1
|
Zhu J, Garin CM, Qi XL, Machado A, Wang Z, Hamed SB, Stanford TR, Salinas E, Whitlow CT, Anderson AW, Zhou XM, Calabro FJ, Luna B, Constantinidis C. Brain structure and activity predicting cognitive maturation in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.608315. [PMID: 39229176 PMCID: PMC11370567 DOI: 10.1101/2024.08.23.608315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive abilities of primates, including humans, continue to improve through adolescence 1,2. While a range of changes in brain structure and connectivity have been documented 3,4, how they affect neuronal activity that ultimately determines performance of cognitive functions remains unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive development. The developmental trajectory of neural activity in the prefrontal cortex accounted remarkably well for working memory improvements. While complex aspects of activity changed progressively during adolescence, such as the rotation of stimulus representation in multidimensional neuronal space, which has been implicated in cognitive flexibility, even simpler attributes, such as the baseline firing rate in the period preceding a stimulus appearance had predictive power over behavior. Unexpectedly, decreases in brain volume and thickness, which are widely thought to underlie cognitive changes in humans 5 did not predict well the trajectory of neural activity or cognitive performance changes. Whole brain cortical volume in particular, exhibited an increase and reached a local maximum in late adolescence, at a time of rapid behavioral improvement. Maturation of long-distance white matter tracts linking the frontal lobe with areas of the association cortex and subcortical regions best predicted changes in neuronal activity and behavior. Our results provide evidence that optimization of neural activity depending on widely distributed circuitry effects cognitive development in adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Clément M Garin
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Xue-Lian Qi
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Anna Machado
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Zhengyang Wang
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Terrence R Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
2
|
Dong J, Wei X, Huang Z, Tian J, Zhang W. Age-related changes of dopamine D1 and D2 receptors expression in parvalbumin-positive cells of the orbitofrontal and prelimbic cortices of mice. Front Neurosci 2024; 18:1364067. [PMID: 38903598 PMCID: PMC11187244 DOI: 10.3389/fnins.2024.1364067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Dopamine (DA) plays a pivotal role in reward processing, cognitive functions, and emotional regulation. The prefrontal cortex (PFC) is a critical brain region for these processes. Parvalbumin-positive (PV+) neurons are one of the major classes of inhibitory GABAergic neurons in the cortex, they modulate the activity of neighboring neurons, influencing various brain functions. While DA receptor expression exhibits age-related changes, the age-related changes of these receptors in PV+ neurons, especially in the PFC, remain unclear. To address this, we investigated the expression of DA D1 (D1R) and D2 (D2R) receptors in PV+ neurons within the orbitofrontal (OFC) and prelimbic (PrL) cortices at different postnatal ages (P28, P42, P56, and P365). We found that the expression of D1R and D2R in PV+ neurons showed both age- and region-related changes. PV+ neurons in the OFC expressed a higher abundance of D1 than those in the PrL, and those neurons in the OFC also showed higher co-expression of D1R and D2R than those in the PrL. In the OFC and PrL, D1R in PV+ neurons increased from P28 and reached a plateau at P42, then receded to express at P365. Meanwhile, D2R did not show significant age-related changes between the two regions except at P56. These results showed dopamine receptors in the prefrontal cortex exhibit age- and region-specific changes, which may contribute to the difference of these brain regions in reward-related brain functions.
