacology of pLGICs. It has previously been shown that GLIC is inhibited by some carboxylic acid derivatives. Here, experimental evidence for carboxylate binding to GLIC is provided by solving its X-ray structures with a series of monocarboxylate and dicarboxylate derivatives, and two carboxylate-binding sites are described: (i) the `intersubunit' site that partially overlaps the canonical pLGIC orthosteric site and (ii) the `intrasubunit' vestibular site, which is only occupied by a subset of the described derivatives. While the intersubunit site is widely conserved in all pLGICs, the intrasubunit site is only conserved in cationic eukaryotic pLGICs. This study sheds light on the importance of these two extracellular modulation sites as potential drug targets in pLGICs.
Collapse
Affiliation(s)
- Zaineb Fourati
- Unité Dynamique Structurale des Macromolécules, Institut Pasteur, 25 Rue du Docteur Roux, F-75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3528, Biologie Structurale des Processus Cellulaires et Maladies Infectieuses, 25 Rue du Docteur Roux, F-75015 Paris, France
| | - Ludovic Sauguet
- Unité Dynamique Structurale des Macromolécules, Institut Pasteur, 25 Rue du Docteur Roux, F-75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3528, Biologie Structurale des Processus Cellulaires et Maladies Infectieuses, 25 Rue du Docteur Roux, F-75015 Paris, France
| | - Marc Delarue
- Unité Dynamique Structurale des Macromolécules, Institut Pasteur, 25 Rue du Docteur Roux, F-75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3528, Biologie Structurale des Processus Cellulaires et Maladies Infectieuses, 25 Rue du Docteur Roux, F-75015 Paris, France
| |
Collapse
|
28
|
Structural basis for allosteric transitions of a multidomain pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 2020; 117:13437-13446. [PMID: 32482881 DOI: 10.1073/pnas.1922701117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are allosteric receptors that mediate rapid electrochemical signal transduction in the animal nervous system through the opening of an ion pore upon binding of neurotransmitters. Orthologs have been found and characterized in prokaryotes and they display highly similar structure-function relationships to eukaryotic pLGICs; however, they often encode greater architectural diversity involving additional amino-terminal domains (NTDs). Here we report structural, functional, and normal-mode analysis of two conformational states of a multidomain pLGIC, called DeCLIC, from a Desulfofustis deltaproteobacterium, including a periplasmic NTD fused to the conventional ligand-binding domain (LBD). X-ray structure determination revealed an NTD consisting of two jelly-roll domains interacting across each subunit interface. Binding of Ca2+ at the LBD subunit interface was associated with a closed transmembrane pore, with resolved monovalent cations intracellular to the hydrophobic gate. Accordingly, DeCLIC-injected oocytes conducted currents only upon depletion of extracellular Ca2+; these were insensitive to quaternary ammonium block. Furthermore, DeCLIC crystallized in the absence of Ca2+ with a wide-open pore and remodeled periplasmic domains, including increased contacts between the NTD and classic LBD agonist-binding sites. Functional, structural, and dynamical properties of DeCLIC paralleled those of sTeLIC, a pLGIC from another symbiotic prokaryote. Based on these DeCLIC structures, we would reclassify the previous structure of bacterial ELIC (the first high-resolution structure of a pLGIC) as a "locally closed" conformation. Taken together, structures of DeCLIC in multiple conformations illustrate dramatic conformational state transitions and diverse regulatory mechanisms available to ion channels in pLGICs, particularly involving Ca2+ modulation and periplasmic NTDs.
