1
|
He M, Tao Y, Mu K, Feng H, Fan Y, Liu T, Huang Q, Xiao Y, Chen W. Coordinated regulation of chemotaxis and resistance to copper by CsoR in Pseudomonas putida. eLife 2025; 13:RP100914. [PMID: 40197389 PMCID: PMC11978298 DOI: 10.7554/elife.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.
Collapse
Affiliation(s)
- Meina He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Yongxin Tao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Kexin Mu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Haoqi Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Ying Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Tong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
2
|
Arroyo-Pérez EE, Hook JC, Alvarado A, Wimmi S, Glatter T, Thormann K, Ringgaard S. A conserved cell-pole determinant organizes proper polar flagellum formation. eLife 2024; 13:RP93004. [PMID: 39636223 PMCID: PMC11620751 DOI: 10.7554/elife.93004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.
Collapse
Affiliation(s)
- Erick E Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Alejandra Alvarado
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of TübingenTübingenGermany
| | - Stephan Wimmi
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Institute for Biological Physics, University of CologneKölnGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Kai Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität GiessenGiessenGermany
| | - Simon Ringgaard
- Max Planck Institute for Terrestrial Microbiology, Department of EcophysiologyMunichGermany
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität MünchenMunichGermany
| |
Collapse
|
3
|
Li Y, Shi W, Sun Z, Zhang W. Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence. Microbiol Res 2024; 289:127917. [PMID: 39368257 DOI: 10.1016/j.micres.2024.127917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. Vibrio splendidus is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber. Our study demonstrated that V. splendidus AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in V. splendidus virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of V. splendidus toward L-Glu, and highlights the importance of chemotaxis in its virulence.
Collapse
Affiliation(s)
- Ya Li
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weibo Shi
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Zihao Sun
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China.
| |
Collapse
|
4
|
Pulianmackal LT, Vecchiarelli AG. Positioning of cellular components by the ParA/MinD family of ATPases. Curr Opin Microbiol 2024; 79:102485. [PMID: 38723344 PMCID: PMC11407121 DOI: 10.1016/j.mib.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Pulianmackal LT, Limcaoco JMI, Ravi K, Yang S, Zhang J, Tran MK, Ghalmi M, O'Meara MJ, Vecchiarelli AG. Multiple ParA/MinD ATPases coordinate the positioning of disparate cargos in a bacterial cell. Nat Commun 2023; 14:3255. [PMID: 37277398 DOI: 10.1038/s41467-023-39019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
In eukaryotes, linear motor proteins govern intracellular transport and organization. In bacteria, where linear motors involved in spatial regulation are absent, the ParA/MinD family of ATPases organize an array of genetic- and protein-based cellular cargos. The positioning of these cargos has been independently investigated to varying degrees in several bacterial species. However, it remains unclear how multiple ParA/MinD ATPases can coordinate the positioning of diverse cargos in the same cell. Here, we find that over a third of sequenced bacterial genomes encode multiple ParA/MinD ATPases. We identify an organism (Halothiobacillus neapolitanus) with seven ParA/MinD ATPases, demonstrate that five of these are each dedicated to the spatial regulation of a single cellular cargo, and define potential specificity determinants for each system. Furthermore, we show how these positioning reactions can influence each other, stressing the importance of understanding how organelle trafficking, chromosome segregation, and cell division are coordinated in bacterial cells. Together, our data show how multiple ParA/MinD ATPases coexist and function to position a diverse set of fundamental cargos in the same bacterial cell.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose Miguel I Limcaoco
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keerthikka Ravi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sinyu Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mimi K Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew J O'Meara
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Effects of NaCl Concentration on the Behavior of Vibrio brasiliensis and Transcriptome Analysis. Foods 2022; 11:foods11060840. [PMID: 35327263 PMCID: PMC8955013 DOI: 10.3390/foods11060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
The growth of Vibrio bacteria is affected by environmental conditions, and unfavorable conditions will produce different degrees of stress on Vibrio. The cells respond to the stress on the bacteria through changes in biological characteristics and transcriptomes. To study the effect of NaCl concentration on Vibrio brasiliensis, we have determined the biological characteristics of the 0%, 1%, 2%, 3%, 5%, and 7% NaCl concentrations cultured V. brasiliensis to research the salt stress to bacteria. We found that the biological properties of V. brasiliensis cultured with different NaCl concentrations were different, and the expression of outer membrane proteins of V. brasiliensis changed when it was grown under different NaCl concentrations. When bacteria cultured in higher NaCl concentrations (3%, 5% and 7% NaCl), the sodium-type flagellar protein MotY was found. Finally, the transcriptome analysis of V. brasiliensis cultured with 0% NaCl and 7% NaCl was carried out to find out the differentially expressed genes. We found that the same gene have opposite up-regulated and down-regulated expression in two treatments, indicating that these types of genes are regulated different in low and high osmotic stress.
