1
|
Ronemus M, Bradford D, Laster Z, Li S. Exploring genome-transcriptome correlations in cancer. Biochem Soc Trans 2025; 53:BST20240108. [PMID: 39910794 DOI: 10.1042/bst20240108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
We examine the complex relationship between genomic copy number variation (CNV) and gene expression, highlighting the relevance to cancer biology and other biological contexts. By tracing the history of genometranscriptome correlations, we emphasize the complexity and challenges in understanding these interactions, particularly within the heterogeneous landscape of human cancers. Recent advances in computational algorithms and high-throughput single-cell multi-omic sequencing technologies are discussed, demonstrating their potential to refine our understanding of cancer biology and their limitations. The integration of genomic and transcriptomic analyses, which offers novel insights into tumor evolution and heterogeneity as well as therapeutic strategies, is presented as a crucial approach for advancing cancer research.
Collapse
Affiliation(s)
- Michael Ronemus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Daniel Bradford
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Zachary Laster
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| |
Collapse
|
2
|
Zhang S, Wang R, Luo K, Gu S, Liu X, Wang J, Zhang L, Sun L. Dynamics and regulatory roles of RNA m 6A methylation in unbalanced genomes. eLife 2025; 13:RP100144. [PMID: 39853090 PMCID: PMC11759410 DOI: 10.7554/elife.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
N6-methyladenosine (m6A) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of m6A components appears in a variety of human diseases. RNA m6A modification in Drosophila has proven to be involved in sex determination regulated by Sxl and may affect X chromosome expression through the MSL complex. The dosage-related effects under the condition of genomic imbalance (i.e. aneuploidy) are related to various epigenetic regulatory mechanisms. Here, we investigated the roles of RNA m6A modification in unbalanced genomes using aneuploid Drosophila. The results showed that the expression of m6A components changed significantly under genomic imbalance, and affected the abundance and genome-wide distribution of m6A, which may be related to the developmental abnormalities of aneuploids. The relationships between methylation status and classical dosage effect, dosage compensation, and inverse dosage effect were also studied. In addition, we demonstrated that RNA m6A methylation may affect dosage-dependent gene regulation through dosage-sensitive modifiers, alternative splicing, the MSL complex, and other processes. More interestingly, there seems to be a close relationship between MSL complex and RNA m6A modification. It is found that ectopically overexpressed MSL complex, especially the levels of H4K16Ac through MOF, could influence the expression levels of m6A modification and genomic imbalance may be involved in this interaction. We found that m6A could affect the levels of H4K16Ac through MOF, a component of the MSL complex, and that genomic imbalance may be involved in this interaction. Altogether, our work reveals the dynamic and regulatory role of RNA m6A modification in unbalanced genomes, and may shed new light on the mechanisms of aneuploidy-related developmental abnormalities and diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Ruixue Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Kun Luo
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Shipeng Gu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Xinyu Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Junhan Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Ludan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Lin Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal UniversityBeijingChina
| |
Collapse
|
3
|
Wang R, Zhang S, Qi H, Wang L, Wang Y, Sun L. Calcium Homeostasis Is Involved in the Modulation of Gene Expression by MSL2 in Imbalanced Genomes. Cells 2024; 13:1923. [PMID: 39594671 PMCID: PMC11593054 DOI: 10.3390/cells13221923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Aneuploidy is highly detrimental to organisms due to genomic imbalance. However, the influence of parental unbalanced genome conditions on gene expression of their offspring remains unclear, particularly in animals. To further explore the molecular regulatory mechanisms, we firstly analyzed the expression patterns of aneuploid Drosophila offspring from different parents with unbalanced genomes via reciprocal crosses and studied the potential functions of male-specific lethal 2 (MSL2) in this process. The results showed that the ectopic expression of MSL2 in aneuploidy resulted in gene expression patterns closer to those of diploidy, including MSL2 target genes, maternal genes, mitochondrial genes, and transposable elements. In addition, it was also found that ERp60, the key target gene of MSL2, played a crucial role in regulating endoplasmic reticulum (ER) Ca2+ homeostasis through its interaction with the STIM1 protein. When it was overexpressed, ER Ca2+ levels and the survival of aneuploid females were significantly increased. Furthermore, we observed upregulated ER Ca2+ levels identified in aneuploid brains, which suggested that Ca2+ homeostasis may be involved in the regulation mediated by MSL2 in aneuploid genomes.
Collapse
Affiliation(s)
- Ruixue Wang
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuai Zhang
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Haizhu Qi
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Youjun Wang
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Key Laboratory of Cell Proliferation and Regulatory Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Zhang S, Wang R, Zhang L, Birchler JA, Sun L. Inverse and Proportional Trans Modulation of Gene Expression in Human Aneuploidies. Genes (Basel) 2024; 15:637. [PMID: 38790266 PMCID: PMC11121296 DOI: 10.3390/genes15050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Genomic imbalance in aneuploidy is often detrimental to organisms. To gain insight into the molecular basis of aneuploidies in humans, we analyzed transcriptome data from several autosomal and sex chromosome aneuploidies. The results showed that in human aneuploid cells, genes located on unvaried chromosomes are inversely or proportionally trans-modulated, while a subset of genes on the varied chromosomes are compensated. Less genome-wide modulation is found for sex chromosome aneuploidy compared with autosomal aneuploidy due to X inactivation and the retention of dosage sensitive regulators on both sex chromosomes to limit the effective dosage change. We also found that lncRNA and mRNA can have different responses to aneuploidy. Furthermore, we analyzed the relationship between dosage-sensitive transcription factors and their targets, which illustrated the modulations and indicates genomic imbalance is related to stoichiometric changes in components of gene regulatory complexes.In summary, this study demonstrates the existence of trans-acting effects and compensation mechanisms in human aneuploidies and contributes to our understanding of gene expression regulation in unbalanced genomes and disease states.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Zhang S, Wang R, Zhu X, Zhang L, Liu X, Sun L. Characteristics and expression of lncRNA and transposable elements in Drosophila aneuploidy. iScience 2023; 26:108494. [PMID: 38125016 PMCID: PMC10730892 DOI: 10.1016/j.isci.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Aneuploidy can globally affect the expression of the whole genome, which is detrimental to organisms. Dosage-sensitive regulators usually have multiple intermolecular interactions, and changes in their stoichiometry are responsible for the dysregulation of the regulatory network. Currently, studies on noncoding genes in aneuploidy are relatively rare. We studied the characteristics and expression profiles of long noncoding RNAs (lncRNAs) and transposable elements (TEs) in aneuploid Drosophila. It is found that lncRNAs and TEs are affected by genomic imbalance and appear to be more sensitive to an inverse dosage effect than mRNAs. Several dosage-sensitive lncRNAs and TEs were detected for their expression patterns during embryogenesis, and their biological functions in the ovary and testes were investigated using tissue-specific RNAi. This study advances our understanding of the noncoding sequences in imbalanced genomes and provides a novel perspective for the study of aneuploidy-related human diseases such as cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilin Zhu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xinyu Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Bravo‐Estupiñan DM, Aguilar‐Guerrero K, Quirós S, Acón M, Marín‐Müller C, Ibáñez‐Hernández M, Mora‐Rodríguez RA. Gene dosage compensation: Origins, criteria to identify compensated genes, and mechanisms including