Collapse
|
29
|
Allostery in membrane proteins. Curr Opin Struct Biol 2020; 62:197-204. [DOI: 10.1016/j.sbi.2020.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
|
30
|
Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, Karlin A, Stowell MHB, Hibbs RE. Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Neuron 2020; 106:952-962.e5. [PMID: 32275860 DOI: 10.1016/j.neuron.2020.03.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
The nicotinic acetylcholine receptor, a pentameric ligand-gated ion channel, converts the free energy of binding of the neurotransmitter acetylcholine into opening of its central pore. Here we present the first high-resolution structure of the receptor type found in muscle-endplate membrane and in the muscle-derived electric tissues of fish. The native receptor was purified from Torpedo electric tissue and functionally reconstituted in lipids optimal for cryo-electron microscopy. The receptor was stabilized in a closed state by the binding of α-bungarotoxin. The structure reveals the binding of a toxin molecule at each of two subunit interfaces in a manner that would block the binding of acetylcholine. It also reveals a closed gate in the ion-conducting pore, formed by hydrophobic amino acid side chains, located ∼60 Å from the toxin binding sites. The structure provides a framework for understanding gating in ligand-gated channels and how mutations in the acetylcholine receptor cause congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brady T Worrell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Myeongseon Lee
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Arthur Karlin
- Center for Molecular Recognition & Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
31
|
Progress in nicotinic receptor structural biology. Neuropharmacology 2020; 171:108086. [PMID: 32272141 DOI: 10.1016/j.neuropharm.2020.108086] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Here we begin by briefly reviewing landmark structural studies on the nicotinic acetylcholine receptor. We highlight challenges that had to be overcome to push through resolution barriers, then focus on what has been gleaned in the past few years from crystallographic and single particle cryo-EM studies of different nicotinic receptor subunit assemblies and ligand complexes. We discuss insights into ligand recognition, ion permeation, and allosteric gating. We then highlight some foundational aspects of nicotinic receptor structural biology that remain unresolved and are areas ripe for future exploration. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
|
32
|
Lev B, Allen TW. Simulating ion channel activation mechanisms using swarms of trajectories. J Comput Chem 2020; 41:387-401. [PMID: 31743478 DOI: 10.1002/jcc.26102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Atomic-level studies of protein activity represent a significant challenge as a result of the complexity of conformational changes occurring on wide-ranging timescales, often greatly exceeding that of even the longest simulations. A prime example is the elucidation of protein allosteric mechanisms, where localized perturbations transmit throughout a large macromolecule to generate a response signal. For example, the conversion of chemical to electrical signals during synaptic neurotransmission in the brain is achieved by specialized membrane proteins called pentameric ligand-gated ion channels. Here, the binding of a neurotransmitter results in a global conformational change to open an ion-conducting pore across the nerve cell membrane. X-ray crystallography has produced static structures of the open and closed states of the proton-gated GLIC pentameric ligand-gated ion channel protein, allowing for atomistic simulations that can uncover changes related to activation. We discuss a range of enhanced sampling approaches that could be used to explore activation mechanisms. In particular, we describe recent application of an atomistic string method, based on Roux's "swarms of trajectories" approach, to elucidate the sequence and interdependence of conformational changes during activation. We illustrate how this can be combined with transition analysis and Brownian dynamics to extract thermodynamic and kinetic information, leading to understanding of what controls ion channel function. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
33
|
Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, Pardon E, Evans GL, Bertrand D, Lummis SCR, Hibbs RE, Steyaert J, Ulens C. Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT 3 receptor via a common vestibule site. eLife 2020; 9:e51511. [PMID: 31990273 PMCID: PMC7015668 DOI: 10.7554/elife.51511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) or Cys-loop receptors are involved in fast synaptic signaling in the nervous system. Allosteric modulators bind to sites that are remote from the neurotransmitter binding site, but modify coupling of ligand binding to channel opening. In this study, we developed nanobodies (single domain antibodies), which are functionally active as allosteric modulators, and solved co-crystal structures of the prokaryote (Erwinia) channel ELIC bound either to a positive or a negative allosteric modulator. The allosteric nanobody binding sites partially overlap with those of small molecule modulators, including a vestibule binding site that is not accessible in some pLGICs. Using mutagenesis, we extrapolate the functional importance of the vestibule binding site to the human 5-HT3 receptor, suggesting a common mechanism of modulation in this protein and ELIC. Thus we identify key elements of allosteric binding sites, and extend drug design possibilities in pLGICs with an accessible vestibule site.