Collapse
Affiliation(s)
- Jihui Dong
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Xiaoyan Wei
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ziran Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jing Tian
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
3
|
Zhu J, Hammond BM, Zhou XM, Constantinidis C. Laminar pattern of adolescent development changes in working memory neuronal activity. J Neurophysiol 2023; 130:980-989. [PMID: 37703490 PMCID: PMC10649837 DOI: 10.1152/jn.00294.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Adolescent development is characterized by an improvement in cognitive abilities, such as working memory. Neurophysiological recordings in a nonhuman primate model of adolescence have revealed changes in neural activity that mirror improvement in behavior, including higher firing rate during the delay intervals of working memory tasks. The laminar distribution of these changes is unknown. By some accounts, persistent activity is more pronounced in superficial layers, so we sought to determine whether changes are most pronounced there. We therefore analyzed neurophysiological recordings from the young and adult stage of male monkeys, at different cortical depths. Superficial layers exhibited an increased baseline firing rate in the adult stage. Unexpectedly, we also detected substantial increases in delay period activity in the middle layers after adolescence, which was confirmed even after excluding penetrations near sulci. Finally, improved discriminability around the saccade period was most evident in the deeper layers. These results reveal the laminar pattern of neural activity maturation that is associated with cognitive improvement.NEW & NOTEWORTHY Structural brain changes are evident during adolescent development particularly in the cortical thickness of the prefrontal cortex, at a time when working memory ability increases markedly. The depth distribution of neurophysiological changes during adolescence is not known. Here, we show that neurophysiological changes are not confined to superficial layers, which have most often been implicated in the maintenance of working memory. Contrary to expectations, substantial changes were evident in intermediate layers of the prefrontal cortex.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin M Hammond
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
4
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Lewis DA. Strength of Excitatory Inputs to Layer 3 Pyramidal Neurons During Synaptic Pruning in the Monkey Prefrontal Cortex: Relevance for the Pathogenesis of Schizophrenia. Biol Psychiatry 2023; 94:288-296. [PMID: 36736420 PMCID: PMC10394116 DOI: 10.1016/j.biopsych.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND In schizophrenia, layer 3 pyramidal neurons (L3PNs) of the dorsolateral prefrontal cortex exhibit deficits in markers of excitatory synaptic inputs that are thought to disrupt the patterns of neural network activity essential for cognitive function. These deficits are usually interpreted under Irwin Feinberg's hypothesis of altered synaptic pruning, which postulates that normal periadolescent pruning, thought to preferentially eliminate weak/immature synapses, is altered in schizophrenia. However, it remains unknown whether periadolescent pruning on L3PNs in the primate dorsolateral prefrontal cortex selectively eliminates weak excitatory synapses or uniformly eliminates excitatory synapses across the full distribution of synaptic strengths. METHODS To distinguish between these alternative models of synaptic pruning, we assessed the densities of dendritic spines, the site of most excitatory inputs to L3PNs, and the distributions of excitatory synaptic strengths in dorsolateral prefrontal cortex L3PNs from male and female monkeys across the periadolescent period of synaptic pruning. We used patch-clamp methods in acute brain slices to record miniature excitatory synaptic currents and intracellular filling with biocytin to quantify dendritic spines. RESULTS On L3PNs, dendritic spines exhibited the expected age-related decline in density, but mean synaptic strength and the shape of synaptic strength distributions remained stable with age. CONCLUSIONS The absence of age-related differences in mean synaptic strength and synaptic strength distributions supports the model of a uniform pattern of synaptic pruning across the full range of synaptic strengths. The implications of these findings for the pathogenesis and functional consequences of dendritic spine deficits in schizophrenia are discussed.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yosuke Nishihata
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Olga L Krimer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
5
|