sensor loops as an emerging systems-level property in cancer. Cancer Med 2023; 12:22130-22155. [PMID: 37987212 PMCID: PMC10757140 DOI: 10.1002/cam4.6719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The gene dosage compensation hypothesis presents a mechanism through which the expression of certain genes is modulated to compensate for differences in the dose of genes when additional chromosomes are present. It is one of the means through which cancer cells actively cope with the potential damaging effects of aneuploidy, a hallmark of most cancers. Dosage compensation arises through several processes, including downregulation or overexpression of specific genes and the relocation of dosage-sensitive genes. In cancer, a majority of compensated genes are generally thought to be regulated at the translational or post-translational level, and include the basic components of a compensation loop, including sensors of gene dosage and modulators of gene expression. Post-translational regulation is mostly undertaken by a general degradation or aggregation of remaining protein subunits of macromolecular complexes. An increasingly important role has also been observed for transcriptional level regulation. This article reviews the process of targeted gene dosage compensation in cancer and other biological conditions, along with the mechanisms by which cells regulate specific genes to restore cellular homeostasis. These mechanisms represent potential targets for the inhibition of dosage compensation of specific genes in aneuploid cancers. This article critically examines the process of targeted gene dosage compensation in cancer and other biological contexts, alongside the criteria for identifying genes subject to dosage compensation and the intricate mechanisms by which cells orchestrate the regulation of specific genes to reinstate cellular homeostasis. Ultimately, our aim is to gain a comprehensive understanding of the intricate nature of a systems-level property. This property hinges upon the kinetic parameters of regulatory motifs, which we have termed "gene dosage sensor loops." These loops have the potential to operate at both the transcriptional and translational levels, thus emerging as promising candidates for the inhibition of dosage compensation in specific genes. Additionally, they represent novel and highly specific therapeutic targets in the context of aneuploid cancer.
Collapse
Affiliation(s)
- Diana M. Bravo‐Estupiñan
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Programa de Doctorado en Ciencias, Sistema de Estudios de Posgrado (SEP)Universidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Karol Aguilar‐Guerrero
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Maestría académica en Microbiología, Programa de Posgrado en Microbiología, Parasitología, Química Clínica e InmunologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Steve Quirós
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Man‐Sai Acón
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
| | - Christian Marín‐Müller
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Miguel Ibáñez‐Hernández
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
| | - Rodrigo A. Mora‐Rodríguez
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| |
Collapse
|
7
|
Liu X, Yan R, Liu H, Zhang S, Wang R, Zhang B, Sun L. Genome-Wide Expression Analysis of Long Noncoding RNAs and Their Target Genes in Metafemale Drosophila. Int J Mol Sci 2023; 24:ijms24098381. [PMID: 37176087 PMCID: PMC10179461 DOI: 10.3390/ijms24098381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aneuploidy is usually more detrimental than altered ploidy of the entire set of chromosomes. To explore the regulatory mechanism of gene expression in aneuploidy, we analyzed the transcriptome sequencing data of metafemale Drosophila. The results showed that most genes on the X chromosome undergo dosage compensation, while the genes on the autosomal chromosomes mainly present inverse dosage effects. Furthermore, long noncoding RNAs (lncRNAs) have been identified as key regulators of gene expression, and they are more sensitive to dosage changes than mRNAs. We analyzed differentially expressed mRNAs (DEGs) and differentially expressed lncRNAs (DELs) in metafemale Drosophila and performed functional enrichment analyses of DEGs and the target genes of DELs, and we found that they are involved in several important biological processes. By constructing lncRNA-mRNA interaction networks and calculating the maximal clique centrality (MCC) value of each node in the network, we also identified two key candidate lncRNAs (CR43940 and CR42765), and two of their target genes, Sin3A and MED1, were identified as inverse dosage modulators. These results suggest that lncRNAs play an important role in the regulation of genomic imbalances. This study may deepen the understanding of the gene expression regulatory mechanisms in aneuploidy from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Xinyu Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ran Yan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Haosheng Liu
- State Key Laboratory of Earth Surface Process and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bowen Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Sun S, Liu K, Xue C, Hu Y, Yu H, Qi G, Chen J, Li X, Zhao X, Gong Z. Genome-Wide Effects on Gene Expression Between Parental and Filial Generations of Trisomy 11 and 12 of Rice. RICE (NEW YORK, N.Y.) 2023; 16:17. [PMID: 36964817 PMCID: PMC10039966 DOI: 10.1186/s12284-023-00632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Aneuploid refers to the gene dosage imbalance due to copy number alterations. Aneuploidy is generally harmful to the growth, development and reproduction of organisms according to the numerous research. However, it has rarely been reported on whether aneuploid have a relevant pattern of genome expression between the parental and its offspring generations. In this study, mRNA sequencing analysis was performed on rice (Oryza sativa L.) primary trisomes 11 and 12, same primary trisomes and normal individuals in their filial generation. We systematically summarized the changes in gene expression patterns that occur on cis genes and on trans genes between parental and filial generations. In T11 and T12, the ratio of cis-gene expression showed intermediate type in parents and dosage compensation in filial generations, which maybe due to more genes being downregulated. The trans genes were also affected by aneuploidy and manifested as cis-related. The strains with normal chromosomes in filial generations, there are still aneuploid-sensitive genes differentially expressed in their genomes, indicating that the effect of aneuploidy is far-reaching and could not be easily eliminated. Meanwhile, among these differentially expressed genes, genes with low-expression level were more likely to be upregulated, while genes with medium- and high-expression level were easy to be downregulated. For the different types of rice aneuploid, upregulated genes were mainly associated with genomic imbalance while downregulated genes were mainly influenced by the specific added chromosome. In conclusion, our results provide new insights into the genetic characterization and evolution of biological aneuploidy genomes.
Collapse
Affiliation(s)
- Shang Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Kai Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chao Xue
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Hu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Guoxiao Qi
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jijin Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiya Li
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xinru Zhao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Nikolenko JV, Georgieva SG, Kopytova DV. Diversity of MLE Helicase Functions in the Regulation of Gene Expression in Higher Eukaryotes. Mol Biol 2023. [DOI: 10.1134/s0026893323010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
10
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
11
|
Shi X, Yang H, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Dosage-sensitive miRNAs trigger modulation of gene expression during genomic imbalance in maize. Nat Commun 2022; 13:3014. [PMID: 35641525 PMCID: PMC9156689 DOI: 10.1038/s41467-022-30704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
The genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis of maize (Zea mays) aneuploids revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). However, little is known regarding the role of microRNAs (miRNAs) under genomic imbalance. Here, we report the impact of aneuploidy and polyploidy on the expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. By contrast, polyploids show less differential miRNA expression than aneuploids. Significant correlations between expression levels of miRNAs and their targets are identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance.