Collapse
Affiliation(s)
- Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Cedric Govaerts
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université libre de BruxellesBrusselsBelgium
| | | | - Kerry L Price
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Radovan Spurny
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Genevieve L Evans
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | | | - Sarah CR Lummis
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
34
|
Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer. Proc Natl Acad Sci U S A 2020; 117:1788-1798. [PMID: 31911476 PMCID: PMC6983364 DOI: 10.1073/pnas.1906823117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The lipid dependence of the nicotinic acetylcholine receptor from the Torpedo electric organ has long been recognized, and one of the most consistent experimental observations is that, when reconstituted in membranes formed by zwitterionic phospholipids alone, exposure to agonist fails to elicit ion-flux activity. More recently, it has been suggested that the bacterial homolog ELIC (Erwinia chrysanthemi ligand-gated ion channel) has a similar lipid sensitivity. As a first step toward the elucidation of the structural basis of this phenomenon, we solved the structures of ELIC embedded in palmitoyl-oleoyl-phosphatidylcholine- (POPC-) only nanodiscs in both the unliganded (4.1-Å resolution) and agonist-bound (3.3 Å) states using single-particle cryoelectron microscopy. Comparison of the two structural models revealed that the largest differences occur at the level of loop C-at the agonist-binding sites-and the loops at the interface between the extracellular and transmembrane domains (ECD and TMD, respectively). On the other hand, the transmembrane pore is occluded in a remarkably similar manner in both structures. A straightforward interpretation of these findings is that POPC-only membranes frustrate the ECD-TMD coupling in such a way that the "conformational wave" of liganded-receptor gating takes place in the ECD and the interfacial M2-M3 linker but fails to penetrate the membrane and propagate into the TMD. Furthermore, analysis of the structural models and molecular simulations suggested that the higher affinity for agonists characteristic of the open- and desensitized-channel conformations results, at least in part, from the tighter confinement of the ligand to its binding site; this limits the ligand's fluctuations, and thus delays its escape into bulk solvent.
Collapse
|
35
|
Terejko K, Kaczor PT, Michałowski MA, Dąbrowska A, Mozrzymas JW. The C loop at the orthosteric binding site is critically involved in GABA A receptor gating. Neuropharmacology 2019; 166:107903. [PMID: 31972511 DOI: 10.1016/j.neuropharm.2019.107903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023]
Abstract
GABAA receptors (GABAARs) play a crucial role in mammalian adult brain inhibition. The dysfunction of GABAergic drive is related to such disorders as epilepsy, schizophrenia, and depression. Substantial progress has recently been made in describing the static structure of GABAARs, but the molecular mechanisms that underlie the activation process remain elusive. The C loop of the GABAAR structure shows the largest movement upon ligand binding to the orthosteric binding site, a phenomenon that is referred to as "capping." The C loop is known to be involved in agonist binding, but its role in the gating of Cys-loop receptors is still debated. Herein, we investigated this issue by analyzing the impact of a β2F200 residue mutation of the C loop on gating properties of α1β2γ2 GABAARs. Extensive analyses and the modeling of current responses to saturating agonist application demonstrated that this mutation strongly affected preactivation, opening, closing and desensitization, i.e. all considered gating steps. Single-channel analysis revealed that the β2F200 mutation slowed all shut time components, and open times were shortened. Model fitting of these single-channel data further confirmed that the β2F200 mutation strongly affected all of the gating characteristics. We also found that this mutation altered receptor sensitivity to the benzodiazepine flurazepam, which was attributable to a change in preactivation kinetics. In silico analysis indicated that the β2F200 mutation resulted in distortion of the C loop structure, causing the movement of its tip from the binding site. Altogether, we provide the first evidence that C loop critically controls GABAAR gating.