Collapse
|
7
|
Eukaryotic catecholamine hormones influence the chemotactic control of Vibrio campbellii by binding to the coupling protein CheW. Proc Natl Acad Sci U S A 2022; 119:e2118227119. [PMID: 35238645 PMCID: PMC8915975 DOI: 10.1073/pnas.2118227119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-emitted stress hormones significantly influence the growth and behavior of various bacterial species; however, their cellular targets have so far remained elusive. Here, we used customized probes and quantitative proteomics to identify the target of epinephrine and the α-adrenoceptor agonist phenylephrine in live cells of the aquatic pathogen Vibrio campbellii. Consequently, we have discovered the coupling protein CheW, which is in the center of the chemotaxis signaling network, as a target of both molecules. We not only demonstrate direct ligand binding to CheW but also elucidate how this affects chemotactic control. These findings are pivotal for further research on hormone-specific effects on bacterial behavior. In addition to their well-known role as stress-associated catecholamine hormones in animals and humans, epinephrine (EPI) and norepinephrine (NE) act as interkingdom signals between eukaryotic hosts and bacteria. However, the molecular basis of their effects on bacteria is not well understood. In initial phenotypic studies utilizing Vibrio campbellii as a model organism, we characterized the bipartite mode of action of catecholamines, which consists of promotion of growth under iron limitation and enhanced colony expansion on soft agar. In order to identify the molecular targets of the hormones, we designed and synthesized tailored probes for chemical proteomic studies. As the catechol group in EPI and NE acts as an iron chelator and is prone to form a reactive quinone moiety, we devised a photoprobe based on the adrenergic agonist phenylephrine (PE), which solely influenced colony expansion. Using this probe, we identified CheW, located at the core of the chemotaxis signaling network, as a major target. In vitro studies confirmed that EPI, NE, PE, and labetalol, a clinically applied antagonist, bind to purified CheW with affinity constants in the submicromolar range. In line with these findings, exposure of V. campbellii to these adrenergic agonists affects the chemotactic control of the bacterium. This study highlights an effect of eukaryotic signaling molecules on bacterial motility.
Collapse
|
8
|
Analysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators. PLoS Genet 2022; 18:e1009991. [PMID: 35020734 PMCID: PMC8789113 DOI: 10.1371/journal.pgen.1009991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation. Cell polarity is the result of controlled asymmetric distribution of protein macrocomplexes, genetic material, membrane lipids and cellular metabolites, and can play crucial physiological roles not only in multicellular organisms but also in unicellular bacteria. In the opportunistic cholera pathogen Vibrio cholerae, the polar landmark protein HubP tethers key actors in chromosome segregation, chemotaxis and flagellar biosynthesis and thus converts the cell pole into an important functional microdomain for cell proliferation, environmental sensing and adaptation between free-living and pathogenic life-styles. Using a comparative proteomics approach, we here-in present a comprehensive analysis of HubP-dependent cell pole protein sorting and identify novel HubP partners including ones likely involved in cell wall remodeling (DacB), chemotaxis (HlyB) and motility regulation (MotV and MotW). Unlike previous studies which have identified early roles for HubP in flagellar assembly, functional, genetic and phylogenetic analyses of its MotV and MotW partners suggest a direct role in flagellar rotary mechanics and provide new insights into the coevolution and functional interdependence of chemotactic signaling, bacterial motility and biofilm formation.
Collapse
|
9
|
Hakim P, Hoang Y, Vecchiarelli AG. Dissection of the ATPase active site of McdA reveals the sequential steps essential for carboxysome distribution. Mol Biol Cell 2021; 32:ar11. [PMID: 34406783 PMCID: PMC8684754 DOI: 10.1091/mbc.e21-03-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carboxysomes, the most prevalent and well-studied anabolic bacterial microcompartment, play a central role in efficient carbon fixation by cyanobacteria and proteobacteria. In previous studies, we identified the two-component system called McdAB that spatially distributes carboxysomes across the bacterial nucleoid. Maintenance of carboxysome distribution protein A (McdA), a partition protein A (ParA)-like ATPase, forms a dynamic oscillating gradient on the nucleoid in response to the carboxysome-localized Maintenance of carboxysome distribution protein B (McdB). As McdB stimulates McdA ATPase activity, McdA is removed from the nucleoid in the vicinity of carboxysomes, propelling these proteinaceous cargos toward regions of highest McdA concentration via a Brownian-ratchet mechanism. How the ATPase cycle of McdA governs its in vivo dynamics and carboxysome positioning remains unresolved. Here, by strategically introducing amino acid substitutions in the ATP-binding region of McdA, we sequentially trap McdA at specific steps in its ATP cycle. We map out critical events in the ATPase cycle of McdA that allows the protein to bind ATP, dimerize, change its conformation into a DNA-binding state, interact with McdB-bound carboxysomes, hydrolyze ATP, and release from the nucleoid. We also find that McdA is a member of a previously unstudied subset of ParA family ATPases, harboring unique interactions with ATP and the nucleoid for trafficking their cognate intracellular cargos.
Collapse
Affiliation(s)
- Pusparanee Hakim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
10
|
Arroyo-Pérez EE, Ringgaard S. Interdependent Polar Localization of FlhF and FlhG and Their Importance for Flagellum Formation of Vibrio parahaemolyticus. Front Microbiol 2021; 12:655239. [PMID: 33815347 PMCID: PMC8009987 DOI: 10.3389/fmicb.2021.655239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Failure of the cell to properly regulate the number and intracellular positioning of their flagella, has detrimental effects on the cells’ swimming ability. The flagellation pattern of numerous bacteria is regulated by the NTPases FlhF and FlhG. In general, FlhG controls the number of flagella produced, whereas FlhF coordinates the position of the flagella. In the human pathogen Vibrio parahaemolyticus, its single flagellum is positioned and formed at the old cell pole. Here, we describe the spatiotemporal localization of FlhF and FlhG in V. parahaemolyticus and their effect on swimming motility. Absence of either FlhF or FlhG caused a significant defect in swimming ability, resulting in absence of flagella in a ΔflhF mutant and an aberrant flagellated phenotype in ΔflhG. Both proteins localized to the cell pole in a cell cycle-dependent manner, but displayed different patterns of localization throughout the cell cycle. FlhF transitioned from a uni- to bi-polar localization, as observed in other polarly flagellated bacteria. Localization of FlhG was strictly dependent on the cell pole-determinant HubP, while polar localization of FlhF was HubP independent. Furthermore, localization of FlhF and FlhG was interdependent and required for each other’s proper intracellular localization and recruitment to the cell pole. In the absence of HubP or FlhF, FlhG forms non-polar foci in the cytoplasm of the cell, suggesting the possibility of a secondary localization site within the cell besides its recruitment to the cell poles.