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Acón M, Geiß C, Torres-Calvo J, Bravo-Estupiñan D, Oviedo G, Arias-Arias JL, Rojas-Matey LA, Edwin B, Vásquez-Vargas G, Oses-Vargas Y, Guevara-Coto J, Segura-Castillo A, Siles-Canales F, Quirós-Barrantes S, Régnier-Vigouroux A, Mendes P, Mora-Rodríguez R. MYC dosage compensation is mediated by miRNA-transcription factor interactions in aneuploid cancer. iScience 2021; 24:103407. [PMID: 34877484 PMCID: PMC8627999 DOI: 10.1016/j.isci.2021.103407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesize that dosage compensation of critical genes arises from systems-level properties for cancer cells to withstand the negative effects of aneuploidy. We identified several candidate genes in cancer multiomics data and developed a biocomputational platform to construct a mathematical model of their interaction network with micro-RNAs and transcription factors, where the property of dosage compensation emerged for MYC and was dependent on the kinetic parameters of its feedback interactions with three micro-RNAs. These circuits were experimentally validated using a genetic tug-of-war technique to overexpress an exogenous MYC, leading to overexpression of the three microRNAs involved and downregulation of endogenous MYC. In addition, MYC overexpression or inhibition of its compensating miRNAs led to dosage-dependent cytotoxicity in MYC-amplified colon cancer cells. Finally, we identified negative correlation of MYC dosage compensation with patient survival in TCGA breast cancer patients, highlighting the potential of this mechanism to prevent aneuploid cancer progression.
Collapse
Affiliation(s)
- ManSai Acón
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Carsten Geiß
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jorge Torres-Calvo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Diana Bravo-Estupiñan
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Ph.D. Program in Sciences, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Guillermo Oviedo
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Jorge L Arias-Arias
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Luis A Rojas-Matey
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Baez Edwin
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Gloriana Vásquez-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Yendry Oses-Vargas
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - José Guevara-Coto
- School of Computer Sciences and Informatics (ECCI), University of Costa Rica, San Jose Costa Rica, 11501-2060 San José, Costa Rica
| | - Andrés Segura-Castillo
- Laboratorio de Investigación e Innovación Tecnológica, Universidad Estatal a Distancia (UNED), 474-2050 San José, Costa Rica
| | - Francisco Siles-Canales
- Pattern Recognition and Intelligent Systems Laboratory, Department of Electrical Engineering, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Steve Quirós-Barrantes
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Anne Régnier-Vigouroux
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Pedro Mendes
- Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030 CT, USA
| | - Rodrigo Mora-Rodríguez
- Lab of Tumor Chemosensitivity (LQT), Research Center for Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, 11501-2060 San José, Costa Rica
- Master Program on Bioinformatics and Systems Biology, Postgraduate Program SEP, University of Costa Rica, 11501-2060 San José, Costa Rica
- DC Lab, Lab of Surgery and Cancer, University of Costa Rica, 11501-2060 San José, Costa Rica
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
13
|
Birchler JA, Veitia RA. One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenet Genome Res 2021; 161:529-550. [PMID: 34814143 DOI: 10.1159/000519592] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
A century ago experiments with the flowering plant Datura stramonium and the fruit fly Drosophila melanogaster revealed that adding an extra chromosome to a karyotype was much more detrimental than adding a whole set of chromosomes. This phenomenon was referred to as gene balance and has been recapitulated across eukaryotic species. Here, we retrace some developments in this field. Molecular studies suggest that the basis of balance involves stoichiometric relationships of multi-component interactions. This concept has implication for the mechanisms controlling gene expression, genome evolution, sex chromosome evolution/dosage compensation, speciation mechanisms, and the underlying genetics of quantitative traits.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Reiner A Veitia
- Université de Paris, Paris, France.,Institut Jacques Monod, Université de Paris/CNRS, Paris, France.,Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Fontenay aux Roses, France
| |
Collapse
|
14
|
Zhang S, Wang R, Huang C, Zhang L, Sun L. Modulation of Global Gene Expression by Aneuploidy and CNV of Dosage Sensitive Regulatory Genes. Genes (Basel) 2021; 12:genes12101606. [PMID: 34681000 PMCID: PMC8535535 DOI: 10.3390/genes12101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy, which disrupts the genetic balance due to partial genome dosage changes, is usually more detrimental than euploidy variation. To investigate the modulation of gene expression in aneuploidy, we analyzed the transcriptome sequencing data of autosomal and sex chromosome trisomy in Drosophila. The results showed that most genes on the varied chromosome (cis) present dosage compensation, while the remainder of the genome (trans) produce widespread inverse dosage effects. Some altered functions and pathways were identified as the common characteristics of aneuploidy, and several possible regulatory genes were screened for an inverse dosage effect. Furthermore, we demonstrated that dosage changes of inverse regulator Inr-a/pcf11 can produce a genome-wide inverse dosage effect. All these findings suggest that the mechanism of genomic imbalance is related to the changes in the stoichiometric relationships of macromolecular complex members that affect the overall function. These studies may deepen the understanding of gene expression regulatory mechanisms.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
| | - Cheng Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100193, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (C.H.); (L.Z.)
- Correspondence:
| |
Collapse
|
15
|
Interaction of Male Specific Lethal complex and genomic imbalance on global gene expression in Drosophila. Sci Rep 2021; 11:19679. [PMID: 34608252 PMCID: PMC8490464 DOI: 10.1038/s41598-021-99268-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
The inverse dosage effect caused by chromosome number variations shows global consequences in genomic imbalance including sexual dimorphism and an X chromosome-specific response. To investigate the relationship of the MSL complex to genomic imbalance, we over-expressed MSL2 in autosomal and sex chromosomal aneuploids, and analyzed the different transcriptomes. Some candidate genes involved in regulatory mechanisms have also been tested during embryogenesis using TSA-FISH. Here we show that the de novo MSL complex assembled on the X chromosomes in females further reduced the global expression level on the basis of 2/3 down-regulation caused by the inverse dosage effect in trisomy through epigenetic modulations rather than induced dosage compensation. Plus, the sexual dimorphism effect in unbalanced genomes was further examined due to the pre-existing of the MSL complex in males. All these results demonstrate the dynamic functions of the MSL complex on global gene expression in different aneuploid genomes.