Collapse
Affiliation(s)
- Katarzyna Terejko
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland.
| | - Przemysław T Kaczor
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland
| | - Michał A Michałowski
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland; Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335, Wrocław, Poland
| | - Agnieszka Dąbrowska
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368, Wrocław, Poland; Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335, Wrocław, Poland.
| |
Collapse
|
36
|
Fourati Z, Howard RJ, Heusser SA, Hu H, Ruza RR, Sauguet L, Lindahl E, Delarue M. Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric Ligand-Gated Ion Channels. Cell Rep 2019; 23:993-1004. [PMID: 29694907 DOI: 10.1016/j.celrep.2018.03.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022] Open
Abstract
Ion channel modulation by general anesthetics is a vital pharmacological process with implications for receptor biophysics and drug development. Functional studies have implicated conserved sites of both potentiation and inhibition in pentameric ligand-gated ion channels, but a detailed structural mechanism for these bimodal effects is lacking. The prokaryotic model protein GLIC recapitulates anesthetic modulation of human ion channels, and it is accessible to structure determination in both apparent open and closed states. Here, we report ten X-ray structures and electrophysiological characterization of GLIC variants in the presence and absence of general anesthetics, including the surgical agent propofol. We show that general anesthetics can allosterically favor closed channels by binding in the pore or favor open channels via various subsites in the transmembrane domain. Our results support an integrated, multi-site mechanism for allosteric modulation, and they provide atomic details of both potentiation and inhibition by one of the most common general anesthetics.
Collapse
Affiliation(s)
- Zaineb Fourati
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| | - Stephanie A Heusser
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| | - Haidai Hu
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France; Sorbonne Universités, UPMC University Paris 6, 75005 Paris, France
| | - Reinis R Ruza
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France
| | - Erik Lindahl
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden; Swedish e-Science Research Center, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur and UMR 3528 du CNRS, 75015 Paris, France.
| |
Collapse
|
37
|
Untangling Direct and Domain-Mediated Interactions Between Nicotinic Acetylcholine Receptors in DHA-Rich Membranes. J Membr Biol 2019; 252:385-396. [PMID: 31321460 DOI: 10.1007/s00232-019-00079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/04/2019] [Indexed: 02/01/2023]
Abstract
At the neuromuscular junction (NMJ), the nicotinic acetylcholine receptor (nAChR) self-associates to give rise to rapid muscle movement. While lipid domains have maintained nAChR aggregates in vitro, their specific roles in nAChR clustering are currently unknown. In the present study, we carried out coarse-grained molecular dynamics simulations (CG-MD) of 1-4 nAChR molecules in two membrane environments: one mixture containing domain-forming, homoacidic lipids, and a second mixture consisting of heteroacidic lipids. Spontaneous dimerization of nAChRs was up to ten times more likely in domain-forming membranes; however, the effect was not significant in four-protein systems, suggesting that lipid domains are less critical to nAChR oligomerization when protein concentration is higher. With regard to lipid preferences, nAChRs consistently partitioned into liquid-disordered domains occupied by the omega-3 ([Formula: see text]-3) fatty acid, docosahexaenoic acid (DHA); enrichment of DHA boundary lipids increased with protein concentration, particularly in homoacidic membranes. This result suggests dimer formation blocks access of saturated chains and cholesterol, but not polyunsaturated chains, to boundary lipid sites.
Collapse
|
38
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
39
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
40
|
Crnjar A, Comitani F, Melis C, Molteni C. Mutagenesis computer experiments in pentameric ligand-gated ion channels: the role of simulation tools with different resolution. Interface Focus 2019; 9:20180067. [PMID: 31065340 PMCID: PMC6501341 DOI: 10.1098/rsfs.2018.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are an important class of widely expressed membrane neuroreceptors, which play a crucial role in fast synaptic communications and are involved in several neurological conditions. They are activated by the binding of neurotransmitters, which trigger the transmission of an electrical signal via facilitated ion flux. They can also be activated, inhibited or modulated by a number of drugs. Mutagenesis electrophysiology experiments, with natural or unnatural amino acids, have provided a large body of functional data that, together with emerging structural information from X-ray spectroscopy and cryo-electron microscopy, are helping unravel the complex working mechanisms of these neuroreceptors. Computer simulations are complementing these mutagenesis experiments, with insights at various levels of accuracy and resolution. Here, we review how a selection of computational tools, including first principles methods, classical molecular dynamics and enhanced sampling techniques, are contributing to construct a picture of how pLGICs function and can be pharmacologically targeted to treat the disorders they are responsible for.