Collapse
Affiliation(s)
- Erick Eligio Arroyo-Pérez
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Ringgaard
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Nußbaum P, Ithurbide S, Walsh JC, Patro M, Delpech F, Rodriguez-Franco M, Curmi PMG, Duggin IG, Quax TEF, Albers SV. An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea. Curr Biol 2020; 30:4956-4972.e4. [PMID: 33125862 DOI: 10.1016/j.cub.2020.09.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023]
Abstract
MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.
Collapse
Affiliation(s)
- Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Solenne Ithurbide
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Megha Patro
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Floriane Delpech
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Iain G Duggin
- The ithree institute, University of Technology, Sydney, Ultimo, NSW 2007, Australia.
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
12
|
Ortega DR, Kjær A, Briegel A. The chemosensory systems of Vibrio cholerae. Mol Microbiol 2020; 114:367-376. [PMID: 32347610 PMCID: PMC7534058 DOI: 10.1111/mmi.14520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Vibrio cholerae, the causative agent of the acute diarrheal disease cholera, is able to thrive in diverse habitats such as natural water bodies and inside human hosts. To ensure their survival, these bacteria rely on chemosensory pathways to sense and respond to changing environmental conditions. These pathways constitute a highly sophisticated cellular control system in Bacteria and Archaea. Reflecting the complex life cycle of V. cholerae, this organism has three different chemosensory pathways that together contain over 50 proteins expressed under different environmental conditions. Only one of them is known to control motility, while the function of the other two remains to be discovered. Here, we provide an overview of the chemosensory systems in V. cholerae and the advances toward understanding their structure and function.
Collapse
Affiliation(s)
- Davi R. Ortega
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Andreas Kjær
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Ariane Briegel
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
13
|
Freitas C, Glatter T, Ringgaard S. Specific proteomic adaptation to distinct environments in Vibrio parahaemolyticus includes significant fluctuations in expression of essential proteins. Environ Microbiol 2020; 22:4279-4294. [PMID: 32219943 DOI: 10.1111/1462-2920.14997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 11/28/2022]
Abstract
Bacteria constantly experience changes to their external milieu and need to adapt accordingly to ensure their survival. Certain bacteria adapt by means of cellular differentiation, resulting in the development of a specific cell type that is specialized for life in a distinct environment. Furthermore, to understand how bacteria adapt, it is essential to appreciate the significant changes that occur at the proteomic level. By analysing the proteome of our model organism Vibrio parahaemolyticus from distinct environmental conditions and cellular differential states, we demonstrate that the proteomic expression profile is highly flexible, which likely allows it to adapt to life in different environmental conditions and habitats. We show that, even within the same swarm colony, there are specific zones of cells with distinct expression profiles. Furthermore, our data indicate that cell surface attachment and swarmer cell differentiation are distinct programmes that require specific proteomic expression profiles. This likely allows V. parahaemolyticus to adapt to life in different environmental conditions and habitats. Finally, our analyses reveal that the expression profile of the essential protein pool is highly fluid, with significant fluctuations that dependent on the specific life-style, environment and differentiation state of the bacterium.
Collapse
Affiliation(s)
- Carolina Freitas
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| |
Collapse
|
14
|
Iyer SC, Casas-Pastor D, Kraus D, Mann P, Schirner K, Glatter T, Fritz G, Ringgaard S. Transcriptional regulation by σ factor phosphorylation in bacteria. Nat Microbiol 2020; 5:395-406. [PMID: 31988380 DOI: 10.1038/s41564-019-0648-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2019] [Indexed: 11/09/2022]
Abstract
A major form of transcriptional regulation in bacteria occurs through the exchange of the primary σ factor of RNA polymerase (RNAP) with an alternative extracytoplasmic function (ECF) σ factor1. ECF σ factors are generally intrinsically active and are retained in an inactive state via the sequestration into σ factor-anti-σ factor complexes until their action is warranted2-20. Here, we report a previously uncharacterized mechanism of transcriptional regulation that relies on intrinsically inactive ECF σ factors, the activation of which and interaction with the β'-subunit of RNAP depends on σ factor phosphorylation. In Vibrio parahaemolyticus, the threonine kinase PknT phosphorylates the σ factor EcfP, which results in EcfP activation and expression of an essential polymyxin-resistant regulon. EcfP phosphorylation occurs at a highly conserved threonine residue, Thr63, positioned within a divergent region in the σ2.2 helix. Our data indicate that EcfP is intrinsically inactive and unable to bind the β'-subunit of RNAP due to the absence of a negatively charged DAED motif in this region. Furthermore, our results indicate that phosphorylation at residue Thr63 mimics this negative charge and licenses EcfP to interact with the β'-subunit in the formation of the RNAP holoenzyme, which in turn results in target gene expression. This regulatory mechanism is a previously unrecognized paradigm in bacterial signal transduction and transcriptional regulation, and our data suggest that it is widespread in bacteria.
