1
|
Li Q, Shang W, Sun HZ, Hou ZJ, Xu QM, Cheng JS. ComQXPA Quorum Sensing Dynamic Regulation Enhanced Fengycin Production of Bacillus subtilis. JOURNAL OF NATURAL PRODUCTS 2025; 88:943-951. [PMID: 40136095 DOI: 10.1021/acs.jnatprod.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Fengycin is an antifungal drug that could be used as a biocontrol agent if it could be produced in high amounts. The ComQXPA quorum sensing (QS) system is a natural mechanism, regulating cell density-dependent behaviors in Bacillus subtilis. This study employed the QS-targeted promoter PsrfA to express the pps gene cluster in B. subtilis, coupling the ComQXPA system to produce fengycin. Mutations in the ComA regulatory protein-binding site RE3 exhibited a 2.45-fold increase in promoter expression intensity and resulted in an elevation of fengycin production from 489 to 1832 mg/L, a 2.74-fold enhancement. Transcriptomic analysis revealed the upregulation of genes associated with carbon source uptake and utilization and metabolic pathways related to amino acids and fatty acids, which are precursors for fengycin synthesis. Additionally, knockout of rapJ and rapE increased fengycin production to 3190 mg/L. In a coculture system constructed with Corynebacterium glutamicum, fengycin production reached 4005 mg/L. This work provides a strategy for dynamically regulating fengycin synthesis.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Wei Shang
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Hui-Zhong Sun
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Zheng-Jie Hou
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China
| | - Jing-Sheng Cheng
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| |
Collapse
|
2
|
Qin W, Liu Y, Liu J, Zhou L, Yang S, Gu J, Mu B. The Metabolic and Physiological Responses to Spaceflight of a Lipopeptide-Producing Bacillus subtilis. Microb Biotechnol 2025; 18:e70111. [PMID: 40079915 PMCID: PMC11905791 DOI: 10.1111/1751-7915.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/08/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Outer space is an extreme environment and the survival of many microorganisms after spaceflight is well established. However, adaptations of Bacillus subtilis to space stress, particularly metabolism, are largely unknown. Here, we first performed a spaceflight mission of the B. subtilis TD7 strain and compared the spaceflight-exposed strain with the wild-type in terms of their phenotype, biofilm formation and secondary metabolism. The spaceflight-exposed strain exhibited slower growth, different morphology and decreased biofilm formation. Importantly, a decline in lipopeptide production was observed after spaceflight. Multi-omics approaches were used to uncover the molecular mechanisms underlying secondary metabolism and 997 differentially expressed genes (DEGs) were found, involving the TCA cycle, fatty acid degradation, amino acid biosynthesis and quorum sensing systems. Further analysis of 26 lipopeptide-related DEGs further elucidated the relationship between the space environment and secondary metabolism regulation. Our findings could contribute to a better understanding of the relationship between the space environment and microbial adaptation mechanisms.
Collapse
Affiliation(s)
- Wan‐Qi Qin
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Yi‐Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiP. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghaiP. R. China
| | - Jin‐Feng Liu
- Daqing Huali Biotechnology Co., LtdDaqingHeilongjiangP. R. China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Shi‐Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiP. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghaiP. R. China
| | - Ji‐Dong Gu
- Environmental Science and Engineering GroupGuangdong Technion Israel Institute of TechnologyShantouGuangdongP. R. China
| | - Bo‐Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiP. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghaiP. R. China
| |
Collapse
|
3
|
Alvi S, Mondelo VD, Boyle J, Buck A, Gejo J, Mason M, Matta S, Sheridan A, Kreutzberger MAB, Egelman EH, McLoon A. Flagellar point mutation causes social aggregation in laboratory-adapted Bacillus subtilis under conditions that promote swimming. J Bacteriol 2024; 206:e0019924. [PMID: 39248522 PMCID: PMC11500573 DOI: 10.1128/jb.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Motility allows microbes to explore and maximize success in their environment; however, many laboratory bacterial strains have a reduced or altered capacity for motility. Swimming motility in Bacillus subtilis depends on peritrichous flagella and is carried out individually as cells move by biased random walks toward attractants. Previously, we adapted Bacillus subtilis strain 3610 to the laboratory for 300 generations in lysogeny broth (LB) batch culture and isolated lab-adapted strains. Strain SH2 is motility-defective and in broth culture forms large, frequently spherical aggregates of cells. A single point mutation in the flagellin gene hag that causes amino acid 259 to switch from A to T is necessary and sufficient to cause these social cell aggregates, and aggregation occurs between flagellated cells bearing this point mutation regardless of the strain background. Cells associate when bearing this mutation, but flagellar rotation is needed to pull associating cells into spherical aggregates. Using electron microscopy, we are able to show that the SH2 flagellar filament has limited polymorphism when compared to other flagellar structures. This limited polymorphism hinders the flagellum's ability to function as a motility apparatus but appears to alter its function to that of cell aggregation/adhesion. We speculate that the genotype-specific aggregation of cells producing HagA259T flagella could have increased representation in a batch-culture experiment by allowing similar cells to go through a transfer together and also that this mutation could serve as an early step to evolve sociality in the natural world.IMPORTANCEThe first life forms on this planet were prokaryotic, and the earliest environments were aquatic, and from these relatively simple starting conditions, complex communities of microbes and ultimately multicellular organisms were able to evolve. Usually, motile cells in aqueous environments swim as individuals but become social by giving up motility and secreting extracellular substances to become a biofilm. Here, we identify a single point mutation in the flagellum that is sufficient to allow cells containing this mutation to specifically form large, suspended groups of cells. The specific change in the flagellar filament protein subunits causes a unique change in the flagellar structure. This could represent a distinct way for closely related cells to associate as an early precursor to sociality.
Collapse
Affiliation(s)
- Safiya Alvi
- Biology Department, Siena College, Loudonville, New York, USA
| | | | | | - Amanda Buck
- Biology Department, Siena College, Loudonville, New York, USA
| | - Justin Gejo
- Biology Department, Siena College, Loudonville, New York, USA
| | - Molly Mason
- Biology Department, Siena College, Loudonville, New York, USA
| | - Shriya Matta
- Biology Department, Siena College, Loudonville, New York, USA
| | | | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Anna McLoon
- Biology Department, Siena College, Loudonville, New York, USA
| |
Collapse
|
4
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
5
|
Cao CY, Hou ZJ, Ding MZ, Gao GR, Qiao B, Wei SY, Cheng JS. Integrated Biofilm Modification and Transcriptional Analysis for Improving Fengycin Production in Bacillus amyloliquefaciens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10266-8. [PMID: 38652228 DOI: 10.1007/s12602-024-10266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Although fengycin exhibits broad-spectrum antifungal properties, its application is hindered due to its low biosynthesis level and the co-existence of iturin A and surfactin in Bacillus amyloliquefaciens HM618, a probiotic strain. In this study, transcriptome analysis and gene editing were used to explore the potential mechanisms regulating fengycin production in B. amyloliquefaciens. The fengycin level of B. amyloliquefacien HM-3 (∆itu-ΔsrfAA) was 88.41 mg/L after simultaneously inhibiting the biosyntheses of iturin A and surfactin. The knockout of gene eps associated with biofilm formation significantly increased the fengycin level of the strain HM618, whereas the fengycin level decreased 32.05% after knocking out sinI, a regulator of biofilm formation. Transcriptome analysis revealed that the differentially expressed genes, involved in pathways of amino acid and fatty acid syntheses, were significantly down-regulated in the recombinant strains, which is likely associated with a decrease of fengycin production. The knockout of gene comQXPA and subsequent transcriptome analysis revealed that the ComQXPA quorum sensing system played a positive regulatory role in fengycin production. Through targeted genetic modifications and fermentation optimization, the fengycin production of the engineered strain HM-12 (∆itu-ΔsrfAA-ΔyvbJ) in a 5-L fermenter reached 1.172 g/L, a 12.26-fold increase compared to the fengycin level in the strain HM-3 (∆itu-ΔsrfAA) in the Erlenmeyer flask. Taken together, these results reveal the underlying metabolic mechanisms associated with fengycin synthesis and provide a potential strategy for improving fengycin production in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China.