Collapse
Affiliation(s)
- Alessandro Crnjar
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudio Melis
- Universitá degli Studi di Cagliari, Complesso Universitario di Monserrato, Dipartimento di Fisica, S.P. Monserrato-Sestu Km 0,700, Monserrato (CA) 09042, Italy
| | - Carla Molteni
- King’s College London, Department of Physics, Strand, London WC2R 2LS, UK
| |
Collapse
|
41
|
Scott S, Aricescu AR. A structural perspective on GABA A receptor pharmacology. Curr Opin Struct Biol 2019; 54:189-197. [PMID: 31129381 DOI: 10.1016/j.sbi.2019.03.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 10/26/2022]
Abstract
GABAA receptors are pentameric ligand-gated chloride channels of crucial importance for the vertebrate nervous system physiology. They typically modulate the fast inhibitory neurotransmission, and represent the target receptors for major classes of drugs used in the clinic, such as benzodiazepines and general anesthetics. Recent technological progress in structural biology, in particular single-particle cryo-electron microscopy, has led to fundamental advances in understanding the detailed organization and signalling mechanisms of major GABAA receptor subtypes. This effort culminated with the high-resolution structural analysis of an intact, full-length human heteropentameric receptor, α1β3γ2, in a lipid bilayer and in complex with small molecule ligands including the commonly used benzodiazepines diazepam (Valium) and alprazolam (Xanax). These structures reveal multiple aspects of receptor activation and provide a path for rational design of subunit-specific GABAA receptor modulators.
Collapse
Affiliation(s)
- Suzanne Scott
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Alexandru Radu Aricescu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
42
|
Changeux JP. The nicotinic acetylcholine receptor: a typical 'allosteric machine'. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0174. [PMID: 29735728 DOI: 10.1098/rstb.2017.0174] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
The concept of allosteric interaction was initially proposed to account for the inhibitory feedback mechanism mediated by bacterial regulatory enzymes. In contrast with the classical mechanism of competitive, steric, interaction between ligands for a common site, allosteric interactions take place between topographically distinct sites and are mediated by a discrete and reversible conformational change of the protein. The concept was soon extended to membrane receptors for neurotransmitters and shown to apply to the signal transduction process which, in the case of the acetylcholine nicotinic receptor (nAChR), links the ACh binding site to the ion channel. Pharmacological effectors, referred to as allosteric modulators, such as Ca2+ ions and ivermectin, were discovered that enhance the transduction process when they bind to sites distinct from the orthosteric ACh site and the ion channel. The recent X-ray and electron microscopy structures, at atomic resolution, of the resting and active conformations of several homologues of the nAChR, in combination with atomistic molecular dynamics simulations reveal a stepwise quaternary transition in the transduction process with tertiary changes modifying the boundaries between subunits. These interfaces host orthosteric and allosteric modulatory sites which structural organization changes in the course of the transition. The nAChR appears as a typical allosteric machine. The model emerging from these studies has led to the conception and development of several new pharmacological agents.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, Paris 75724, France .,Communications Cellulaires, Collège de France, Paris 75005, France
| |
Collapse
|
43
|
Tripathy S, Zheng W, Auerbach A. A single molecular distance predicts agonist binding energy in nicotinic receptors. J Gen Physiol 2019; 151:452-464. [PMID: 30635370 PMCID: PMC6445573 DOI: 10.1085/jgp.201812212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
Agonists turn on receptors because they bind more strongly to active (R*) versus resting (R) conformations of their target sites. Here, to explore how agonists activate neuromuscular acetylcholine receptors, we built homology models of R and R* neurotransmitter binding sites, docked ligands to those sites, ran molecular dynamics simulations to relax ("equilibrate") the structures, measured binding site structural parameters, and correlated them with experimental agonist binding energies. Each binding pocket is a pyramid formed by five aromatic amino acids and covered partially by loop C. We found that in R* versus R, loop C is displaced outward, the pocket is smaller and skewed, the agonist orientation is reversed, and a key nitrogen atom in the agonist is closer to the pocket center (distance dx) and a tryptophan pair but farther from αY190. Of these differences, the change in dx shows the largest correlation with experimental binding energy and provides a good estimate of agonist affinity, efficacy, and efficiency. Indeed, concentration-response curves can be calculated from just dx values. The contraction and twist of the binding pocket upon activation resemble gating rearrangements of the extracellular domain of related receptors at a smaller scale.