Collapse
|
16
|
Yin H, Wei C, Lee JT. Revisiting the consequences of deleting the X inactivation center. Proc Natl Acad Sci U S A 2021; 118:e2102683118. [PMID: 34161282 PMCID: PMC8237661 DOI: 10.1073/pnas.2102683118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian cells equalize X-linked dosages between the male (XY) and female (XX) sexes by silencing one X chromosome in the female sex. This process, known as "X chromosome inactivation" (XCI), requires a master switch within the X inactivation center (Xic). The Xic spans several hundred kilobases in the mouse and includes a number of regulatory noncoding genes that produce functional transcripts. Over three decades, transgenic and deletional analyses have demonstrated both the necessity and sufficiency of the Xic to induce XCI, including the steps of X chromosome counting, choice, and initiation of whole-chromosome silencing. One recent study, however, reported that deleting the noncoding sequences of the Xic surprisingly had no effect for XCI and attributed a sufficiency to drive counting to the coding gene, Rnf12/Rlim Here, we revisit the question by creating independent Xic deletion cell lines. Multiple independent clones carrying heterozygous deletions of the Xic display an inability to up-regulate Xist expression, consistent with a counting defect. This defect is rescued by a second site mutation in Tsix occurring in trans, bypassing the defect in counting. These findings reaffirm the essential nature of noncoding Xic elements for the initiation of XCI.
Collapse
Affiliation(s)
- Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114;
- Department of Genetics, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
17
|
Shi X, Yang H, Chen C, Hou J, Hanson KM, Albert PS, Ji T, Cheng J, Birchler JA. Genomic imbalance determines positive and negative modulation of gene expression in diploid maize. THE PLANT CELL 2021; 33:917-939. [PMID: 33677584 PMCID: PMC8226301 DOI: 10.1093/plcell/koab030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Genomic imbalance caused by changing the dosage of individual chromosomes (aneuploidy) has a more detrimental effect than varying the dosage of complete sets of chromosomes (ploidy). We examined the impact of both increased and decreased dosage of 15 distal and 1 interstitial chromosomal regions via RNA-seq of maize (Zea mays) mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated toward the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which the expression of many genes under genome imbalance are modulated toward the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.
Collapse
Affiliation(s)
- Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Katherine M Hanson
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
18
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Predominantly inverse modulation of gene expression in genomically unbalanced disomic haploid maize. THE PLANT CELL 2021; 33:901-916. [PMID: 33656551 PMCID: PMC8226288 DOI: 10.1093/plcell/koab029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/23/2021] [Indexed: 05/12/2023]
Abstract
The phenotypic consequences of the addition or subtraction of part of a chromosome is more severe than changing the dosage of the whole genome. By crossing diploid trisomies to a haploid inducer, we identified 17 distal segmental haploid disomies that cover ∼80% of the maize genome. Disomic haploids provide a level of genomic imbalance that is not ordinarily achievable in multicellular eukaryotes, allowing the impact to be stronger and more easily studied. Transcriptome size estimates revealed that a few disomies inversely modulate most of the transcriptome. Based on RNA sequencing, the expression levels of genes located on the varied chromosome arms (cis) in disomies ranged from being proportional to chromosomal dosage (dosage effect) to showing dosage compensation with no expression change with dosage. For genes not located on the varied chromosome arm (trans), an obvious trans-acting effect can be observed, with the majority showing a decreased modulation (inverse effect). The extent of dosage compensation of varied cis genes correlates with the extent of trans inverse effects across the 17 genomic regions studied. The results also have implications for the role of stoichiometry in gene expression, the control of quantitative traits, and the evolution of dosage-sensitive genes.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
19
|
Guo Z, Cui Y, Shi X, Birchler JA, Albizua I, Sherman SL, Qin ZS, Ji T. An empirical bayesian approach for testing gene expression fold change and its application in detecting global dosage effects. NAR Genom Bioinform 2021; 2:lqaa072. [PMID: 33575620 PMCID: PMC7671412 DOI: 10.1093/nargab/lqaa072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/27/2020] [Accepted: 08/29/2020] [Indexed: 11/14/2022] Open
Abstract
We are motivated by biological studies intended to understand global gene expression fold change. Biologists have generally adopted a fixed cutoff to determine the significance of fold changes in gene expression studies (e.g. by using an observed fold change equal to two as a fixed threshold). Scientists can also use a t-test or a modified differential expression test to assess the significance of fold changes. However, these methods either fail to take advantage of the high dimensionality of gene expression data or fail to test fold change directly. Our research develops a new empirical Bayesian approach to substantially improve the power and accuracy of fold-change detection. Specifically, we more accurately estimate gene-wise error variation in the log of fold change. We then adopt a t-test with adjusted degrees of freedom for significance assessment. We apply our method to a dosage study in Arabidopsis and a Down syndrome study in humans to illustrate the utility of our approach. We also present a simulation study based on real datasets to demonstrate the accuracy of our method relative to error variance estimation and power in fold-change detection. Our developed R package with a detailed user manual is publicly available on GitHub at https://github.com/cuiyingbeicheng/Foldseq.
Collapse
Affiliation(s)
- Zhenxing Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Ying Cui
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Igor Albizua
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri at Columbia, Columbia, MO 65211, USA
| |
Collapse
|
20
|
Fruchard C, Badouin H, Latrasse D, Devani RS, Muyle A, Rhoné B, Renner SS, Banerjee AK, Bendahmane A, Marais GAB. Evidence for Dosage Compensation in Coccinia grandis, a Plant with a Highly Heteromorphic XY System. Genes (Basel) 2020; 11:E787. [PMID: 32668777 PMCID: PMC7397054 DOI: 10.3390/genes11070787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/17/2023] Open
Abstract
About 15,000 angiosperms are dioecious, but the mechanisms of sex determination in plants remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and whether dosage compensation evolves as a response, are matters of debate. Here, we focus on Coccinia grandis, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded so far. We identified sex-linked genes using RNA sequences from a cross and a model-based method termed SEX-DETector. Parents and F1 individuals were genotyped, and the transmission patterns of SNPs were then analyzed. In the >1300 sex-linked genes studied, maximum X-Y divergence was 0.13-0.17, and substantial Y degeneration is implied by an average Y/X expression ratio of 0.63 and an inferred gene loss on the Y of ~40%. We also found reduced Y gene expression being compensated by elevated expression of corresponding genes on the X and an excess of sex-biased genes on the sex chromosomes. Molecular evolution of sex-linked genes in C. grandis is thus comparable to that in Silene latifolia, another dioecious plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant family in which dosage compensation is described, suggesting it might be common in plants.