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
6
|
Mellini M, Letizia M, Caruso L, Guiducci A, Meneghini C, Heeb S, Williams P, Cámara M, Visca P, Imperi F, Leoni L, Rampioni G. RsaL-driven negative regulation promotes heterogeneity in Pseudomonas aeruginosa quorum sensing. mBio 2023; 14:e0203923. [PMID: 37843294 PMCID: PMC10746200 DOI: 10.1128/mbio.02039-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Single-cell analyses can reveal that despite experiencing identical physico-chemical conditions, individual bacterial cells within a monoclonal population may exhibit variations in gene expression. Such phenotypic heterogeneity has been described for several aspects of bacterial physiology, including QS activation. This study demonstrates that the transition of non-quorate cells to the quorate state is a graded process that does not occur at a specific cell density and that subpopulations of non-quorate cells also persist at high cell density. Here, we provide a mechanistic explanation for this phenomenon, showing that a negative feedback regulatory loop integrated into the las system has a pivotal role in promoting cell-to-cell variation in the QS activation state and in limiting the transition of non-quorate cells to the quorate state in P. aeruginosa.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
7
|
Zhu M, Wang Q, Mu H, Han F, Wang Y, Dai X. A fitness trade-off between growth and survival governed by Spo0A-mediated proteome allocation constraints in Bacillus subtilis. SCIENCE ADVANCES 2023; 9:eadg9733. [PMID: 37756393 PMCID: PMC10530083 DOI: 10.1126/sciadv.adg9733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Growth and survival are key determinants of bacterial fitness. However, how resource allocation of bacteria could reconcile these two traits to maximize fitness remains poorly understood. Here, we find that the resource allocation strategy of Bacillus subtilis does not lead to growth maximization on various carbon sources. Survival-related pathways impose strong proteome constraints on B. subtilis. Knockout of a master regulator gene, spo0A, triggers a global resource reallocation from survival-related pathways to biosynthesis pathways, further strongly stimulating the growth of B. subtilis. However, the fitness of spo0A-null strain is severely compromised because of various disadvantageous phenotypes (e.g., abolished sporulation and enhanced cell lysis). In particular, it also exhibits a strong defect in peptide utilization, being unable to efficiently recycle nutrients from the lysed cell debris to maintain long-term viability. Our work uncovers a fitness trade-off between growth and survival that governed by Spo0A-mediated proteome allocation constraints in B. subtilis, further shedding light on the fundamental design principle of bacteria.
Collapse
Affiliation(s)
| | | | | | - Fei Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | - Yanling Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | | |
Collapse
|
8
|
Danevčič T, Spacapan M, Dragoš A, Kovács ÁT, Mandic-Mulec I. DegQ is an important policing link between quorum sensing and regulated adaptative traits in Bacillus subtilis. Microbiol Spectr 2023; 11:e0090823. [PMID: 37676037 PMCID: PMC10581247 DOI: 10.1128/spectrum.00908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
Quorum sensing (QS) is a widespread bacterial communication system that controls important adaptive traits in a cell density-dependent manner. However, mechanisms by which QS-regulated traits are linked within the cell and mechanisms by which these links affect adaptation are not well understood. In this study, Bacillus subtilis was used as a model bacterium to investigate the link between the ComQXPA QS system, DegQ, surfactin and protease production in planktonic and biofilm cultures. The work tests two alternative hypotheses predicting that hypersensitivity of the QS signal-deficient mutant (comQ::kan) to exogenously added ComX, resulting in increased surfactin production, is linked to an additional genetic locus, or alternatively, to overexpression of the ComX receptor ComP. Results are in agreement with the first hypothesis and show that the P srfAA hypersensitivity of the comQ::kan mutant is linked to a 168 strain-specific mutation in the P degQ region. Hence, the markerless ΔcomQ mutant lacking this mutation is not overresponsive to ComX. Such hyper-responsiveness is specific for the P srfAA and not detected in another ComX-regulated promoter, the P aprE , which is under the positive control by DegQ. Our results suggest that DegQ by exerting differential effect on P srfAA and P aprE acts as a policing mechanism and the intracellular link, which guards the cell from an overinvestment into surfactin production. IMPORTANCE DegQ levels are known to regulate surfactin synthesis and extracellular protease production, and DegQ is under the control of the ComX-dependent QS. DegQ also serves as an important policing link between these QS-regulated processes, preventing overinvestment in these costly processes. This work highlights the importance of DegQ, which acts as the intracellular link between ComX production and the response by regulating extracellular degradative enzyme synthesis and surfactin production.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Mihael Spacapan
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Ákos T. Kovács
- Department of Biotechnology and Biomedicine, Bacterial Interactions and Evolution Group, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ines Mandic-Mulec
- Department of Microbiology, Chair of microbial ecology and physiology, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
9
|
Qiu S, Yang A, Zeng H. Flux balance analysis-based metabolic modeling of microbial secondary metabolism: Current status and outlook. PLoS Comput Biol 2023; 19:e1011391. [PMID: 37619239 PMCID: PMC10449171 DOI: 10.1371/journal.pcbi.1011391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
In microorganisms, different from primary metabolism for cellular growth, secondary metabolism is for ecological interactions and stress responses and an important source of natural products widely used in various areas such as pharmaceutics and food additives. With advancements of sequencing technologies and bioinformatics tools, a large number of biosynthetic gene clusters of secondary metabolites have been discovered from microbial genomes. However, due to challenges from the difficulty of genome-scale pathway reconstruction and the limitation of conventional flux balance analysis (FBA) on secondary metabolism, the quantitative modeling of secondary metabolism is poorly established, in contrast to that of primary metabolism. This review first discusses current efforts on the reconstruction of secondary metabolic pathways in genome-scale metabolic models (GSMMs), as well as related FBA-based modeling techniques. Additionally, potential extensions of FBA are suggested to improve the prediction accuracy of secondary metabolite production. As this review posits, biosynthetic pathway reconstruction for various secondary metabolites will become automated and a modeling framework capturing secondary metabolism onset will enhance the predictive power. Expectedly, an improved FBA-based modeling workflow will facilitate quantitative study of secondary metabolism and in silico design of engineering strategies for natural product production.
Collapse
Affiliation(s)
- Sizhe Qiu
- School of Food and Health, Beijing Technology and Business University, Bejing, China
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Bejing, China
| |
Collapse
|
10
|
Zhou J, Wu G, Zheng J, Abdalmegeed D, Wang M, Sun S, Sedjoah RCAA, Shao Y, Sun S, Xin Z. Research on the Regulation of Plipastatin Production by the Quorum-Sensing ComQXPA System of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10683-10692. [PMID: 37427858 DOI: 10.1021/acs.jafc.3c03120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Plipastatin is a cyclic lipopeptide synthesized by non-ribosomal peptide synthetases (NRPS), which has a diverse range of applications in postharvest preservation of fruits and vegetables, biological control, and feed processing. Whereas the yield of plipastatin in wild Bacillus sp. is low, its chemical structure is complex and challenging to synthesize, significantly limiting its production and application. ComQXPA-PsrfA, a quorum-sensing (QS) circuit from Bacillus amyloliquefaciens, was constructed in this study. Two QS promoters MuPsrfA and MtPsrfA, with 35 and 100% increased activity, respectively, were obtained by mutating the original promoter PsrfA. Thus, the natural promoter of plipastatin was replaced by a QS promoter to achieve the dynamic regulation of plipastatin, which increased the yield of plipastatin by 3.5 times. Integrating ComQXPA into plipastatin mono-producing M-24:MtPsrfA increased the yield of plipastatin to 3850 mg/L, representing the highest yield reported to date. Four new plipastatins were identified via UPLC-ESI-MS/MS and GC-MS analysis of fermentation products of mono-producing engineered strains. Among them, three plipastatins contained two double bonds in the fatty acid side chain, representing the first example of a new type of plipastatin. Our results indicate that the QS system ComQXPA-PsrfA of Bacillus can dynamically regulate plipastatin production, and the pipeline could be extended to the other strains to regulate target products dynamically.