Zhu J, Hammond BM, Zhou XM, Constantinidis C. Laminar pattern of adolescent development changes in working memory neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550982. [PMID: 37546979 PMCID: PMC10402138 DOI: 10.1101/2023.07.28.550982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adolescent development is characterized by an improvement in cognitive abilities, such as working memory. Neurophysiological recordings in a non-human primate model of adolescence have revealed changes in neural activity that mirror improvement in behavior, including higher firing rate during the delay intervals of working memory tasks. The laminar distribution of these changes is unknown. By some accounts, persistent activity is more pronounced in superficial layers, so we sought to determine whether changes are most pronounced there. We therefore analyzed neurophysiological recordings from neurons recorded in the young and adult stage, at different cortical depths. Superficial layers exhibited increased baseline firing rate in the adult stage. Unexpectedly, changes in persistent activity were most pronounced in the middle layers. Finally, improved discriminability of stimulus location was most evident in the deeper layers. These results reveal the laminar pattern of neural activity maturation that is associated with cognitive improvement. NEW AND NOTEWORTHY Structural brain changes are evident during adolescent development particularly in the cortical thickness of the prefrontal cortex, at a time when working memory ability increases markedly. The depth distribution of neurophysiological changes during adolescence is not known. Here we show that neurophysiological changes are not confined to superficial layers, which have most often been implicated in the maintenance of working memory. Contrary to expectations, greatest changes were evident in intermediate layers of the prefrontal cortex.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235
| | | | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| |
Collapse
|
6
|
Gómez CM, Muñoz V, Rodríguez-Martínez EI, Arjona A, Barriga-Paulino CI, Pelegrina S. Child and adolescent development of the brain oscillatory activity during a working memory task. Brain Cogn 2023; 167:105969. [PMID: 36958141 DOI: 10.1016/j.bandc.2023.105969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
The developmental trajectories of brain oscillations during the encoding and maintenance phases of a Working Memory (WM) task were calculated. The Delayed-Match-to-Sample Test (DMTS) was applied to 239 subjects of 6-29 years, while EEG was recorded. The Event-Related Spectral Perturbation (ERSP) was obtained in the range between 1 and 25 Hz during the encoding and maintenance phases. Behavioral parameters of reaction times (RTs) and response accuracy were simultaneously recorded. The results indicate a myriad of transient and sustained bursts of oscillatory activity from low frequencies (1 Hz) to the beta range (up to 19 Hz). Beta and Low-frequency ERSP increases were prominent in the encoding phase in all age groups, while low-frequency ERSP indexed the maintenance phase only in children and adolescents, but not in late adolescents and young adults, suggesting an age-dependent neural mechanism of stimulus trace maintenance. While the latter group showed Beta and Alpha indices of anticipatory attention for the retrieval phase. Mediation analysis showed an important role of early Delta-Theta and late Alpha oscillations for mediation between age and behavioral responses performance. In conclusion, the results show a complex pattern of oscillatory bursts during the encoding and maintenance phases with a consistent pattern of developmental changes.
Collapse
Affiliation(s)
- Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Vanesa Muñoz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Elena I Rodríguez-Martínez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | - Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Sevilla, C/ Camilo José Cela S/N, 41018 Sevilla, Spain.
| | | | | |
Collapse
|
7
|
Arjona A, Angulo-Ruiz BY, Rodríguez-Martínez EI, Cabello-Navarro C, Gómez CM. Time-frequency neural dynamics of ADHD children and adolescents during a Working Memory task. Neurosci Lett 2023; 798:137100. [PMID: 36720344 DOI: 10.1016/j.neulet.2023.137100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
The present report analyzed the time-frequency changes in Event-Related Spectral perturbations (ERSP) in a sample of ADHD children and adolescents compared to a normodevelopment (ND) sample. A delayed match-to-sample (DMTS) test of working memory (WM) was presented to a group of ADHD subjects (N = 29) and compared with ND group (N = 34) with ages between 6 and 17 years old. Time-frequency decomposition was computed through wavelets. ADHD subjects presented higher Reaction Time (RT), Standard Deviation of RT (Std of RT), and a reduced percentage of correct responses. The results showed a complex pattern of oscillatory bursts during the encoding, maintenance, and recognition phases with similar dynamics in both groups. ADHD children presented a reduced Event-Related Synchronization (ERS) in the Theta range during the encoding phase, and also a reduced Alpha ERS during the late period of the maintenance phase. S1 Early theta ERS was positively correlated with Std of RT. Behavioral data, early Theta, and late Alpha ERS classified correctly above 70 % of ADHD and ND subjects when a linear discriminant analysis was applied. The reduced encoding and maintenance impaired brain dynamics of ADHD subjects would justify the poorer performance of this group of subjects.