Collapse
Affiliation(s)
- Cécile Fruchard
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| | - David Latrasse
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Ravi S. Devani
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA;
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
- Institut de Recherche pour le Développement (IRD), Université Montpellier, DIADE, F-34394 Montpellier, France
| | - Susanne S. Renner
- Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany;
| | - Anjan K. Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France; (D.L.); (R.S.D.); (A.B.)
| | - Gabriel A. B. Marais
- Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne, France; (C.F.); (H.B.); (B.R.)
| |
Collapse
|
21
|
Johnson AF, Hou J, Yang H, Shi X, Chen C, Islam MS, Ji T, Cheng J, Birchler JA. Magnitude of modulation of gene expression in aneuploid maize depends on the extent of genomic imbalance. J Genet Genomics 2020; 47:93-103. [PMID: 32178980 DOI: 10.1016/j.jgg.2020.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Aneuploidy has profound effects on an organism, typically more so than polyploidy, and the basis of this contrast is not fully understood. A dosage series of the maize long arm of chromosome 1 (1L) was used to compare relative global gene expression in different types and degrees of aneuploidy to gain insights into how the magnitude of genomic imbalance as well as hypoploidy affects global gene expression. While previously available methods require a selective examination of specific genes, RNA sequencing provides a whole-genome view of gene expression in aneuploids. Most studies of global aneuploidy effects have concentrated on individual types of aneuploids because multiple dose aneuploidies of the same genomic region are difficult to produce in most model genetic organisms. The genetic toolkit of maize allows the examination of multiple ploidies and 1-4 doses of chromosome arms. Thus, a detailed examination of expression changes both on the varied chromosome arms and elsewhere in the genome is possible, in both hypoploids and hyperploids, compared with euploid controls. Previous studies observed the inverse trans effect, in which genes not varied in DNA dosage were expressed in a negative relationship to the varied chromosomal region. This response was also the major type of changes found globally in this study. Many genes varied in dosage showed proportional expression changes, though some were seen to be partly or fully dosage compensated. It was also found that the effects of aneuploidy were progressive, with more severe aneuploids producing effects of greater magnitude.
Collapse
Affiliation(s)
- Adam F Johnson
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Md Soliman Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
22
|
Abstract
Aneuploidy (i.e., abnormal chromosome number) is the leading cause of miscarriage and congenital defects in humans. Moreover, aneuploidy is ubiquitous in cancer. The deleterious phenotypes associated with aneuploidy are likely a result of the imbalance in the levels of gene products derived from the additional chromosome(s). Here, we summarize the current knowledge on how the presence of extra chromosomes impacts gene expression. We describe studies that have found a strict correlation between gene dosage and transcript levels as wells as studies that have found a less stringent correlation, hinting at the possible existence of dosage compensation mechanisms. We conclude by peering into the epigenetic changes found in aneuploid cells and outlining current knowledge gaps and potential areas of future investigation.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
23
|
Birchler JA, Veitia RA. Genomic Balance and Speciation. Epigenet Insights 2019; 12:2516865719840291. [PMID: 30968064 PMCID: PMC6444768 DOI: 10.1177/2516865719840291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
The role of genomic balance in accumulating species hybrid incompatibilities is discussed. Aneuploidy has been shown to produce more global modulations than polyploidy with the responsible genes being transcription factors and signaling components involved in molecular complexes, illustrating a stoichiometric component to gene expression. Genomic imbalance is usually detrimental to the organism and in many cases results in lethality. Here, it is proposed that once gene flow is prevented between or within populations by various speciation initiating processes, the stoichiometric relationship of members of macromolecular complexes can change via compensatory drift with the eventual result of newly established functional balances. However, when these new relationships are brought together in interspecific hybrids, detrimental consequences will occur. We suggest that these detrimental interactions contribute to hybrid incompatibilities.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Reiner A Veitia
- Institut Jacques Monod, Universite Paris Diderot, Paris, France
| |
Collapse
|
24
|
Hou J, Shi X, Chen C, Islam MS, Johnson AF, Kanno T, Huettel B, Yen MR, Hsu FM, Ji T, Chen PY, Matzke M, Matzke AJM, Cheng J, Birchler JA. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc Natl Acad Sci U S A 2018; 115:E11321-E11330. [PMID: 30429332 PMCID: PMC6275517 DOI: 10.1073/pnas.1807796115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.
Collapse
Affiliation(s)
- Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Md Soliman Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam 550000
| | - Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding, Cologne, Germany 50829
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Fei-Man Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Antonius J M Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
25
|
Wu Y, Sun Y, Sun S, Li G, Wang J, Wang B, Lin X, Huang M, Gong Z, Sanguinet KA, Zhang Z, Liu B. Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1273-1285. [PMID: 29478186 PMCID: PMC5945760 DOI: 10.1007/s00122-018-3077-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/15/2018] [Indexed: 05/24/2023]
Abstract
We report a repertoire of diverse aneuploids harbored by a newly synthesized segmental allotetraploid rice population with fully sequenced sub-genomes and demonstrate their retention features and phenotypic consequences. Aneuploidy, defined as unequal numbers of different chromosomes, is a large-effect genetic variant and may produce diverse cellular and organismal phenotypes. Polyploids are more permissive to chromosomal content imbalance than their diploid and haploid counterparts, and therefore, may enable more in-depth investigation of the phenotypic consequences of aneuploidy. Based on whole-genome resequencing, we identify that ca. 40% of the 312 selfed individual plants sampled from an early generation rice segmental allotetraploid population are constitutive aneuploids harboring 55 distinct aneuploid karyotypes. We document that gain of a chromosome is more prevalent than loss of a chromosome, and the 12 rice chromosomes have distinct tendencies to be in an aneuploid state. These properties of aneuploidy are constrained by multiple factors including the number of genes residing on the chromosome and predicted functional connectivity with other chromosomes. Two broad categories of aneuploidy-associated phenotypes are recognized: those shared by different aneuploids, and those associated with aneuploidy of a specific chromosome. A repertoire of diverse aneuploids in the context of a segmental allotetraploid rice genome with fully sequenced sub-genomes provides a tractable resource to explore the roles of aneuploidy in nascent polyploid genome evolution and helps to decipher the mechanisms conferring karyotypic stabilization on the path to polyploid speciation and towards artificial construction of novel polyploid crops.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Meng Huang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Zhiyun Gong
- Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
26
|
Zhang A, Li N, Gong L, Gou X, Wang B, Deng X, Li C, Dong Q, Zhang H, Liu B. Global Analysis of Gene Expression in Response to Whole-Chromosome Aneuploidy in Hexaploid Wheat. PLANT PHYSIOLOGY 2017; 175:828-847. [PMID: 28821592 PMCID: PMC5619904 DOI: 10.1104/pp.17.00819] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/14/2017] [Indexed: 05/25/2023]
Abstract
Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops.