Collapse
Affiliation(s)
- Sushree Tripathy
- Department of Physics, State University of New York, Buffalo, Buffalo, NY
| | - Wenjun Zheng
- Department of Physics, State University of New York, Buffalo, Buffalo, NY
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York, Buffalo, Buffalo, NY
| |
Collapse
|
44
|
Heath GR, Scheuring S. Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr Opin Struct Biol 2019; 57:93-102. [PMID: 30878714 DOI: 10.1016/j.sbi.2019.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in high-speed atomic force microscopy (HS-AFM) have made it possible to study the conformational dynamics of single unlabeled transmembrane channels and transporters. Improving environmental control with the integration of a non-disturbing buffer exchange system, which in turn allows the gradual change of conditions during HS-AFM operation, has provided a breakthrough toward the performance of structural titration experiments. Further advancements in temporal resolution with the use of line scanning and height spectroscopy techniques show how high-speed atomic force microscopy can measure millisecond to microsecond dynamics, pushing this method beyond current spatial and temporal limits offered by less direct techniques.
Collapse
Affiliation(s)
- George R Heath
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
45
|
Crnjar A, Comitani F, Hester W, Molteni C. Trans- Cis Proline Switches in a Pentameric Ligand-Gated Ion Channel: How They Are Affected by and How They Affect the Biomolecular Environment. J Phys Chem Lett 2019; 10:694-700. [PMID: 30668119 DOI: 10.1021/acs.jpclett.8b03431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are important neuroreceptors, embedded in neuronal membranes, that mediate fast synaptic transmission. The molecular details of their working mechanisms have still to be fully unravelled due to their complexity and limited structural information available. Here we focus on a potential molecular switch in a prototypical pLGIC, the serotonin-activated 5-HT3 receptor, consisting of the trans- cis isomerization of a proline at the interface between the extracellular and transmembrane domain. Mutagenesis electrophysiology experiments previously showed that if such isomerization could not take place, the channel would not open, but the hypothetical role of this mechanism as key to channel gating is still debated. We investigate this switch within the receptor with molecular dynamics and enhanced sampling simulations. We analyze how the isomerization free energy landscape is affected by the receptor environment in comparison to simplified models. Moreover, we reveal how the isomerization, in turn, affects the structural and electrostatic properties of the receptor at the extracellular-transmembrane domain interface, e.g., by tuning the ion selectivity filter.
Collapse
Affiliation(s)
- Alessandro Crnjar
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
| | - Federico Comitani
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
- Chemistry Department , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - William Hester
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
| | - Carla Molteni
- Physics Department , King's College London , Strand, London WC2R 2LS , United Kingdom
| |
Collapse
|
46
|
Abstract
The pentameric γ-aminobutyric acid type A receptors are ion channels activated by ligands, which intervene in the rapid inhibitory transmission in the mammalian CNS. Due to their rich pharmacology and therapeutic potential, it is essential to understand their structure and function thoroughly. This deep characterization was hampered by the lack of experimental structural information for many years. Thus, computational techniques have been extensively combined with experimental data, in order to undertake the study of γ-aminobutyric acid type A receptors and their interaction with drugs. Here, we review the exciting journey made to assess the structures of these receptors and outline major outcomes. Finally, we discuss the brand new structure of the α1β2γ2 subtype and the amazing advances it brings to the field.