Collapse
Affiliation(s)
| | | | - David Kraus
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
15
|
Abstract
Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea. Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea.
Collapse
|
16
|
Altinoglu I, Merrifield CJ, Yamaichi Y. Single molecule super-resolution imaging of bacterial cell pole proteins with high-throughput quantitative analysis pipeline. Sci Rep 2019; 9:6680. [PMID: 31040310 PMCID: PMC6491441 DOI: 10.1038/s41598-019-43051-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteria show sophisticated control of their cellular organization, and many bacteria deploy different polar landmark proteins to organize the cell pole. Super-resolution microscopy, such as Photo-Activated Localization Microscopy (PALM), provides the nanoscale localization of molecules and is crucial for better understanding of organization and dynamics in single-molecule. However, analytical tools are not fully available yet, in particular for bacterial cell biology. For example, quantitative and statistical analyses of subcellular localization with multiple cells from multiple fields of view are lacking. Furthermore, brightfield images are not sufficient to get accurate contours of small and low contrast bacterial cells, compared to subpixel presentation of target molecules. Here we describe a novel analytic tool for PALM which integrates precisely drawn cell outlines, of either inner membrane or periplasm, labelled by PALM-compatible fluorescent protein fusions, with molecule data for >10,000 molecules from >100 cells by fitting each cell into an oval arc. In the vibrioid bacterium Vibrio cholerae, the polar anchor HubP constitutes a big polar complex which includes multiple proteins involved in chemotaxis and the flagellum. With this pipeline, HubP is shown to be slightly skewed towards the inner curvature side of the cell, while its interaction partners showed rather loose polar localization.
Collapse
Affiliation(s)
- Ipek Altinoglu
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.,Graduate School of Structure and Dynamics of Living Systems, Univ. Paris-Sud, Orsay, France
| | - Christien J Merrifield
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France
| | - Yoshiharu Yamaichi
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.
| |
Collapse
|
17
|
Abstract
The chemoreceptor array, a remarkably ordered supramolecular complex, is composed of hexagonally packed trimers of receptor dimers networked by a histidine kinase and one or more coupling proteins. Even though the receptor packing is universal among chemotactic bacteria and archaea, the array architecture has been extensively studied only in selected model organisms. Here, we show that even in the complete absence of the kinase, the cluster II arrays in Vibrio cholerae retain their native spatial localization and the iconic hexagonal packing of the receptors with 12-nm spacing. Our results demonstrate that the chemotaxis array is versatile in composition, a property that allows auxiliary chemotaxis proteins such as ParP and CheV to integrate directly into the assembly. Along with its compositional variability, cluster II arrays exhibit a low degree of structural stability compared with the ultrastable arrays in Escherichia coli We propose that the variability in chemoreceptor arrays is an important mechanism that enables the incorporation of chemotaxis proteins based on their availability.
Collapse
|
18
|
Ringgaard S, Yang W, Alvarado A, Schirner K, Briegel A. Chemotaxis arrays in Vibrio species and their intracellular positioning by the ParC/ParP system. J Bacteriol 2018; 200:e00793-17. [PMID: 29531180 PMCID: PMC6040185 DOI: 10.1128/jb.00793-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Most motile bacteria are able to bias their movement towards more favorable environments or to escape from obnoxious substances by a process called chemotaxis. Chemotaxis depends on a chemosensory system that is able to sense specific environmental signals and generate a behavioral response. Typically, the signal is transmitted to the bacterial flagellum, ultimately regulating the swimming behavior of individual cells. Chemotaxis is mediated by proteins that assemble into large, highly ordered arrays. It is imperative for successful chemotactic behavior and cellular competitiveness that chemosensory arrays form and localize properly within the cell. Here we review how chemotaxis arrays form and localize in Vibrio cholerae and Vibrio parahaemolyticus We focus on how the ParC/ParP-system mediates cell cycle-dependent polar localization of chemotaxis arrays and thus ensures proper cell pole development and array inheritance upon cell division.
Collapse
Affiliation(s)
- Simon Ringgaard
- Departmet of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - Wen Yang
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Alejandra Alvarado
- Departmet of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
19
|
Misra HS, Maurya GK, Chaudhary R, Misra CS. Interdependence of bacterial cell division and genome segregation and its potential in drug development. Microbiol Res 2018; 208:12-24. [DOI: 10.1016/j.micres.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
|
20
|
Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:12809-12814. [PMID: 29133402 DOI: 10.1073/pnas.1708842114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In contrast to Escherichia coli, a model organism for chemotaxis that has 5 chemoreceptors and a single chemosensory pathway, Pseudomonas aeruginosa PAO1 has a much more complex chemosensory network, which consists of 26 chemoreceptors feeding into four chemosensory pathways. While several chemoreceptors were rigorously linked to specific pathways in a series of experimental studies, for most of them this information is not available. Thus, we addressed the problem computationally. Protein-protein interaction network prediction, coexpression data mining, and phylogenetic profiling all produced incomplete and uncertain assignments of chemoreceptors to pathways. However, comparative sequence analysis specifically targeting chemoreceptor regions involved in pathway interactions revealed conserved sequence patterns that enabled us to unambiguously link all 26 chemoreceptors to four pathways. Placing computational evidence in the context of experimental data allowed us to conclude that three chemosensory pathways in P. aeruginosa utilize one chemoreceptor per pathway, whereas the fourth pathway, which is the main system controlling chemotaxis, utilizes the other 23 chemoreceptors. Our results show that while only a very few amino acid positions in receptors, kinases, and adaptors determine their pathway specificity, assigning receptors to pathways computationally is possible. This requires substantial knowledge about interacting partners on a molecular level and focusing comparative sequence analysis on the pathway-specific regions. This general principle should be applicable to resolving many other receptor-pathway interactions.