Collapse
Affiliation(s)
- Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xin Deng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
27
|
Zhang R, Xue C, Liu G, Liu X, Zhang M, Wang X, Zhang T, Gong Z. Segmental Duplication of Chromosome 11 and its Implications for Cell Division and Genome-wide Expression in Rice. Sci Rep 2017; 7:2689. [PMID: 28577021 PMCID: PMC5457480 DOI: 10.1038/s41598-017-02796-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/19/2017] [Indexed: 11/18/2022] Open
Abstract
Segmental duplication is a major structural variation that occurs in chromosomes. Duplication leads to the production of gene copies with increased numbers of related repeat segments, causing the global genome to be in a state of imbalance. In addition, if the added segment contains a centromeric specific DNA, the duplicated chromosome will have structural multiple centromeres. We identified a segmental duplication containing structurally tricentric regions derived from the short arm of chromosome 11 (11L∙ + 11L∙ + 11S∙11S∙11S∙11S, “∙” represents the centromeric DNA repeat loci), and analyzed its implications for cell division and genome-wide expression. In the variant, only the middle centromere of 11S∙11S∙11S∙11S is functionally active. As a result, the structurally tricentric chromosome was stable in mitosis, because it is actually a functional monocentric chromosome. However, the structurally tricentric chromosome, which usually formed a bivalent, was either arranged on the equatorial plane or was lagging, which affected its separation during meiosis. Furthermore, RNA-seq and RT-qPCR analysis showed that the segmental duplication affected genome-wide expression patterns. 34.60% of genes in repeat region showed positive dosage effect. Thus, the genes on chromosome arm 11S-2 didn’t exhibit obviously dosage compensation, as illustrated by no peak around a ratio of 1.00. However, the gene dosage effect will reduce after sexual reproduction of a generation.
Collapse
Affiliation(s)
- Rong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chao Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Mingliang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
28
|
Affiliation(s)
- Sonja Grath
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| | - John Parsch
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| |
Collapse
|
29
|
Pires JC, Conant GC. Robust Yet Fragile: Expression Noise, Protein Misfolding, and Gene Dosage in the Evolution of Genomes. Annu Rev Genet 2016; 50:113-131. [PMID: 27617972 DOI: 10.1146/annurev-genet-120215-035400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complex manner in which organisms respond to changes in their gene dosage has long fascinated geneticists. Oddly, although the existence of dominance implies that dosage reductions often have mild phenotypes, extra copies of whole chromosomes (aneuploidy) are generally strongly deleterious. Even more paradoxically, an extra copy of the genome is better tolerated than is aneuploidy. We review the resolution of this paradox, highlighting the roles of biochemistry, protein aggregation, and disruption of cellular microstructure in that explanation. Returning to life's curious combination of robustness and sensitivity to dosage changes, we argue that understanding how biological robustness evolved makes these observations less inexplicable. We propose that noise in gene expression and evolutionary strategies for its suppression play a role in generating dosage phenotypes. Finally, we outline an unappreciated mechanism for the preservation of duplicate genes, namely preservation to limit expression noise, arguing that it is particularly relevant in polyploid organisms.
Collapse
Affiliation(s)
- J Chris Pires
- Division of Biological Sciences.,Informatics Institute, and
| | - Gavin C Conant
- Informatics Institute, and.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211-5300;
| |
Collapse
|
30
|
Yang L, Kirby JE, Sunwoo H, Lee JT. Female mice lacking Xist RNA show partial dosage compensation and survive to term. Genes Dev 2016; 30:1747-60. [PMID: 27542829 PMCID: PMC5002979 DOI: 10.1101/gad.281162.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022]
Abstract
X-chromosome inactivation (XCI) compensates for differences in X-chromosome number between male and female mammals. XCI is orchestrated by Xist RNA, whose expression in early development leads to transcriptional silencing of one X chromosome in the female. Knockout studies have established a requirement for Xist with inviability of female embryos that inherit an Xist deletion from the father. Here, we report that female mice lacking Xist RNA can, surprisingly, develop and survive to term. Xist-null females are born at lower frequency and are smaller at birth, but organogenesis is mostly normal. Transcriptomic analysis indicates significant overexpression of hundreds of X-linked genes across multiple tissues. Therefore, Xist-null mice can develop to term in spite of a deficiency of dosage compensation. However, the degree of X-autosomal dosage imbalance was less than anticipated (1.14-fold to 1.36-fold). Thus, partial dosage compensation can be achieved without Xist, supporting the idea of inherent genome balance. Nevertheless, to date, none of the mutant mice has survived beyond weaning stage. Sudden death is associated with failure of postnatal organ maturation. Our data suggest Xist-independent mechanisms of dosage compensation and demonstrate that small deviations from X-autosomal balance can have profound effects on overall fitness.
Collapse
Affiliation(s)
- Lin Yang
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Hongjae Sunwoo
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
31
|
Bhadra U, Gandhi SG, Palaparthi R, Balyan MK, Pal-Bhadra M. Drosophila maleless gene counteracts X global aneuploid effects in males. FEBS J 2016; 283:3457-70. [PMID: 27456781 DOI: 10.1111/febs.13818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022]
Abstract
UNLABELLED The loss of the entire X chromosome in Drosophila males generates a genome-wide aneuploid effect. We have employed a systems biology approach (microarray) to investigate the global aneuploid effect of the maleless (mle) mutation that disrupts the binding of male specific lethal (MSL) proteins that function in dosage compensation. A large number of the genes (144) that encode a broad spectrum of cellular transport proteins and transcription factors are located mainly in the autosomes of Drosophila melanogaster. We found several such targets to be sensitive to the aneuploid effect and conserved with the X chromosome in primitive Drosophila species and Anopheles gambiae. During evolution, they shifted gradually from their X-chromosomal positions to the autosomes in the species D. melanogaster, suggesting that the counteraction of trans-acting regulatory modifiers and their targets in two separate chromosomes is evolutionarily advantageous. These findings suggest a remarkable and previously unexpected level of complexity favoring natural compensation for the aneuploid effect. We propose that the MSL complex functions in dosage compensation in two separate steps. Initially, X-linked genes including X-linked trans-acting modifiers are hyperactivated in dosage compensated males. Later, these compensated modifiers eventually mitigate inverse aneuploid effects for the equality in expression of their autosomal targets in males and females. DATABASE Microarray data are available at the Gene Expression Omnibus (GEO) web deposit of National Centre for Biotechnology Information (NCBI) with the accession number GSE78227.
Collapse
Affiliation(s)
- Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, India.
| | - Sumit G Gandhi
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ramesh Palaparthi
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manoj K Balyan
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India.