Collapse
|
47
|
Chen D, Gao F, Ma X, Eaton JB, Huang Y, Gao M, Chang Y, Ma Z, Der-Ghazarian T, Neisewander J, Whiteaker P, Wu J, Su Q. Cocaine Directly Inhibits α6-Containing Nicotinic Acetylcholine Receptors in Human SH-EP1 Cells and Mouse VTA DA Neurons. Front Pharmacol 2019; 10:72. [PMID: 30837868 PMCID: PMC6383119 DOI: 10.3389/fphar.2019.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
Alpha6-containing nicotinic acetylcholine receptors are primarily found in neurons of the midbrain dopaminergic (DA) system, suggesting these receptors are potentially involved in drug reward and dependence. Here, we report a novel effect that cocaine directly inhibits α6N/α3Cβ2β3-nAChR (α6*-nAChRs) function. Human α6*-nAChRs were heterologously expressed within cells of the SH-EP1 cell line for functional characterization. Mechanically dissociated DA neurons from mouse ventral tegmental area (VTA) were used as a model of presynaptic α6*-nAChR activation since this method preserves terminal boutons. Patch-clamp recordings in whole-cell configuration were used to measure α6*-nAChR function as well as evaluate the effects of cocaine. In SH-EP1 cells containing heterologously expressed human α6*-nAChRs, cocaine inhibits nicotine-induced inward currents in a concentration-dependent manner with an IC50 value of 30 μM. Interestingly, in the presence of 30 μM cocaine, the maximal current response of the nicotine concentration-response curve is reduced without changing nicotine's EC50 value, suggesting a noncompetitive mechanism. Furthermore, analysis of whole-cell current kinetics demonstrated that cocaine slows nAChR channel activation but accelerates whole-cell current decay time. Our findings demonstrate that cocaine-induced inhibition occurs solely with bath application, but not during intracellular administration, and this inhibition is not use-dependent. Additionally, in Xenopus oocytes, cocaine inhibits both α6N/α3Cβ2β3-nAChRs and α6M211L/α3ICβ2β3-nCAhRs similarly, suggesting that cocaine may not act on the α3 transmembrane domain of chimeric α6N/α3Cβ2β3-nAChR. In mechanically isolated VTA DA neurons, cocaine abolishes α6*-nAChR-mediated enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs). Collectively, these studies provide the first evidence that cocaine directly inhibits the function of both heterologously and naturally expressed α6*-nAChRs. These findings suggest that α6*-nAChRs may provide a novel pharmacological target mediating the effects of cocaine and may underlie a novel mechanism of cocaine reward and dependence.
Collapse
Affiliation(s)
- Dejie Chen
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
| | - Fenfei Gao
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
| | - Xiaokuang Ma
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Zegang Ma
- Department of Physiology, Qingdao University of Medical College, Qingdao, China
| | | | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jie Wu
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Jie Wu, ;
| | - Quanxi Su
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Quanxi Su,
| |
Collapse
|
48
|
Structural biology and structure–function relationships of membrane proteins. Biochem Soc Trans 2018; 47:47-61. [DOI: 10.1042/bst20180269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Abstract
The study of structure–function relationships of membrane proteins (MPs) has been one of the major goals in the field of structural biology. Many Noble Prizes regarding remarkable accomplishments in MP structure determination and biochemistry have been awarded over the last few decades. Mutations or improper folding of these proteins are associated with numerous serious illnesses. Therefore, as important drug targets, the study of their primary sequence and three-dimensional fold, combined with cell-based assays, provides vital information about their structure–function relationships. Today, this information is vital to drug discovery and medicine. In the last two decades, many have been the technical advances and breakthroughs in the field of MP structural biology that have contributed to an exponential growth in the number of unique MP structures in the Protein Data Bank. Nevertheless, given the medical importance and many unanswered questions, it will never be an excess of MP structures, regardless of the method used. Owing to the extension of the field, in this brief review, we will only focus on structure–function relationships of the three most significant pharmaceutical classes: G protein-coupled receptors, ion channels and transporters.