Collapse
|
21
|
Moine A, Espinosa L, Martineau E, Yaikhomba M, Jazleena PJ, Byrne D, Biondi EG, Notomista E, Brilli M, Molle V, Gayathri P, Mignot T, Mauriello EMF. The nucleoid as a scaffold for the assembly of bacterial signaling complexes. PLoS Genet 2017; 13:e1007103. [PMID: 29161263 PMCID: PMC5716589 DOI: 10.1371/journal.pgen.1007103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 11/05/2017] [Indexed: 11/17/2022] Open
Abstract
The FrzCD chemoreceptor from the gliding bacterium Myxococcus xanthus forms cytoplasmic clusters that occupy a large central region of the cell body also occupied by the nucleoid. In this work, we show that FrzCD directly binds to the nucleoid with its N-terminal positively charged tail and recruits active signaling complexes at this location. The FrzCD binding to the nucleoid occur in a DNA-sequence independent manner and leads to the formation of multiple distributed clusters that explore constrained areas. This organization might be required for cooperative interactions between clustered receptors as observed in membrane-bound chemosensory arrays.
Collapse
Affiliation(s)
- Audrey Moine
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenie Martineau
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Mutum Yaikhomba
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - P. J. Jazleena
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Deborah Byrne
- Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
| | - Emanuele G. Biondi
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenio Notomista
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Matteo Brilli
- DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnano, Italy
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS-Universités de Montpellier II et I, Montpellier, France
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | | |
Collapse
|
22
|
Alvarado A, Kjær A, Yang W, Mann P, Briegel A, Waldor MK, Ringgaard S. Coupling chemosensory array formation and localization. eLife 2017; 6:31058. [PMID: 29058677 PMCID: PMC5706961 DOI: 10.7554/elife.31058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis proteins organize into large, highly ordered, chemotactic signaling arrays, which in Vibrio species are found at the cell pole. Proper localization of signaling arrays is mediated by ParP, which tethers arrays to a cell pole anchor, ParC. Here we show that ParP’s C-terminus integrates into the core-unit of signaling arrays through interactions with MCP-proteins and CheA. Its intercalation within core-units stimulates array formation, whereas its N-terminal interaction domain enables polar recruitment of arrays and facilitates its own polar localization. Linkage of these domains within ParP couples array formation and localization and results in controlled array positioning at the cell pole. Notably, ParP’s integration into arrays modifies its own and ParC’s subcellular localization dynamics, promoting their polar retention. ParP serves as a critical nexus that regulates the localization dynamics of its network constituents and drives the localized assembly and stability of the chemotactic machinery, resulting in proper cell pole development. Many bacteria live in a liquid environment and explore their surroundings by swimming. When in search of food, bacteria are able to swim toward the highest concentration of food molecules in the environment by a process called chemotaxis. Proteins important for chemotaxis group together in large networks called chemotaxis arrays. In the bacterium Vibrio cholerae chemotaxis arrays are placed at opposite ends (at the “cell poles”) of the bacterium by a protein called ParP. This makes sure that when the bacterium divides, each new cell receives a chemotaxis array and can immediately search for food. In cells that lack ParP, the chemotaxis arrays are no longer placed correctly at the cell poles and the bacteria search for food much less effectively. To understand how ParP is able to direct chemotaxis arrays to the cell poles in V. cholerae Alvarado et al. searched for partner proteins that could help ParP position the arrays. The search revealed that ParP interacts with other proteins in the chemotaxis arrays. This enables ParP to integrate into the arrays and stimulate new arrays to form. Alvarado et al. also discovered that ParP consists of two separate parts that have different roles. One part directs ParP to the cell pole while the other part integrates ParP into the arrays. By performing both of these roles, ParP links the positioning of the arrays at the cell pole to their formation at this site. The findings presented by Alvarado et al. open many further questions. For instance, it is not understood how ParP affects how other chemotaxis proteins within the arrays interact with each other. As well as enabling many species of bacteria to spread through their environment, chemotaxis is also important for the disease-causing properties of many human pathogens – like V. cholerae. As a result, learning how chemotaxis is regulated could potentially identify new ways to stop the spread of infectious bacteria and prevent human infections.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Kjær
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Wen Yang
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
23
|
Essential Role of the Cytoplasmic Chemoreceptor TlpT in the De Novo Formation of Chemosensory Complexes in Rhodobacter sphaeroides. J Bacteriol 2017; 199:JB.00366-17. [PMID: 28739674 DOI: 10.1128/jb.00366-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/14/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemosensory proteins form large hexagonal arrays. Several key features of chemotactic signaling depend on these large arrays, namely, cooperativity between receptors, sensitivity, integration of different signals, and adaptation. The best-studied arrays are the membrane-associated arrays found in most bacteria. Rhodobacter sphaeroides has two spatially distinct chemosensory arrays, one is transmembrane and the other is cytoplasmic. These two arrays work together to control a single flagellum. Deletion of one of the soluble chemoreceptors, TlpT, results in the loss of the formation of the cytoplasmic array. Here, we show the expression of TlpT in a tlpT deletion background results in the reformation of the cytoplasmic array. The number of arrays formed is dependent on the cell length, indicating spatial limitations on the number of arrays in a cell and stochastic assembly. Deletion of PpfA, a protein required for the positioning and segregation of the cytoplasmic array, results in slower array formation upon TlpT expression and fewer arrays, suggesting it accelerates cluster assembly.IMPORTANCE Bacterial chemosensory arrays are usually membrane associated and consist of thousands of copies of receptors, adaptor proteins, kinases, and adaptation enzymes packed into large hexagonal structures. Rhodobacter sphaeroides also has cytoplasmic arrays, which divide and segregate using a chromosome-associated ATPase, PpfA. The expression of the soluble chemoreceptor TlpT is shown to drive the formation of the arrays, accelerated by PpfA. The positioning of these de novo arrays suggests their position is the result of stochastic assembly rather than active positioning.