| |
Collapse
|
32
|
Birchler JA. Parallel Universes for Models of X Chromosome Dosage Compensation in Drosophila: A Review. Cytogenet Genome Res 2016; 148:52-67. [PMID: 27166165 DOI: 10.1159/000445924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Dosage compensation in Drosophila involves an approximately 2-fold increase in expression of the single X chromosome in males compared to the per gene expression in females with 2 X chromosomes. Two models have been considered for an explanation. One proposes that the male-specific lethal (MSL) complex that is associated with the male X chromosome brings histone modifiers to the sex chromosome to increase its expression. The other proposes that the inverse effect which results from genomic imbalance would tend to upregulate the genome approximately 2-fold, but the MSL complex sequesters histone modifiers from the autosomes to the X to mute this autosomal male-biased expression. On the X, the MSL complex must override the high level of resulting histone modifications to prevent overcompensation of the X chromosome. Each model is evaluated in terms of fitting classical genetic and recent molecular data. Potential paths toward resolving the models are suggested.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Mo., USA
| |
Collapse
|
33
|
Genes and Small RNA Transcripts Exhibit Dosage-Dependent Expression Pattern in Maize Copy-Number Alterations. Genetics 2016; 203:1133-47. [PMID: 27129738 DOI: 10.1534/genetics.116.188235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022] Open
Abstract
Copy-number alterations are widespread in animal and plant genomes, but their immediate impact on gene expression is still unclear. In animals, copy-number alterations usually exhibit dosage effects, except for sex chromosomes which tend to be dosage compensated. In plants, genes within small duplications (<100 kb) often exhibit dosage-dependent expression, whereas large duplications (>50 Mb) are more often dosage compensated. However, little or nothing is known about expression in moderately-sized (1-50 Mb) segmental duplications, and about the response of small RNAs to dosage change. Here, we compared maize (Zea mays) plants with two, three, and four doses of a 14.6-Mb segment of chromosome 1 that contains ∼300 genes. Plants containing the duplicated segment exhibit dosage-dependent effects on ear length and flowering time. Transcriptome analyses using GeneChip and RNA-sequencing methods indicate that most expressed genes and unique small RNAs within the duplicated segments exhibit dosage-dependent transcript levels. We conclude that dosage effect is the predominant regulatory response for both genes and unique small RNA transcripts in the segmental dosage series we tested. To our knowledge this is the first analysis of small RNA expression in plant gene dosage variants. Because segmental duplications comprise a significant proportion of eukaryotic genomes, these findings provide important new insight into the regulation of genes and small RNAs in response to dosage changes.
Collapse
|
34
|
Birchler JA, Johnson AF, Veitia RA. Kinetics genetics: Incorporating the concept of genomic balance into an understanding of quantitative traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:128-34. [PMID: 26940497 DOI: 10.1016/j.plantsci.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 05/21/2023]
Abstract
While most mutations are recessive, variants that affect quantitative traits are largely semi-dominant in their action making hybrids between divergent genotypes intermediate. In parallel, changes in chromosomal dosage (aneuploidy) for multiple regions of the genome modulate quantitative characters. We have previously argued that these observations are a reflection of a common process, originating from the more or less subtle effects of changes in dosage on the action of multi-subunit regulatory machineries. Kinetic analyses that vary the amount of one subunit of a complex while holding others constant do not always predict a linear response for the production of the whole. Indeed, in many instances, strong non-linear effects are expected. Here, we advocate that these kinetic observations and predictions should be incorporated into quantitative genetics thought.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States.
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Reiner A Veitia
- Institut Jacques Monod, 15 rue Helene Brion, 75013 Paris, France; Universite Paris Diderot, Paris, France
| |
Collapse
|
35
|
Lu Y, Li J, Cheng J, Lubahn DB. Messenger RNA profile analysis deciphers new Esrrb responsive genes in prostate cancer cells. BMC Mol Biol 2015; 16:21. [PMID: 26627478 PMCID: PMC4667504 DOI: 10.1186/s12867-015-0049-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
Background Orphan nuclear receptor estrogen related receptor β (Esrrb or ERRβ) is well known in stem cells and early embryonic development. However, little is known about its function in cancer. Method We investigated the mRNA profile alterations induced by Esrrb expression and its synthetic ligand DY131 in human prostate cancer DU145 cells via RNA-Seq analysis. Results We distinguished 67 mRNAs differentially expressed by Esrrb alone. Although DY131 alone did not change any gene, treatment of DY131 in the presence of Esrrb altered 1161 mRNAs. These observations indicated Esrrb had both ligand-independent and ligand-dependent activity. When Esrrb was expressed, DY131 treatment further regulated 15 Esrrb-altered mRNAs. DY131 acted as an antagonist for 11 of 15 mRNAs (wdr52, f13a1, pxdn, spns2, loc100506599, tagln, loc441454, tkel1, sema3f, zcwpw2, sdc2) and as an agonist for 4 of the 15 mRNAs (rarres3, oasl, padi2, ddx60). Gene ontology analyses showed altered genes are related to transcription and translation regulation, cell proliferation and apoptosis regulation, and cellular metabolism. Conclusion Our results characterized mRNA profiles in DU145 prostate cancer cells driven by Esrrb expression and Esrrb ligand DY131, and provided multiple markers to characterize Esrrb’s function in Esrrb research. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0049-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA. .,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA.
| | - Jilong Li
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA. .,Computer Science Department, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Jianlin Cheng
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA. .,Computer Science Department, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
36
|
Li J, Hou J, Sun L, Wilkins JM, Lu Y, Niederhuth CE, Merideth BR, Mawhinney TP, Mossine VV, Greenlief CM, Walker JC, Folk WR, Hannink M, Lubahn DB, Birchler JA, Cheng J. From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data. PLoS One 2015; 10:e0125000. [PMID: 25902288 PMCID: PMC4406561 DOI: 10.1371/journal.pone.0125000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/19/2015] [Indexed: 01/31/2023] Open
Abstract
RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner--a multi-level bioinformatics protocol and pipeline--has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.
Collapse
Affiliation(s)
- Jilong Li
- Computer Science Department, University of Missouri, Columbia, Missouri, United States of America
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jie Hou
- Computer Science Department, University of Missouri, Columbia, Missouri, United States of America
| | - Lin Sun
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | | | - Yuan Lu
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Chad E. Niederhuth
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Benjamin Ryan Merideth
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Valeri V. Mossine
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - C. Michael Greenlief
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - John C. Walker
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - William R. Folk
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Dennis B. Lubahn
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jianlin Cheng
- Computer Science Department, University of Missouri, Columbia, Missouri, United States of America
- MU Botanical Center, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- C. Bond Life Science Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
37
|
X Chromosome and Autosome Dosage Responses in Drosophila melanogaster Heads. G3-GENES GENOMES GENETICS 2015; 5:1057-63. [PMID: 25850426 PMCID: PMC4478536 DOI: 10.1534/g3.115.017632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
X chromosome dosage compensation is required for male viability in Drosophila. Dosage compensation relative to autosomes is two-fold, but this is likely to be due to a combination of homeostatic gene-by-gene regulation and chromosome-wide regulation. We have baseline values for gene-by-gene dosage compensation on autosomes, but not for the X chromosome. Given the evolutionary history of sex chromosomes, these baseline values could differ. We used a series of deficiencies on the X and autosomes, along with mutations in the sex-determination gene transformer-2, to carefully measure the sex-independent X-chromosome response to gene dosage in adult heads by RNA sequencing. We observed modest and indistinguishable dosage compensation for both X chromosome and autosome genes, suggesting that the X chromosome is neither inherently more robust nor sensitive to dosage change.