Collapse
Affiliation(s)
- Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zheng
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Dyaaaldin Abdalmegeed
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Rita-Cindy Aye-Ayire Sedjoah
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Sen Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
11
|
Sun H, Si F, Zhao X, Li F, Qi G. The cellular redox state in Bacillus amyloliquefaciens WH1 affects biofilm formation indirectly in a surfactant direct manner. J Basic Microbiol 2023. [PMID: 37189223 DOI: 10.1002/jobm.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Surfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin-indirect way. The oxidant H2 O2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H2 O2 improved surfactin production but inhibited biofilm formation by a surfactin-indirect manner in Δspx, while it reduced surfactin production without obvious influence on biofilm formation in ΔperR. The ability against H2 O2 stress was enhanced in Δspx, but weakened in ΔperR. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin-indirect way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin-direct or -indirect way in Bacillus amyloliquefaciens WH1.
Collapse
Affiliation(s)
- Huiwan Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengmei Si
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feng Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Lu Q, Pan K, Liu J, Zhang T, Yang L, Yi X, Zhong G. Quorum sensing system effectively enhances DegU-mediated degradation of pyrethroids by Bacillus subtilis. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131586. [PMID: 37178530 DOI: 10.1016/j.jhazmat.2023.131586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The contamination of the natural environment is a growing concern that threatens all life forms, including microorganisms. Bacteria protect themselves by initiating quorum sensing (QS), a bacterial cell-cell communication, to generate adaptive responses to these pollutants. Bacillus subtilis has a typical QS ComQXPA system that regulates the phosphorylation of the transcription factor DegU (DegU-P), and thus can mediate the expression of various downstream genes under different stress conditions. Herein, we found that cesB, a gene of Bacillus subtilis 168, plays a key role in pyrethroid degradation, and cesB-mediated degradation could be enhanced by coordinating with the ComX communication system. Using β-cypermethrin (β-CP) as a paradigm, we demonstrated that DegU-P increased upon exposure to β-CP, thus facilitating β-CP degradation by binding to the upstream regulatory regions of cesB, leading to the activation of the expression of cesB. Further, we showed that the expression of different levels of phosphorylated DegU in a degU deletion strain resulted in varying degrees of β-CP degradation efficiency, with phosphorylated DegUH12L achieving 78.39% degradation efficiency on the first day, surpassing the 56.27% degradation efficiency in the wild type strain. Consequently, based on the conserved regulatory mechanism of ComQXPA system, we propose that DegU-P-dependent regulation serves as a conserved defense mechanism owing to its ability to fine-tune the expression of genes involved in the degradation of pollutants upon exposure to different pesticides.
Collapse
Affiliation(s)
- Qiqi Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Keqing Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
13
|
Cuellar-Gaviria TZ, García-Botero C, Ju KS, Villegas-Escobar V. The genome of Bacillus tequilensis EA-CB0015 sheds light into its epiphytic lifestyle and potential as a biocontrol agent. Front Microbiol 2023; 14:1135487. [PMID: 37051516 PMCID: PMC10083409 DOI: 10.3389/fmicb.2023.1135487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Different Bacillus species have successfully been used as biopesticides against a broad range of plant pathogens. Among these, Bacillus tequilensis EA-CB0015 has shown to efficiently control Black sigatoka disease in banana plants, presumably by mechanisms of adaptation that involve modifying the phyllosphere environment. Here, we report the complete genome of strain EA-CB0015, its precise taxonomic identity, and determined key genetic features that may contribute to its effective biocontrol of plant pathogens. We found that B. tequilensis EA-CB0015 harbors a singular 4 Mb circular chromosome, with 3,951 protein-coding sequences. Multi-locus sequence analysis (MLSA) and average nucleotide identity (ANI) analysis classified strain EA-CB0015 as B. tequilensis. Encoded within its genome are biosynthetic gene clusters (BGCs) for surfactin, iturin, plipastatin, bacillibactin, bacilysin, subtilosin A, sporulation killing factor, and other natural products that may facilitate inter-microbial warfare. Genes for indole-acetic acid (IAA) synthesis, the use of diverse carbon sources, and a multicellular lifestyle involving motility, biofilm formation, quorum sensing, competence, and sporulation suggest EA-CB0015 is adept at colonizing plant surfaces. Defensive mechanisms to survive invading viral infections and preserve genome integrity include putative type I and type II restriction modification (RM) and toxin/antitoxin (TA) systems. The presence of bacteriophage sequences, genomic islands, transposable elements, virulence factors, and antibiotic resistance genes indicate prior occurrences of genetic exchange. Altogether, the genome of EA-CB0015 supports its function as a biocontrol agent against phytopathogens and suggest it has adapted to thrive within phyllosphere environments.
Collapse
Affiliation(s)
- Tatiana Z. Cuellar-Gaviria
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Banana Research Center, Augura, Conjunto Residencial Los Almendros, Carepa, Colombia
| | - Camilo García-Botero
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Kou-San Ju, ; Valeska Villegas-Escobar,
| | - Valeska Villegas-Escobar
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
- *Correspondence: Kou-San Ju, ; Valeska Villegas-Escobar,
| |
Collapse
|
14
|
Wang S, Wang R, Zhao X, Ma G, Liu N, Zheng Y, Tan J, Qi G. Systemically engineering Bacillus amyloliquefaciens for increasing its antifungal activity and green antifungal lipopeptides production. Front Bioeng Biotechnol 2022; 10:961535. [PMID: 36159666 PMCID: PMC9490133 DOI: 10.3389/fbioe.2022.961535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of antifungal lipopeptides iturin and fengycin has attracted broad interest; however, there is a bottleneck in its low yield in wild strains. Because the key metabolic mechanisms in the lipopeptides synthesis pathway remain unclear, genetic engineering approaches are all ending up with a single or a few gene modifications. The aim of this study is to develop a systematic engineering approach to improve the antifungal activity and biosynthesis of iturin and fengycin in Bacillus amyloliquefaciens. First, blocking the carbon overflow metabolic pathway to increase precursor supply of the branched-chain amino acids by knockout of bdh, disrupting sporulation to extend the stage for producing antifungal lipopeptides by deletion of kinA, blocking of siderophore synthesis to enhance the availability of amino acids and fatty acids by deletion of dhbF, and increasing Spo0A∼P by deletion of rapA, could improve the antifungal activity by 24%, 10%, 13% and 18%, respectively. Second, the double knockout strain ΔbdhΔkinA, triple knockout strain ΔbdhΔkinAΔdhbF and quadruple knockout strain ΔkinAΔbdhΔdhbFΔrapA could improve the antifungal activity by 38%, 44% and 53%, respectively. Finally, overexpression of sfp in ΔkinAΔbdhΔdhbFΔrapA further increased the antifungal activity by 65%. After purifying iturin and fengycin as standards for quantitative analysis of lipopeptides, we found the iturin titer was 17.0 mg/L in the final engineered strain, which was 3.2-fold of the original strain. After fermentation optimization, the titer of iturin and fengycin reached 31.1 mg/L and 175.3 mg/L in flask, and 123.5 mg/L and 1200.8 mg/L in bioreactor. Compared to the original strain, the iturin and fengycin titer in bioreactor increased by 22.8-fold and 15.9-fold in the final engineered strain, respectively. This study may pave the way for the commercial production of green antifungal lipopeptides, and is also favorable for understanding the regulatory and biosynthetic mechanism of iturin and fengycin.