Collapse
|
24
|
Heering J, Alvarado A, Ringgaard S. Induction of Cellular Differentiation and Single Cell Imaging of Vibrio parahaemolyticus Swimmer and Swarmer Cells. J Vis Exp 2017. [PMID: 28570527 DOI: 10.3791/55842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to study the intracellular localization of proteins is essential for the understanding of many cellular processes. In turn, this requires the ability to obtain single cells for fluorescence microscopy, which can be particularly challenging when imaging cells that exist within bacterial communities. For example, the human pathogen Vibrio parahaemolyticus exists as short rod-shaped swimmer cells in liquid conditions that upon surface contact differentiate into a subpopulation of highly elongated swarmer cells specialized for growth on solid surfaces. This paper presents a method to perform single cell fluorescence microscopy analysis of V. parahaemolyticus in its two differential states. This protocol very reproducibly induces differentiation of V. parahaemolyticus into a swarmer cell life-cycle and facilitates their proliferation over solid surfaces. The method produces flares of differentiated swarmer cells extending from the edge of the swarm-colony. Notably, at the very tip of the swarm-flares, swarmer cells exist in a single layer of cells, which allows for their easy transfer to a microscope slide and subsequent fluorescence microscopy imaging of single cells. Additionally, the workflow of image analysis for demographic representation of bacterial societies is presented. As a proof of principle, the analysis of the intracellular localization of chemotaxis signaling arrays in swimmer and swarmer cells of V. parahaemolyticus is described.
Collapse
Affiliation(s)
- Jan Heering
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology
| | - Alejandra Alvarado
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology;
| |
Collapse
|
25
|
Cooperation of two distinct coupling proteins creates chemosensory network connections. Proc Natl Acad Sci U S A 2017; 114:2970-2975. [PMID: 28242706 DOI: 10.1073/pnas.1618227114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it is appreciated that bacterial chemotaxis systems rely on coupling, also called scaffold, proteins to both connect input receptors with output kinases and build interkinase connections that allow signal amplification, it is not yet clear why many systems use more than one coupling protein. We examined the distinct functions for multiple coupling proteins in the bacterial chemotaxis system of Helicobacter pylori, which requires two nonredundant coupling proteins for chemotaxis: CheW and CheV1, a hybrid of a CheW and a phosphorylatable receiver domain. We report that CheV1 and CheW have largely redundant abilities to interact with chemoreceptors and the CheA kinase, and both similarly activated CheA's kinase activity. We discovered, however, that they are not redundant for formation of the higher order chemoreceptor arrays that are known to form via CheA-CheW interactions. In support of this possibility, we found that CheW and CheV1 interact with each other and with CheA independent of the chemoreceptors. Therefore, it seems that some microbes have modified array formation to require CheW and CheV1. Our data suggest that multiple coupling proteins may be used to provide flexibility in the chemoreceptor array formation.
Collapse
|
26
|
Heering J, Ringgaard S. Differential Localization of Chemotactic Signaling Arrays during the Lifecycle of Vibrio parahaemolyticus. Front Microbiol 2016; 7:1767. [PMID: 27853457 PMCID: PMC5090175 DOI: 10.3389/fmicb.2016.01767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 11/13/2022] Open
Abstract
When encountering new environments or changes to their external milieu, bacteria use elaborate mechanisms to respond accordingly. Here, we describe how Vibrio parahaemolyticus coordinates two such mechanisms - differentiation and chemotaxis. V. parahaemolyticus differentiates between two distinct cell types: short rod-shaped swimmer cells and highly elongated swarmer cells. We show that the intracellular organization of chemotactic signaling arrays changes according to the differentiation state. In swimmer cells chemotaxis arrays are strictly polarly localized, but in swarmer cells arrays form both at the cell poles and at irregular intervals along the entire cell length. Furthermore, the formation of lateral arrays increases with cell length of swarmer cells. Occurrence of lateral signaling arrays is not simply a consequence of the elongated state of swarmer cells, but is instead differentiation state-specific. Moreover, our data suggest that swarmer cells employ two distinct mechanisms for localization of polar and lateral signaling arrays, respectively. Furthermore, cells show a distinct differentiation and localization pattern of chemosensory arrays, depending on their location within swarm colonies, which likely allows for the organism to simultaneously swarm across surfaces while sustaining a pool of swimmers immediately capable of exploring new liquid surroundings.
Collapse
Affiliation(s)
- Jan Heering
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| |
Collapse
|
27
|
Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM. Proc Natl Acad Sci U S A 2016; 113:10412-7. [PMID: 27573843 DOI: 10.1073/pnas.1604693113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all motile bacterial cells use a highly sensitive and adaptable sensory system to detect changes in nutrient concentrations in the environment and guide their movements toward attractants and away from repellents. The best-studied bacterial chemoreceptor arrays are membrane-bound. Many motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems. Vibrio cholerae contains three chemotaxis clusters (I, II, and III). Here, using electron cryotomography, we explore V. cholerae's cytoplasmic chemoreceptor array and establish that it is formed by proteins from cluster I. We further identify a chemoreceptor with an unusual domain architecture, DosM, which is essential for formation of the cytoplasmic arrays. DosM contains two signaling domains and spans the two-layered cytoplasmic arrays. Finally, we present evidence suggesting that this type of receptor is important for the structural stability of the cytoplasmic array.