Collapse
|
49
|
Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel. Proc Natl Acad Sci U S A 2018; 115:E12172-E12181. [PMID: 30541892 DOI: 10.1073/pnas.1813378116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pentameric ligand-gated ion channel (pLGIC) from Gloeobacter violaceus (GLIC) has provided insightful structure-function views on the permeation process and the allosteric regulation of the pLGICs family. However, GLIC is activated by pH instead of a neurotransmitter and a clear picture for the gating transition driven by protons is still lacking. We used an electrostatics-based (finite difference Poisson-Boltzmann/Debye-Hückel) method to predict the acidities of all aspartic and glutamic residues in GLIC, both in its active and closed-channel states. Those residues with a predicted pKa close to the experimental pH50 were individually replaced by alanine and the resulting variant receptors were titrated by ATR/FTIR spectroscopy. E35, located in front of loop F far away from the orthosteric site, appears as the key proton sensor with a measured individual pKa at 5.8. In the GLIC open conformation, E35 is connected through a water-mediated hydrogen-bond network first to the highly conserved electrostatic triad R192-D122-D32 and then to Y197-Y119-K248, both located at the extracellular domain-transmembrane domain interface. The second triad controls a cluster of hydrophobic side chains from the M2-M3 loop that is remodeled during the gating transition. We solved 12 crystal structures of GLIC mutants, 6 of them being trapped in an agonist-bound but nonconductive conformation. Combined with previous data, this reveals two branches of a continuous network originating from E35 that reach, independently, the middle transmembrane region of two adjacent subunits. We conclude that GLIC's gating proceeds by making use of loop F, already known as an allosteric site in other pLGICs, instead of the classic orthosteric site.
Collapse
|
50
|
Chiodo L, Malliavin TE, Giuffrida S, Maragliano L, Cottone G. Closed-Locked and Apo-Resting State Structures of the Human α7 Nicotinic Receptor: A Computational Study. J Chem Inf Model 2018; 58:2278-2293. [PMID: 30359518 DOI: 10.1021/acs.jcim.8b00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicotinic acetylcholine receptors, belonging to the Cys-loop superfamily of ligand-gated ion channels (LGICs), are membrane proteins present in neurons and at neuromuscular junctions. They are responsible for signal transmission, and their function is regulated by neurotransmitters, agonists, and antagonists drugs. A detailed knowledge of their conformational transition in response to ligand binding is critical to understanding the basis of ligand-receptor interaction, in view of new pharmacological approaches to control receptor activity. However, the scarcity of experimentally derived structures of human channels makes this perspective extremely challenging. To contribute overcoming this issue, we have recently reported structural models for the open and the desensitized states of the human α7 nicotinic receptor. Here, we provide all-atom structural models of the same receptor in two different nonconductive states. The first structure, built via homology modeling and relaxed with extensive Molecular Dynamics simulations, represents the receptor bound to the natural antagonist α-conotoxin ImI. After comparison with available experimental data and computational models of other eukaryotic LGICs, we deem it consistent with the "closed-locked" state. The second model, obtained with simulations from the spontaneous relaxation of the open, agonist-bound α7 structure after ligand removal, recapitulates the characteristics of the apo-resting state of the receptor. These results add to our previous work on the active and desensitized state conformations, contributing to the structural characterization of the conformational landscape of the human α7 receptor and suggesting benchmarks to discriminate among conformations found in experiments or in simulations of LGICs. In particular key interactions at the interface between the extracellular domain and the transmembrane domain are identified, that could be critical to the α7 receptor function.
Collapse
Affiliation(s)
- Letizia Chiodo
- Department of Engineering , Campus Bio-Medico University of Rome , Via Á. del Portillo 21 , 00128 Rome , Italy
| | - Thérèse E Malliavin
- Institut Pasteur and CNRS UMR 3528, Unité de Bioinformatique Structurale , 25-28 rue du Dr Roux , 75015 Paris , France.,Centre de Bioinformatique, Biostatistique et Biologie Intégrative , Institut Pasteur and CNRS USR 3756 , 25-28 rue du Dr Roux , 75015 Paris , France
| | - Sergio Giuffrida
- Department of Physics and Chemistry , University of Palermo , Viale delle Scienze Ed. 17 , 90128 Palermo , Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe) , Istituto Italiano di Tecnologia , Largo Rosanna Benzi, 10 , 16132 Genoa , Italy.,IRCCS Ospedale Policlinico San Martino , Largo Rosanna Benzi 10 , 16132 Genoa , Italy
| | - Grazia Cottone
- Department of Physics and Chemistry , University of Palermo , Viale delle Scienze Ed. 17 , 90128 Palermo , Italy
| |
Collapse
|