Collapse
Affiliation(s)
- Susheng Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Wang
- Enshi Tobacco Technology Center, Enshi City, Hubei, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gaoqiang Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Na Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqing Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jun Tan
- Enshi Tobacco Technology Center, Enshi City, Hubei, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- *Correspondence: Gaofu Qi,
| |
Collapse
|
15
|
Ivo Ganchev. Role of Multispecies Biofilms with a Dominance of Bacillus subtilis in the Rhizosphere. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021150061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kraigher B, Butolen M, Stefanic P, Mandic Mulec I. Kin discrimination drives territorial exclusion during Bacillus subtilis swarming and restrains exploitation of surfactin. THE ISME JOURNAL 2022; 16:833-841. [PMID: 34650232 PMCID: PMC8857193 DOI: 10.1038/s41396-021-01124-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Swarming is the collective movement of bacteria across a surface. It requires the production of surfactants (public goods) to overcome surface tension and provides an excellent model to investigate bacterial cooperation. Previously, we correlated swarm interaction phenotypes with kin discrimination between B. subtilis soil isolates, by showing that less related strains form boundaries between swarms and highly related strains merge. However, how kin discrimination affects cooperation and territoriality in swarming bacteria remains little explored. Here we show that the pattern of surface colonization by swarming mixtures is influenced by kin types. Closely related strain mixtures colonize the surface in a mixed swarm, while mixtures of less related strains show competitive exclusion as only one strain colonizes the surface. The outcome of nonkin swarm expansion depends on the initial ratio of the competing strains, indicating positive frequency-dependent competition. We find that addition of surfactin (a public good excreted from cells) can complement the swarming defect of nonkin mutants, whereas close encounters in nonkin mixtures lead to territorial exclusion, which limits the exploitation of surfactin by nonkin nonproducers. The work suggests that kin discrimination driven competitive territorial exclusion may be an important determinant for the success of cooperative surface colonization.
Collapse
Affiliation(s)
- Barbara Kraigher
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Monika Butolen
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Polonca Stefanic
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ines Mandic Mulec
- grid.8954.00000 0001 0721 6013Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia ,grid.8954.00000 0001 0721 6013Chair of Micro Process Engineering and Technology COMPETE, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Liu N, Chen B, Zhao X, Wen J, Qi G. Cations and surfactin serving as signal molecules trigger quorum sensing in Bacillus amyloliquefaciens. J Basic Microbiol 2021; 62:35-47. [PMID: 34825384 DOI: 10.1002/jobm.202100315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 11/06/2022]
Abstract
Microorganisms including Bacillus can produce signal molecules such as surfactin, resulting in the variation of membrane potential to trigger quorum sensing such as biofilm formation and sporulation in response to the environment stresses. However, biosynthesis of surfactin requires multiple resources such as huge enzyme complex, amino acids, fatty acids, and energy. Insufficient resources in the natural soil environment restrain biosynthesis of surfactin. When surfactin is inadequate, cations in soil might serve as substitutes to regulate quorum sensing. Our results showed that both surfactin and cations could lead to the variation of membrane potential, thus providing signals to trigger the quorum sensing such as growth, biofilm formation, and sporulation in Bacillus amyloliquefaciens. Neither KinC nor Abh was essential for surfactin or cations to trigger quorum sensing. The cation signaling pathway is only partially dependent on Spo0A, but the surfactin signaling pathway is fully dependent on this global regulator. Compared to surfactin, cations are less effective in promoting biofilm formation, but more effective to trigger sporulation in B. amyloliquefaciens. This study reveals a pathway through which cations regulate the quorum sensing in B. amyloliquefaciens in the case of insufficient surfactin in environment.
Collapse
Affiliation(s)
- Na Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bing Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiahong Wen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Schoenborn AA, Yannarell SM, Wallace ED, Clapper H, Weinstein IC, Shank EA. Defining the Expression, Production, and Signaling Roles of Specialized Metabolites during Bacillus subtilis Differentiation. J Bacteriol 2021; 203:e0033721. [PMID: 34460312 PMCID: PMC8544424 DOI: 10.1128/jb.00337-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial specialized (or secondary) metabolites are structurally diverse molecules that mediate intra- and interspecies interactions by altering growth and cellular physiology and differentiation. Bacillus subtilis, a Gram-positive model bacterium commonly used to study biofilm formation and sporulation, has the capacity to produce more than 10 specialized metabolites. Some of these B. subtilis specialized metabolites have been investigated for their role in facilitating cellular differentiation, but only rarely has the behavior of multiple metabolites been simultaneously investigated. In this study, we explored the interconnectivity of differentiation (biofilm and sporulation) and specialized metabolites in B. subtilis. Specifically, we interrogated how development influences specialized metabolites and vice versa. Using the sporulation-inducing medium DSM, we found that the majority of the specialized metabolites examined are expressed and produced during biofilm formation and sporulation. Additionally, we found that six of these metabolites (surfactin, ComX, bacillibactin, bacilysin, subtilosin A, and plipastatin) are necessary signaling molecules for proper progression of B. subtilis differentiation. This study further supports the growing body of work demonstrating that specialized metabolites have essential physiological functions as cell-cell communication signals in bacteria. IMPORTANCE Bacterially produced specialized metabolites are frequently studied for their potential use as antibiotics and antifungals. However, a growing body of work has suggested that the antagonistic potential of specialized metabolites is not their only function. Here, using Bacillus subtilis as our model bacterium, we demonstrated that developmental processes such as biofilm formation and sporulation are tightly linked to specialized metabolite gene expression and production. Additionally, under our differentiation-inducing conditions, six out of the nine specialized metabolites investigated behave as intraspecific signals that impact B. subtilis physiology and influence biofilm formation and sporulation. Our work supports the viewpoint that specialized metabolites have a clear role as cell-cell signaling molecules within differentiated populations of bacteria.
Collapse
Affiliation(s)
- Alexi A. Schoenborn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah M. Yannarell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haley Clapper
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ilon C. Weinstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elizabeth A. Shank
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
21
|
Danevčič T, Dragoš A, Spacapan M, Stefanic P, Dogsa I, Mandic-Mulec I. Surfactin Facilitates Horizontal Gene Transfer in Bacillus subtilis. Front Microbiol 2021; 12:657407. [PMID: 34054753 PMCID: PMC8160284 DOI: 10.3389/fmicb.2021.657407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
Genetic competence for the uptake and integration of extracellular DNA is a key process in horizontal gene transfer (HGT), one of the most powerful forces driving the evolution of bacteria. In several species, development of genetic competence is coupled with cell lysis. Using Bacillus subtilis as a model bacterium, we studied the role of surfactin, a powerful biosurfactant and antimicrobial lipopeptide, in genetic transformation. We showed that surfactin itself promotes cell lysis and DNA release, thereby promoting HGT. These results, therefore, provide evidence for a fundamental mechanism involved in HGT and significantly increase our understanding of the spreading of antibiotic resistance genes and diversification of microbial communities in the environment.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anna Dragoš
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mihael Spacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Stefanic
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Dogsa
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Hart SFM, Chen CC, Shou W. Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions. eLife 2021; 10:57838. [PMID: 33501915 PMCID: PMC8184212 DOI: 10.7554/elife.57838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Cooperation, paying a cost to benefit others, is widespread. Cooperation can be promoted by pleiotropic ‘win-win’ mutations which directly benefit self (self-serving) and partner (partner-serving). Previously, we showed that partner-serving should be defined as increased benefit supply rate per intake benefit. Here, we report that win-win mutations can rapidly evolve even under conditions unfavorable for cooperation. Specifically, in a well-mixed environment we evolved engineered yeast cooperative communities where two strains exchanged costly metabolites, lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, ecm21 mutations repeatedly arose. ecm21 is self-serving, improving self’s growth rate in limiting lysine. ecm21 is also partner-serving, increasing hypoxanthine release rate per lysine consumption and the steady state growth rate of partner and of community. ecm21 also arose in monocultures evolving in lysine-limited chemostats. Thus, even without any history of cooperation or pressure to maintain cooperation, pleiotropic win-win mutations may readily evolve to promote cooperation.