Collapse
|
28
|
Transmembrane protein sorting driven by membrane curvature. Nat Commun 2015; 6:8728. [PMID: 26522943 PMCID: PMC4632190 DOI: 10.1038/ncomms9728] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization. The accumulation of chemoreceptor proteins at bacterial poles is thought to depend on their clustering into arrays. Strahl et al. show that in Bacillus subtilis, the chemoreceptor TlpA uses high membrane curvature as a spatial cue for polar localization, through the intrinsic curvature sensitivity of the receptor complex.
Collapse
|
29
|
Rossmann F, Brenzinger S, Knauer C, Dörrich AK, Bubendorfer S, Ruppert U, Bange G, Thormann KM. The role of FlhF and HubP as polar landmark proteins in Shewanella putrefaciens CN-32. Mol Microbiol 2015; 98:727-42. [PMID: 26235439 DOI: 10.1111/mmi.13152] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 01/06/2023]
Abstract
Spatiotemporal regulation of cell polarity plays a role in many fundamental processes in bacteria and often relies on 'landmark' proteins which recruit the corresponding clients to their designated position. Here, we explored the localization of two multi-protein complexes, the polar flagellar motor and the chemotaxis array, in Shewanella putrefaciens CN-32. We demonstrate that polar positioning of the flagellar system, but not of the chemotaxis system, depends on the GTPase FlhF. In contrast, the chemotaxis array is recruited by a transmembrane protein which we identified as the functional ortholog of Vibrio cholerae HubP. Mediated by its periplasmic N-terminal LysM domain, SpHubP exhibits an FlhF-independent localization pattern during cell cycle similar to its Vibrio counterpart and also has a role in proper chromosome segregation. In addition, while not affecting flagellar positioning, SpHubP is crucial for normal flagellar function and is involved in type IV pili-mediated twitching motility. We hypothesize that a group of HubP/FimV homologs, characterized by a rather conserved N-terminal periplasmic section required for polar targeting and a highly variable acidic cytoplasmic part, primarily mediating recruitment of client proteins, serves as polar markers in various bacterial species with respect to different cellular functions.
Collapse
Affiliation(s)
- Florian Rossmann
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany.,Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Susanne Brenzinger
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany.,Department of Ecophysiology, Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg, Germany
| | - Carina Knauer
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps University Marburg, 35043, Marburg, Germany
| | - Anja K Dörrich
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| | - Sebastian Bubendorfer
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| | - Ulrike Ruppert
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology (Synmikro) & Department of Chemistry, Philipps University Marburg, 35043, Marburg, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig Universität, 35392, Giessen, Germany
| |
Collapse
|
30
|
Internal sense of direction: sensing and signaling from cytoplasmic chemoreceptors. Microbiol Mol Biol Rev 2015; 78:672-84. [PMID: 25428939 DOI: 10.1128/mmbr.00033-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
SUMMARY Chemoreceptors sense environmental signals and drive chemotactic responses in Bacteria and Archaea. There are two main classes of chemoreceptors: integral inner membrane and soluble cytoplasmic proteins. The latter were identified more recently than integral membrane chemoreceptors and have been studied much less thoroughly. These cytoplasmic chemoreceptors are the subject of this review. Our analysis determined that 14% of bacterial and 43% of archaeal chemoreceptors are cytoplasmic, based on currently sequenced genomes. Cytoplasmic chemoreceptors appear to share the same key structural features as integral membrane chemoreceptors, including the formations of homodimers, trimers of dimers, and 12-nm hexagonal arrays within the cell. Cytoplasmic chemoreceptors exhibit varied subcellular locations, with some localizing to the poles and others appearing both cytoplasmic and polar. Some cytoplasmic chemoreceptors adopt more exotic locations, including the formations of exclusively internal clusters or moving dynamic clusters that coalesce at points of contact with other cells. Cytoplasmic chemoreceptors presumably sense signals within the cytoplasm and bear diverse signal input domains that are mostly N terminal to the domain that defines chemoreceptors, the so-called MA domain. Similar to the case for transmembrane receptors, our analysis suggests that the most common signal input domain is the PAS (Per-Arnt-Sim) domain, but a variety of other N-terminal domains exist. It is also common, however, for cytoplasmic chemoreceptors to have C-terminal domains that may function for signal input. The most common of these is the recently identified chemoreceptor zinc binding (CZB) domain, found in 8% of all cytoplasmic chemoreceptors. The widespread nature and diverse signal input domains suggest that these chemoreceptors can monitor a variety of cytoplasmically based signals, most of which remain to be determined.
Collapse
|
31
|
ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Infect Immun 2015; 83:3545-54. [PMID: 26099584 DOI: 10.1128/iai.00312-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ArcA regulates the expression of 129 genes, including genes involved in citrate transport and metabolism, flagellum synthesis, and chemotaxis. Further investigations revealed that citCEFXG contributed to APEC's microaerobic growth at the lag and log phases when cultured in duck serum and that ArcA played a dual role in the control of citrate metabolism and transportation. In addition, deletion of flagellar genes motA and motB and chemotaxis gene cheA significantly attenuated the virulence of APEC, and ArcA was shown to directly regulate the expression of motA, motB, and cheA. The combined results indicate that ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of APEC.