Collapse
|
38
|
Veitia RA, Veyrunes F, Bottani S, Birchler JA. X chromosome inactivation and active X upregulation in therian mammals: facts, questions, and hypotheses. J Mol Cell Biol 2015; 7:2-11. [PMID: 25564545 DOI: 10.1093/jmcb/mjv001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
X chromosome inactivation is a mechanism that modulates the expression of X-linked genes in eutherian females (XX). Ohno proposed that to achieve a proper balance between X-linked and autosomal genes, those on the active X should also undergo a 2-fold upregulation. Although some support for Ohno's hypothesis has been provided through the years, recent genomic studies testing this hypothesis have brought contradictory results and fueled debate. Thus far, there are as many results in favor as against Ohno's hypothesis, depending on the nature of the datasets and the various assumptions and thresholds involved in the analyses. However, they have confirmed the importance of dosage balance between X-linked and autosomal genes involved in stoichiometric relationships. These facts as well as questions and hypotheses are discussed below.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France Université Paris Diderot, Paris, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, CNRS/Université Montpellier II, Montpellier, France
| | - Samuel Bottani
- Université Paris Diderot, Paris, France Matière et Systèmes Complexes, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
39
|
Gong P, Madak-Erdogan Z, Li J, Cheng J, Greenlief CM, Helferich W, Katzenellenbogen JA, Katzenellenbogen BS. Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens. NUCLEAR RECEPTOR SIGNALING 2014; 12:e001. [PMID: 25363786 PMCID: PMC4193135 DOI: 10.1621/nrs.12001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/28/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022]
Abstract
The estrogen receptors (ERs) ERα and ERβ mediate the actions of endogenous estrogens as well as those of botanical estrogens (BEs) present in plants. BEs are ingested in the diet and also widely consumed by postmenopausal women as dietary supplements, often as a substitute for the loss of endogenous estrogens at menopause. However, their activities and efficacies, and similarities and differences in gene expression programs with respect to endogenous estrogens such as estradiol (E2) are not fully understood. Because gene expression patterns underlie and control the broad physiological effects of estrogens, we have investigated and compared the gene networks that are regulated by different BEs and by E2. Our aim was to determine if the soy and licorice BEs control similar or different gene expression programs and to compare their gene regulations with that of E2. Gene expression was examined by RNA-Seq in human breast cancer (MCF7) cells treated with control vehicle, BE or E2. These cells contained three different complements of ERs, ERα only, ERα+ERβ, or ERβ only, reflecting the different ratios of these two receptors in different human breast cancers and in different estrogen target cells. Using principal component, hierarchical clustering, and gene ontology and interactome analyses, we found that BEs regulated many of the same genes as did E2. The genes regulated by each BE, however, were somewhat different from one another, with some genes being regulated uniquely by each compound. The overlap with E2 in regulated genes was greatest for the soy isoflavones genistein and S-equol, while the greatest difference from E2 in gene expression pattern was observed for the licorice root BE liquiritigenin. The gene expression pattern of each ligand depended greatly on the cell background of ERs present. Despite similarities in gene expression pattern with E2, the BEs were generally less stimulatory of genes promoting proliferation and were more pro-apoptotic in their gene regulations than E2. The distinctive patterns of gene regulation by the individual BEs and E2 may underlie differences in the activities of these soy and licorice-derived BEs in estrogen target cells containing different levels of the two ERs.
Collapse
Affiliation(s)
| | | | - Jilong Li
- Botanical Research Center, University of Missouri, Columbia, MO 65211
| | - Jianlin Cheng
- Botanical Research Center, University of Missouri, Columbia, MO 65211
| | | | | | | | | |
Collapse
|
40
|
Birchler JA. Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes. Chromosoma 2014; 123:459-69. [DOI: 10.1007/s00412-014-0478-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
|
41
|
Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc Natl Acad Sci U S A 2014; 111:7713-8. [PMID: 24825885 DOI: 10.1073/pnas.1319227111] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heteromorphic sex chromosomes have originated independently in many species, and a common feature of their evolution is the degeneration of the Y chromosome, characterized by a loss of gene content and function. Despite being of broad significance to our understanding of sex chromosome evolution, the genetic changes that occur during the early stages of Y-chromosome degeneration are poorly understood, especially in plants. Here, we investigate sex chromosome evolution in the dioecious plant Rumex hastatulus, in which X and Y chromosomes have evolved relatively recently and occur in two distinct systems: an ancestral XX/XY system and a derived XX/XY1Y2 system. This polymorphism provides a unique opportunity to investigate the effect of sex chromosome age on patterns of divergence and gene degeneration within a species. Despite recent suppression of recombination and low X-Y divergence in both systems, we find evidence that Y-linked genes have started to undergo gene loss, causing ∼ 28% and ∼ 8% hemizygosity of the ancestral and derived X chromosomes, respectively. Furthermore, genes remaining on Y chromosomes have accumulated more amino acid replacements, contain more unpreferred changes in codon use, and exhibit significantly reduced gene expression compared with their X-linked alleles, with the magnitude of these effects being greatest for older sex-linked genes. Our results provide evidence for reduced selection efficiency and ongoing Y-chromosome degeneration in a flowering plant, and indicate that Y degeneration can occur soon after recombination suppression between sex chromosomes.
Collapse
|
42
|
Malcom JW, Kudra RS, Malone JH. The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J Genomics 2014; 2:68-76. [PMID: 25031658 PMCID: PMC4091447 DOI: 10.7150/jgen.8044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution.
Collapse
Affiliation(s)
- Jacob W Malcom
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - Randal S Kudra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - John H Malone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| |
Collapse
|
43
|
Xu C, Bai Y, Lin X, Zhao N, Hu L, Gong Z, Wendel JF, Liu B. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol 2014; 31:1066-76. [PMID: 24577842 PMCID: PMC3995341 DOI: 10.1093/molbev/msu085] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybridization and polyploidization are prominent processes in plant evolution. Hybrids and allopolyploids typically exhibit radically altered gene expression patterns relative to their parents, a phenomenon termed “transcriptomic shock.” To distinguish the effects of hybridization from polyploidization on coregulation of divergent alleles, we analyzed expression of parental copies (homoeologs) of 11,608 genes using RNA-seq-based transcriptome profiling in reciprocal hybrids and tetraploids constructed from subspecies japonica and indica of Asian rice (Oryza sativa L.). The diploid hybrids and their derived allopolyploids differ dramatically in morphology, despite having the same suite of genes and genic proportions. Allelic and homoeolog-specific transcripts were unequivocally diagnosed in the hybrids and tetraploids based on parent-specific SNPs. Compared with the in silico hybrid (parental mix), the range of progenitor expression divergence was significantly reduced in both reciprocally generated F1 hybrids, presumably due to the ameliorating effects of a common trans environment on divergent cis-factors. In contrast, parental expression differences were greatly elaborated at the polyploid level, which we propose is a consequence of stoichiometric disruptions associated with the numerous chromosomal packaging and volumetric changes accompanying nascent polyploidy. We speculate that the emergent property of “whole genome doubling” has repercussions that reverberate throughout the transcriptome and downstream, ultimately generating altered phenotypes. This perspective may yield insight into the nature of adaptation and the origin of evolutionary novelty accompanying polyploidy.
Collapse
Affiliation(s)
- Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|