Collapse
Affiliation(s)
| | - Chi-Chun Chen
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States
| | - Wenying Shou
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States.,University College London, Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution (CLOE), London, United Kingdom
| |
Collapse
|
23
|
Peptide signaling without feedback in signal production operates as a true quorum sensing communication system in Bacillus subtilis. Commun Biol 2021; 4:58. [PMID: 33420264 PMCID: PMC7794433 DOI: 10.1038/s42003-020-01553-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Bacterial quorum sensing (QS) is based on signal molecules (SM), which increase in concentration with cell density. At critical SM concentration, a variety of adaptive genes sharply change their expression from basic level to maximum level. In general, this sharp transition, a hallmark of true QS, requires an SM dependent positive feedback loop, where SM enhances its own production. Some communication systems, like the peptide SM-based ComQXPA communication system of Bacillus subtilis, do not have this feedback loop and we do not understand how and if the sharp transition in gene expression is achieved. Based on experiments and mathematical modeling, we observed that the SM peptide ComX encodes the information about cell density, specific cell growth rate, and even oxygen concentration, which ensure power-law increase in SM production. This enables together with the cooperative response to SM (ComX) a sharp transition in gene expression level and this without the SM dependent feedback loop. Due to its ultra-sensitive nature, the ComQXPA can operate at SM concentrations that are 100-1000 times lower than typically found in other QS systems, thereby substantially reducing the total metabolic cost of otherwise expensive ComX peptide.
Collapse
|
24
|
Berlanga-Clavero MV, Molina-Santiago C, de Vicente A, Romero D. More than words: the chemistry behind the interactions in the plant holobiont. Environ Microbiol 2020; 22:4532-4544. [PMID: 32794337 DOI: 10.1111/1462-2920.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/04/2023]
Abstract
Plants and microbes have evolved sophisticated ways to communicate and coexist. The simplest interactions that occur in plant-associated habitats, i.e., those involved in disease detection, depend on the production of microbial pathogenic and virulence factors and the host's evolved immunological response. In contrast, microbes can also be beneficial for their host plants in a number of ways, including fighting pathogens and promoting plant growth. In order to clarify the mechanisms directly involved in these various plant-microbe interactions, we must still deepen our understanding of how these interkingdom communication systems, which are constantly modulated by resident microbial activity, are established and, most importantly, how their effects can span physically separated plant compartments. Efforts in this direction have revealed a complex and interconnected network of molecules and associated metabolic pathways that modulate plant-microbe and microbe-microbe communication pathways to regulate diverse ecological responses. Once sufficiently understood, these pathways will be biotechnologically exploitable, for example, in the use of beneficial microbes in sustainable agriculture. The aim of this review is to present the latest findings on the dazzlingly diverse arsenal of molecules that efficiently mediate specific microbe-microbe and microbe-plant communication pathways during plant development and on different plant organs.
Collapse
Affiliation(s)
- María Victoria Berlanga-Clavero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| |
Collapse
|
25
|
Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Arch Microbiol 2020; 203:13-30. [PMID: 32785735 DOI: 10.1007/s00203-020-02012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric substances (EPS). This review attempts to explain biofilm architecture, development phases, and forces that drive bacteria to promote biofilm mode of growth. Bacterial chemical communication, also known as Quorum sensing (QS), which involves the production, detection, and response to small molecules called autoinducers, is highlighted. The review also provides a brief outline of interspecies and intraspecies cell-cell communication. Additionally, we have performed docking studies using Discovery Studio 4.0, which has enabled our understanding of the prominent interactions between autoinducers and their receptors in different bacterial species while also scoring their interaction energies. Receptors, such as LuxN (Phosphoreceiver domain and RecA domain), LuxP, and LuxR, interacted with their ligands (AI-1, AI-2, and AHL) with a CDocker interaction energy of - 31.6083 kcal/mole; - 34.5821 kcal/mole, - 48.2226 kcal/mole and - 41.5885 kcal/mole, respectively. Since biofilms are ideal for the remediation of contaminants due to their high microbial biomass and their potential to immobilize pollutants, this article also provides an overview of biofilm-mediated bioremediation.
Collapse
|
26
|
Mutlu A, Kaspar C, Becker N, Bischofs IB. A spore quality-quantity tradeoff favors diverse sporulation strategies in Bacillus subtilis. ISME JOURNAL 2020; 14:2703-2714. [PMID: 32724142 PMCID: PMC7784978 DOI: 10.1038/s41396-020-0721-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022]
Abstract
Quality–quantity tradeoffs govern the production of propagules across taxa and can explain variability in life-history traits in higher organisms. A quality–quantity tradeoff was recently discovered in spore forming bacteria, but whether it impacts fitness is unclear. Here we show both theoretically and experimentally that the nutrient supply during spore revival determines the fitness advantage associated with different sporulation behaviors in Bacillus subtilis. By tuning sporulation rates we generate spore-yield and spore-quality strategists that compete with each other in a microscopic life-cycle assay. The quality (yield) strategist is favored when spore revival is triggered by poor (rich) nutrients. We also show that natural isolates from the gut and soil employ different life-cycle strategies that result from genomic variations in the number of rap-phr signaling systems. Taken together, our results suggest that a spore quality–quantity tradeoff contributes to the evolutionary adaptation of sporulating bacteria.
Collapse
Affiliation(s)
- Alper Mutlu
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany.,BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), Heidelberg University, D-69120, Heidelberg, Germany
| | - Charlotte Kaspar
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany.,BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany
| | - Nils Becker
- BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Ilka B Bischofs
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany. .,BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), Heidelberg University, D-69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Covalently and ionically, dually crosslinked chitosan nanoparticles block quorum sensing and affect bacterial cell growth on a cell-density dependent manner. J Colloid Interface Sci 2020; 578:171-183. [PMID: 32526521 DOI: 10.1016/j.jcis.2020.05.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023]
Abstract
In our efforts to improve the quality and stability of chitosan nanoparticles (NPs), we describe here a new type of chitosan NPs dually crosslinked with genipin and sodium tripolyphosphate (TPP) that display quorum quenching activity. These NPs were created using a simplified and robust procedure that resulted in improved physicochemical properties and enhanced stability. This procedure involves the covalent crosslinking of chitosan with genipin, followed by the formation of chitosan NPs by ionic gelation with TPP. We have optimized the conditions to obtain genipin pre-crosslinked nanoparticles (PC-NPs) with positive ς-potential (~ +30 mV), small diameter (~130 nm), and low size distributions (PdI = 0.1-0.2). PC-NPs present physicochemical properties that are comparable to those of other dually crosslinked chitosan NPs fabricated with different protocols. In contrast to previously characterized NPs, however, we found that PC-NPs strongly reduce the acyl homoserine lactone (AHL)-mediated quorum sensing response of an Escherichia coli fluorescent biosensor. Thus, PC-NPs combine, in a single design, the stability of dually crosslinked chitosan NPs and the quorum quenching activity of ionically crosslinked NPs. Similar to other chitosan NPs, the mode of action of PC-NPs is consistent with the existence of a "stoichiometric ratio" of NP/bacterium, at which the positive charge of the NPs counteracts the negative ς-potential of the bacterial envelope. Notably, we found that the time of the establishment of the "stoichiometric ratio" is a function of the NP concentration, implying that these NPs could be ideal for applications aiming to target of bacterial populations at specific cell densities. We are confident that our PC-NPs are up-and-coming candidates for the design of efficient anti-quorum sensing and a new generation antimicrobial strategies.