Collapse
|
32
|
Ringgaard S, Hubbard T, Mandlik A, Davis BM, Waldor MK. RpoS and quorum sensing control expression and polar localization of Vibrio cholerae chemotaxis cluster III proteins in vitro and in vivo. Mol Microbiol 2015; 97:660-75. [PMID: 25989366 DOI: 10.1111/mmi.13053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 01/29/2023]
Abstract
The diarrheal pathogen Vibrio cholerae contains three gene clusters that encode chemotaxis-related proteins, but only cluster II appears to be required for chemotaxis. Here, we present the first characterization of V. cholerae's 'cluster III' chemotaxis system. We found that cluster III proteins assemble into foci at bacterial poles, like those formed by cluster II proteins, but the two systems assemble independently and do not colocalize. Cluster III proteins are expressed in vitro during stationary phase and in conjunction with growth arrest linked to carbon starvation. This expression, as well as expression in vivo in suckling rabbits, is dependent upon RpoS. V. cholerae's CAI-1 quorum sensing (QS) system is also required for cluster III expression in stationary phase and modulates its expression in vivo, but is not required for cluster III expression in response to carbon starvation. Surprisingly, even though the CAI-1 and AI-2 QS systems are thought to feed into the same signaling pathway, the AI-2 system inhibited cluster III gene expression, revealing that the outputs of the two QS systems are not always the same. The distinctions between genetic determinants of cluster III expression in vitro and in vivo highlight the distinctive nature of the in vivo environment.
Collapse
Affiliation(s)
- Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Troy Hubbard
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anjali Mandlik
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brigid M Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Positioning of bacterial chemoreceptors. Trends Microbiol 2015; 23:247-56. [PMID: 25843366 DOI: 10.1016/j.tim.2015.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
Abstract
For optimum growth, bacteria must adapt to their environment, and one way that many species do this is by moving towards favourable conditions. To do so requires mechanisms to both physically drive movement and provide directionality to this movement. The pathways that control this directionality comprise chemoreceptors, which, along with an adaptor protein (CheW) and kinase (CheA), form large hexagonal arrays. These arrays can be formed around transmembrane receptors, resulting in arrays embedded in the inner membrane, or they can comprise soluble receptors, forming arrays in the cytoplasm. Across bacterial species, chemoreceptor arrays (both transmembrane and soluble) are localised to a variety of positions within the cell; some species with multiple arrays demonstrate this variety within individual cells. In many cases, the positioning pattern of the arrays is linked to the need for segregation of arrays between daughter cells on division, ensuring the production of chemotactically competent progeny. Multiple mechanisms have evolved to drive this segregation, including stochastic self-assembly, cellular landmarks, and the utilisation of ParA homologues. The variety of mechanisms highlights the importance of chemotaxis to motile species.
Collapse
|
34
|
Modi K, Misra HS. Dr-FtsA, an actin homologue in Deinococcus radiodurans differentially affects Dr-FtsZ and Ec-FtsZ functions in vitro. PLoS One 2014; 9:e115918. [PMID: 25551229 PMCID: PMC4281207 DOI: 10.1371/journal.pone.0115918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/29/2014] [Indexed: 11/24/2022] Open
Abstract
The Deinococcus radiodurans genome encodes homologues of divisome proteins including FtsZ and FtsA. FtsZ of this bacterium (Dr-FtsZ) has been recently characterized. In this paper, we study FtsA of D. radiodurans (Dr-FtsA) and its involvement in regulation of FtsZ function. Recombinant Dr-FtsA showed neither ATPase nor GTPase activity and its polymerization was ATP dependent. Interestingly, we observed that Dr-FtsA, when compared with E. coli FtsA (Ec-FtsA), has lower affinity for both Dr-FtsZ and Ec-FtsZ. Also, Dr-FtsA showed differential effects on GTPase activity and sedimentation characteristics of Dr-FtsZ and Ec-FtsZ. For instance, Dr-FtsA stimulated GTPase activity of Dr-FtsZ while GTPase activity of Ec-FtsZ was reduced in the presence of Dr-FtsA. Stimulation of GTPase activity of Dr-FtsZ by Dr-FtsA resulted in depolymerization of Dr-FtsZ. Dr-FtsA effects on GTPase activity and polymerization/depolymerisation characteristics of Dr-FtsZ did not change significantly in the presence of ATP. Recombinant E. coli expressing Dr-FtsA showed cell division inhibition in spite of in trans expression of Dr-FtsZ in these cells. These results suggested that Dr-FtsA, although it lacks ATPase activity, is still functional and differentially affects Dr-FtsZ and Ec-FtsZ function in vitro.
Collapse
Affiliation(s)
- Kruti Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- * E-mail:
| |
Collapse
|
35
|
Abstract
Bacteria are polarized cells with many asymmetrically localized proteins that are regulated temporally and spatially. This spatiotemporal dynamics is critical for several fundamental cellular processes including growth, division, cell cycle regulation, chromosome segregation, differentiation, and motility. Therefore, understanding how proteins find their correct location at the right time is crucial for elucidating bacterial cell function. Despite the diversity of proteins displaying spatiotemporal dynamics, general principles for the dynamic regulation of protein localization to the cell poles and the midcell are emerging. These principles include diffusion-capture, self-assembling polymer-forming landmark proteins, nonpolymer forming landmark proteins, matrix-dependent self-organizing ParA/MinD ATPases, and small Ras-like GTPases.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|