Collapse
|
28
|
Chen B, Wen J, Zhao X, Ding J, Qi G. Surfactin: A Quorum-Sensing Signal Molecule to Relieve CCR in Bacillus amyloliquefaciens. Front Microbiol 2020; 11:631. [PMID: 32425896 PMCID: PMC7203447 DOI: 10.3389/fmicb.2020.00631] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
Bacillus utilize preferred sugars such as glucose over other carbon sources due to carbon catabolite repression (CCR). Surfactin is a small signal molecule to regulate the quorum-sensing (QS) response such as biofilm formation and sporulation in B. subtilis. Here, the srfA operon for synthesis of surfactin was mutated for disrupting the production of surfactin in B. amyloliquefaciens. The srfA-mutant strain showed a defective biofilm and sporulation but could be restored by addition with surfactin, indicating that surfactin is a QS signal molecule in B. amyloliquefaciens. Unexpectedly, mutation of srfA also led to the cells' death although nutrients were still enough to support the bacterial growth during this period. Analysis of transcriptomes found that the srfA-mutant strain could not relieve CCR to use non-preferred carbon sources after glucose exhaustion due to deficiency of surfactin. This was further verified by the fact that addition with glucose could dramatically restore the growth, and addition with surfactin could improve the enzymes' activity (e.g., glucanase and α-amylase) to use non-preferred carbon sources in the srfA-mutant strain. After glucose exhaustion, the cells produce surfactin to relieve CCR for utilizing non-preferred sugars. As a signal molecule to regulate QS, surfactin also directly or indirectly relieves the CcpA-mediated CCR to utilize non-preferred carbon sources countering nutrient limitation (e.g., glucose deprivation) in the environment. In conclusion, our findings provide the first evidence that the QS signal molecule of surfactin is also involved in relieving the CcpA-mediated CCR in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Bing Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiahong Wen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia Ding
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Thérien M, Kiesewalter HT, Auria E, Charron-Lamoureux V, Wibowo M, Maróti G, Kovács ÁT, Beauregard PB. Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm 2020; 2:100021. [PMID: 33447807 PMCID: PMC7798449 DOI: 10.1016/j.bioflm.2020.100021] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Secondary metabolites have an important impact on the biocontrol potential of soil-derived microbes. In addition, various microbe-produced chemicals have been suggested to impact the development and phenotypic differentiation of bacteria, including biofilms. The non-ribosomal synthesized lipopeptide of Bacillus subtilis, surfactin, has been described to impact the plant promoting capacity of the bacterium. Here, we investigated the impact of surfactin production on biofilm formation of B. subtilis using the laboratory model systems; pellicle formation at the air-medium interface and architecturally complex colony development, in addition to plant root-associated biofilms. We found that the production of surfactin by B. subtilis is not essential for pellicle biofilm formation neither in the well-studied strain, NCIB 3610, nor in the newly isolated environmental strains, but lack of surfactin reduces colony expansion. Further, plant root colonization was comparable both in the presence or absence of surfactin synthesis. Our results suggest that surfactin-related biocontrol and plant promotion in B. subtilis strains are independent of biofilm formation.
Collapse
Affiliation(s)
- Maude Thérien
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Heiko T Kiesewalter
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Emile Auria
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada.,Biology Department, Ecole Normale Supérieure Paris-Saclay, Paris-Saclay University, Cachan, France
| | - Vincent Charron-Lamoureux
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Mario Wibowo
- Natural Product Discovery Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
30
|
Vila-Sanjurjo C, David L, Remuñán-López C, Vila-Sanjurjo A, Goycoolea F. Effect of the ultrastructure of chitosan nanoparticles in colloidal stability, quorum quenching and antibacterial activities. J Colloid Interface Sci 2019; 556:592-605. [DOI: 10.1016/j.jcis.2019.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 11/28/2022]
|
31
|
Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, Becker A. Phenotypic Heterogeneity in Bacterial Quorum Sensing Systems. J Mol Biol 2019; 431:4530-4546. [PMID: 31051177 DOI: 10.1016/j.jmb.2019.04.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Quorum sensing is usually thought of as a collective behavior in which all members of a population partake. However, over the last decade, several reports of phenotypic heterogeneity in quorum sensing-related gene expression have been put forward, thus challenging this view. In the respective systems, cells of isogenic populations did not contribute equally to autoinducer production or target gene activation, and in some cases, the fraction of contributing cells was modulated by environmental factors. Here, we look into potential origins of these incidences and into how initial cell-to-cell variations might be amplified to establish distinct phenotypic heterogeneity. We furthermore discuss potential functions heterogeneity in bacterial quorum sensing systems could serve: as a preparation for environmental fluctuations (bet hedging), as a more cost-effective way of producing public goods (division of labor), as a loophole for genotypic cooperators when faced with non-contributing mutants (cheat protection), or simply as a means to fine-tune the output of the population as a whole (output modulation). We illustrate certain aspects of these recent developments with the model organisms Sinorhizobium meliloti, Sinorhizobium fredii and Bacillus subtilis, which possess quorum sensing systems of different complexity, but all show phenotypic heterogeneity therein.
Collapse
Affiliation(s)
- Vera Bettenworth
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| | - Benedikt Steinfeld
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Hilke Duin
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.
| | - Ilka Bischofs
- BioQuant Center of the University of Heidelberg, 69120 Heidelberg, Germany; Center for Molecular Biology (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35043 Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany.
| |
Collapse
|
32
|
Wu Q, Zhi Y, Xu Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab Eng 2018; 52:87-97. [PMID: 30453038 DOI: 10.1016/j.ymben.2018.11.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
The biosynthesis of surfactin has attracted broad interest; however, there is a bottleneck in its low yield in wild strains and the ability to engineer Bacillus producers. Because the key metabolic mechanisms in the surfactin synthesis pathway remain unclear, genetic engineering approaches are all ending up with a single or a few gene modifications. The aim of this study is to develop a systematic engineering approach to improve the biosynthesis of surfactin. First, we restored surfactin biosynthetic activity by integrating a complete sfp gene into the nonproducing Bacillus subtilis 168 strain and obtained a surfactin titer of 0.4 g/l. Second, we reduced competition by deleting biofilm formation-related genes and nonribosomal peptide synthetases/polyketide synthase pathways (3.8% of the total genome), which increased the surfactin titer by 3.3-fold. Third, we improved cellular tolerance to surfactin by overexpressing potential self-resistance-associated proteins, which further increased the surfactin titer by 8.5-fold. Fourth, we increased the supply of precursor branched-chain fatty acids by engineering the branched-chain fatty acid biosynthesis pathway, resulting in an increase of the surfactin titer to 8.5 g/l (a 20.3-fold increase). Finally, due to the preference of the glycolytic pathway for cell growth, we diverted precursor acetyl-CoA away from cell growth to surfactin biosynthesis by enhancing the transcription of srfA. The final surfactin titer increased to 12.8 g/l, with a yield of 65.0 mmol/mol sucrose (42% of the theoretical yield) in the metabolically engineered strain. To the best of our knowledge, this is the highest titer and yield that has been reported. This study may pave the way for the commercial production of green surfactin. More broadly, our work presents another successful example of the modularization of metabolic pathways for improving titer and yield in biotechnological production.
Collapse
Affiliation(s)
- Qun Wu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223800, China
| | - Yan Zhi
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
33
|
Kalamara M, Spacapan M, Mandic‐Mulec I, Stanley‐Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol 2018; 110:863-878. [PMID: 30218468 PMCID: PMC6334282 DOI: 10.1111/mmi.14127] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Here, we review the multiple mechanisms that the Gram‐positive bacterium Bacillus subtilis uses to allow it to communicate between cells and establish community structures. The modes of action that are used are highly varied and include routes that sense pheromone levels during quorum sensing and control gene regulation, the intimate coupling of cells via nanotubes to share cytoplasmic contents, and long‐range electrical signalling to couple metabolic processes both within and between biofilms. We explore the ability of B. subtilis to detect ‘kin’ (and ‘cheater cells’) by looking at the mechanisms used to potentially ensure beneficial sharing (or limit exploitation) of extracellular ‘public goods’. Finally, reflecting on the array of methods that a single bacterium has at its disposal to ensure maximal benefit for its progeny, we highlight that a large future challenge will be integrating how these systems interact in mixed‐species communities.
Collapse
Affiliation(s)
- Margarita Kalamara
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| | - Mihael Spacapan
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Ines Mandic‐Mulec
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Nicola R. Stanley‐Wall
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| |
Collapse
|
34
|
Abstract
Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.
Collapse
|
35
|
Li N, Wang L, Yan H, Wang M, Shen D, Yin J, Shentu J. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7049-7058. [PMID: 29273994 DOI: 10.1007/s11356-017-0947-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of engineered nanoparticles (ENPs) on bacteria has aroused much interest. However, few studies have focused on the effects of low-level ENPs on bacterial group behaviors that are regulated by quorum sensing (QS). Herein, we investigated the effects of nine ENPs (Ag, Fe, ZnO, TiO2, SiO2, Fe2O3, single-wall carbon nanotubes (SWCNTs), graphene oxide (GO), and C60) on QS in Pseudomonas aeruginosa PAOl. An ENP concentration of 100 μg L-1 did not impair bacterial growth. However, concentrations of 100 μg L-1 of Ag and GO ENPs induced significant increases in 3OC12-HSL in the culture and significantly promoted protease production and biofilm formation of PAO1. C4-HSL synthase and its transcription factors were less sensitive to 100 μg L-1 Ag and GO ENPs compared with 3OC12-HSL. Fe ENPs induced a significant increase in the 3OC12-HSL concentration, similar to Ag and GO ENPs. However, Fe ENPs did not induce any significant increase in protease production or biofilm formation. Different size distributions, chemical compositions, and aggregation states of the ENPs had different effects on bacterial QS. These whole circuit indicators could clarify the effects of ENPs on bacterial QS. This study furthers our understanding of the effects of low-level ENPs on bacterial social behaviors.
Collapse
Affiliation(s)
- Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, People's Republic of China
| | - Lijia Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Huicong Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, People's Republic of China.
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, People's Republic of China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, People's Republic of China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
36
|
A common evolutionary pathway for maintaining quorum sensing in Pseudomonas aeruginosa. J Microbiol 2018; 56:83-89. [PMID: 29392560 DOI: 10.1007/s12275-018-7286-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
In the bacterium Pseudomonas aeruginosa, the synthesis and secretion of extracellular protease is a typical cooperative behavior regulated by quorum sensing. However, this type of cooperative behavior is easily exploited by other individuals who do not synthesize public goods, which is known as the "tragedy of the commons". Here P. aeruginosa was inoculated into casein media with different nitrogen salts added. In casein broth, protease (a type of public good) is necessary for bacterial growth. After 30 days of sequential transfer, some groups propagated stably and avoided "tragedy of the commons". The evolved cooperators who continued to synthesize protease were isolated from these stable groups. By comparing the characteristics of quorum sensing in these cooperators, an identical evolutionary pattern was found. A variety of cooperative behaviors regulated by quorum sensing, such as the synthesis and secretion of protease and signals, were significantly reduced during the process of evolution. Such reductions improved the efficiency of cooperation, helping to prevent cheating. In addition, the production of pyocyanin, which is regulated by the RhlIR system, increased during the process of evolution, possibly due to its role in stabilizing the cooperation. This study contributes towards our understanding of the evolution of quorum sensing of P. aeruginosa.
Collapse
|
37
|
Spacapan M, Danevčič T, Mandic-Mulec I. ComX-Induced Exoproteases Degrade ComX in Bacillus subtilis PS-216. Front Microbiol 2018; 9:105. [PMID: 29449835 PMCID: PMC5799266 DOI: 10.3389/fmicb.2018.00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Gram-positive bacteria use peptides as auto-inducing (AI) signals to regulate the production of extracellular enzymes (e.g., proteases). ComX is an AI peptide, mostly known for its role in the regulation of bacterial competence and surfactant production in Bacillus subtilis. These two traits are regulated accordingly to the bacterial population size, thus classifying ComX as a quorum sensing signal. ComX also indirectly regulates exoprotease production through the intermediate transcriptional regulator DegQ. We here use this peptide-based AI system (the ComQXPA system) as a model to address exoprotease regulation by ComX in biofilms. We also investigate the potential of ComX regulated proteases to degrade the ComX AI peptide. Results indicate that ComX indeed induces the expression of aprE, the gene for the major serine protease subtilisin, and stimulates overall exoprotease production in biofilms of B. subtilis PS-216 and several other B. subtilis soil isolates. We also provide evidence that these exoproteases can degrade ComX. The ComX biological activity decay is reduced in the spent media of floating biofilms with low proteolytic activity found in the comP and degQ mutants. ComX biological activity decay can be restored by the addition of subtilisin to such media. In contrast, inhibition of metalloproteases by EDTA reduces ComX biological activity decay. This suggests that both serine and metalloproteases, which are induced by ComX, are ultimately capable of degrading this signaling peptide. This work brings novel information on regulation of exoproteases in B. subtilis floating biofilms and reveals that these proteolytic enzymes degrade the AI signaling peptide ComX, which is also a major determinant of their expression in biofilms.
Collapse
Affiliation(s)
- Mihael Spacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
Abstract
Bacterial cell-cell signaling, or quorum sensing, is characterized by the secretion and group-wide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behavior in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of such self-sensing effect and its impact on bacterial physiology are unclear. Here, we explored the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we found that secreting cells consistently showed a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrated this effect to be a direct result of self-sensing and ruled out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affected persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria.
Collapse
|
39
|
Trinschek S, John K, Lecuyer S, Thiele U. Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces. PHYSICAL REVIEW LETTERS 2017; 119:078003. [PMID: 28949685 DOI: 10.1103/physrevlett.119.078003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 06/07/2023]
Abstract
We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.
Collapse
Affiliation(s)
- Sarah Trinschek
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Karin John
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Sigolène Lecuyer
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| |
Collapse
|
40
|
Schuster M, Sexton DJ, Hense BA. Why Quorum Sensing Controls Private Goods. Front Microbiol 2017; 8:885. [PMID: 28579979 PMCID: PMC5437708 DOI: 10.3389/fmicb.2017.00885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication, also termed quorum sensing (QS), is a widespread process that coordinates gene expression in bacterial populations. The generally accepted view is that QS optimizes the cell density-dependent benefit attained from cooperative behaviors, often in the form of secreted products referred to as "public goods." This view is challenged by an increasing number of cell-associated products or "private goods" reported to be under QS-control for which a collective benefit is not apparent. A prominent example is nucleoside hydrolase from Pseudomonas aeruginosa, a periplasmic enzyme that catabolizes adenosine. Several recent studies have shown that private goods can function to stabilize cooperation by co-regulated public goods, seemingly explaining their control by QS. Here we argue that this property is a by-product of selection for other benefits rather than an adaptation. Emphasizing ecophysiological context, we propose alternative explanations for the QS control of private goods. We suggest that the benefit attained from private goods is associated with high cell density, either because a relevant ecological condition correlates with density, or because the private good is, directly or indirectly, involved in cooperative behavior. Our analysis helps guide a systems approach to QS, with implications for antivirulence drug design and synthetic biology.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - D Joseph Sexton
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum MünchenNeuherberg, Germany
| |
Collapse
|
41
|
Presence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms. Microorganisms 2017; 5:microorganisms5010007. [PMID: 28212310 PMCID: PMC5374384 DOI: 10.3390/microorganisms5010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
Robust colony formation by Bacillus subtilis is recognized as one of the sessile, multicellular lifestyles of this bacterium. Numerous pathways and genes are responsible for the architecturally complex colony structure development. Cells in the biofilm colony secrete extracellular polysaccharides (EPS) and protein components (TasA and the hydrophobin BslA) that hold them together and provide a protective hydrophobic shield. Cells also secrete surfactin with antimicrobial as well as surface tension reducing properties that aid cells to colonize the solid surface. Depending on the environmental conditions, these secreted components of the colony biofilm can also promote the flagellum-independent surface spreading of B. subtilis, called sliding. In this study, we emphasize the influence of Ca2+ in the medium on colony expansion of B. subtilis. Interestingly, the availability of Ca2+ has no major impact on the induction of complex colony morphology. However, in the absence of this divalent ion, peripheral cells of the colony expand radially at later stages of development, causing colony size to increase. We demonstrate that the secreted extracellular compounds, EPS, BslA, and surfactin facilitate colony expansion after biofilm maturation. We propose that Ca2+ hinders biofilm colony expansion by modifying the amphiphilic properties of surfactin.
Collapse
|
42
|
An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing. J Theor Biol 2016; 405:104-15. [PMID: 26796220 DOI: 10.1016/j.jtbi.2015.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023]
Abstract
Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.
Collapse
|
43
|
Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ Microbiol 2016; 18:2634-45. [PMID: 27306252 DOI: 10.1111/1462-2920.13405] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic lipopeptides (cLP) and especially surfactins produced by Bacillus spp. trigger biofilm formation and root colonization and are crucial for biocontrol activity and systemic resistance in plants. Bacillus atrophaeus 176s isolated from the moss Tortella tortuosa produces the cLP fengycins, iturins and surfactins, possesses antifungal activities and can protect tomato, lettuce and sugar beet against Rhizoctonia solani infection. In B. atrophaeus we identified for the first time the variant surfactin C, which differs from surfactin A produced by B. subtilis and B. amyloliquefaciens by an isoleucine instead of a leucine at position 7 of the lipopeptide backbone. The analysis of the complete surfactin gene clusters revealed that the dissimilarity is encoded in the adenylation domain of srfC and show that surfactin variations are distributed in a species-specific manner in bacilli. We demonstrate that the surfactin A and C with subtle structural differences have varying signal strengths on biofilm formation and root colonization and act specifically on the respective producing strain. This became evident as biofilm formation and root colonization but not swarming motility in surfactin biosynthesis mutants was restored differentially in the presence of exogenously supplemented cognate and non-cognate surfactin variants.
Collapse
Affiliation(s)
- Gajender Aleti
- Health & Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, AIT, Konrad Lorenz Strasse 24, Tulln, A-3430, Austria
| | - Sylvia Lehner
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Markus Bacher
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), UFT Research Center Tulln, Konrad-Lorenz-Str. 24, Tulln, A-3430, Austria
| | - Stéphane Compant
- Health & Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, AIT, Konrad Lorenz Strasse 24, Tulln, A-3430, Austria
| | - Branislav Nikolic
- Health & Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, AIT, Konrad Lorenz Strasse 24, Tulln, A-3430, Austria
| | - Maja Plesko
- Health & Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, AIT, Konrad Lorenz Strasse 24, Tulln, A-3430, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Angela Sessitsch
- Health & Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, AIT, Konrad Lorenz Strasse 24, Tulln, A-3430, Austria
| | - Günter Brader
- Health & Environment Department, Bioresources Unit, AIT Austrian Institute of Technology GmbH, AIT, Konrad Lorenz Strasse 24, Tulln, A-3430, Austria
| |
Collapse
|
44
|
Truman AW. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides. Beilstein J Org Chem 2016; 12:1250-68. [PMID: 27559376 PMCID: PMC4979651 DOI: 10.3762/bjoc.12.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a large class of natural products that are remarkably chemically diverse given an intrinsic requirement to be assembled from proteinogenic amino acids. The vast chemical space occupied by RiPPs means that they possess a wide variety of biological activities, and the class includes antibiotics, co-factors, signalling molecules, anticancer and anti-HIV compounds, and toxins. A considerable amount of RiPP chemical diversity is generated from cyclisation reactions, and the current mechanistic understanding of these reactions will be discussed here. These cyclisations involve a diverse array of chemical reactions, including 1,4-nucleophilic additions, [4 + 2] cycloadditions, ATP-dependent heterocyclisation to form thiazolines or oxazolines, and radical-mediated reactions between unactivated carbons. Future prospects for RiPP pathway discovery and characterisation will also be highlighted.
Collapse
Affiliation(s)
- Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
45
|
Abstract
Members of the family Bacillaceae are among the most robust bacteria on Earth, which is mainly due to their ability to form resistant endospores. This trait is believed to be the key factor determining the ecology of these bacteria. However, they also perform fundamental roles in soil ecology (i.e., the cycling of organic matter) and in plant health and growth stimulation (e.g., via suppression of plant pathogens and phosphate solubilization). In this review, we describe the high functional and genetic diversity that is found within the Bacillaceae (a family of low-G+C% Gram-positive spore-forming bacteria), their roles in ecology and in applied sciences related to agriculture. We then pose questions with respect to their ecological behavior, zooming in on the intricate social behavior that is becoming increasingly well characterized for some members of Bacillaceae. Such social behavior, which includes cell-to-cell signaling via quorum sensing or other mechanisms (e.g., the production of extracellular hydrolytic enzymes, toxins, antibiotics and/or surfactants) is a key determinant of their lifestyle and is also believed to drive diversification processes. It is only with a deeper understanding of cell-to-cell interactions that we will be able to understand the ecological and diversification processes of natural populations within the family Bacillaceae. Ultimately, the resulting improvements in understanding will benefit practical efforts to apply representatives of these bacteria in promoting plant growth as well as biological control of plant pathogens.
Collapse
|
46
|
Pollak S, Omer-Bendori S, Even-Tov E, Lipsman V, Bareia T, Ben-Zion I, Eldar A. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proc Natl Acad Sci U S A 2016; 113:2152-7. [PMID: 26787913 PMCID: PMC4776494 DOI: 10.1073/pnas.1520615113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.
Collapse
Affiliation(s)
- Shaul Pollak
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Omer-Bendori
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Even-Tov
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Valeria Lipsman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tasneem Bareia
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ishay Ben-Zion
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avigdor Eldar
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
47
|
Mitri S, Foster KR. Pleiotropy and the low cost of individual traits promote cooperation. Evolution 2016; 70:488-94. [DOI: 10.1111/evo.12851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Mitri
- Department of Fundamental Microbiology; University of Lausanne; Lausanne Switzerland
| | - Kevin R. Foster
- Department of Zoology; University of Oxford; Oxford UK
- Oxford Centre for Integrative Systems Biology; University of Oxford; Oxford UK
| |
Collapse
|
48
|
Wu L, Wu HJ, Qiao J, Gao X, Borriss R. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants. Front Microbiol 2015; 6:1395. [PMID: 26696998 PMCID: PMC4674565 DOI: 10.3389/fmicb.2015.01395] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of BC agents.
Collapse
Affiliation(s)
- Liming Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Hui-Jun Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Junqing Qiao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China ; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences Nanjing, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin Berlin, Germany ; Nord Reet UG Greifswald, Germany
| |
Collapse
|
49
|
Koul S, Prakash J, Mishra A, Kalia VC. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria. Indian J Microbiol 2015; 56:1-18. [PMID: 26843692 DOI: 10.1007/s12088-015-0558-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance.
Collapse
Affiliation(s)
- Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
50
|
Ke WJ, Hsueh YH, Cheng YC, Wu CC, Liu ST. Water surface tension modulates the swarming mechanics of Bacillus subtilis. Front Microbiol 2015; 6:1017. [PMID: 26557106 PMCID: PMC4616241 DOI: 10.3389/fmicb.2015.01017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.
Collapse
Affiliation(s)
- Wan-Ju Ke
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan ; Research Center for Bacterial Pathogenesis, Chang Gung University Taoyuan, Taiwan
| | - Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan, Taiwan
| | - Yu-Chieh Cheng
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science Proteomic Center, College of Medicine, Chang Gung University Taoyuan, Taiwan
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang Gung University Taoyuan, Taiwan ; Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch Chiayi, Taiwan
| |
Collapse
|