Collapse
Affiliation(s)
- Antonio Arjona
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | - Brenda Y Angulo-Ruiz
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | | | - Celia Cabello-Navarro
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| | - Carlos M Gómez
- Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Spain.
| |
Collapse
|
8
|
Xie Y, Liu YH, Constantinidis C, Zhou X. Neural Mechanisms of Working Memory Accuracy Revealed by Recurrent Neural Networks. Front Syst Neurosci 2022; 16:760864. [PMID: 35237134 PMCID: PMC8883483 DOI: 10.3389/fnsys.2022.760864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the neural mechanisms of working memory has been a long-standing Neuroscience goal. Bump attractor models have been used to simulate persistent activity generated in the prefrontal cortex during working memory tasks and to study the relationship between activity and behavior. How realistic the assumptions of these models are has been a matter of debate. Here, we relied on an alternative strategy to gain insights into the computational principles behind the generation of persistent activity and on whether current models capture some universal computational principles. We trained Recurrent Neural Networks (RNNs) to perform spatial working memory tasks and examined what aspects of RNN activity accounted for working memory performance. Furthermore, we compared activity in fully trained networks and immature networks, achieving only imperfect performance. We thus examined the relationship between the trial-to-trial variability of responses simulated by the network and different aspects of unit activity as a way of identifying the critical parameters of memory maintenance. Properties that spontaneously emerged in the artificial network strongly resembled persistent activity of prefrontal neurons. Most importantly, these included drift of network activity during the course of a trial that was causal to the behavior of the network. As a consequence, delay period firing rate and behavior were positively correlated, in strong analogy to experimental results from the prefrontal cortex. These findings reveal that delay period activity is computationally efficient in maintaining working memory, as evidenced by unbiased optimization of parameters in artificial neural networks, oblivious to the properties of prefrontal neurons.
Collapse
Affiliation(s)
- Yuanqi Xie
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Yichen Henry Liu
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xin Zhou
- Department of Computer Science, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Data Science Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Liu YH, Zhu J, Constantinidis C, Zhou X. Emergence of prefrontal neuron maturation properties by training recurrent neural networks in cognitive tasks. iScience 2021; 24:103178. [PMID: 34667944 PMCID: PMC8506971 DOI: 10.1016/j.isci.2021.103178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023] Open
Abstract
Working memory and response inhibition are functions that mature relatively late in life, after adolescence, paralleling the maturation of the prefrontal cortex. The link between behavioral and neural maturation is not obvious, however, making it challenging to understand how neural activity underlies the maturation of cognitive function. To gain insights into the nature of observed changes in prefrontal activity between adolescence and adulthood, we investigated the progressive changes in unit activity of recurrent neural networks as they were trained to perform working memory and response inhibition tasks. These included increased delay period activity during working memory tasks and increased activation in antisaccade tasks. These findings reveal universal properties underlying the neuronal computations behind cognitive tasks and explicate the nature of changes that occur as the result of developmental maturation. Properties of RNN networks during training offer insights in prefrontal maturation Fully trained networks exhibit higher levels of activity in working memory tasks Trained networks also exhibit higher activation in antisaccade tasks Partially trained RNNs can generate accurate predictions of immature PFC activity
Collapse
Affiliation(s)
- Yichen Henry Liu
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Junda Zhu
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Christos Constantinidis
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.,Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xin Zhou
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.,Data Science Institute, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Stavroulaki V, Giakoumaki SG, Sidiropoulou K. Working memory training effects across the lifespan: Evidence from human and experimental animal studies. Mech Ageing Dev 2020; 194:111415. [PMID: 33338498 DOI: 10.1016/j.mad.2020.111415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Working memory refers to a cognitive function that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. Due to its central role in general cognition, several studies have investigated the possibility that training on working memory tasks could improve not only working memory function but also increase other cognitive abilities or modulate other behaviors. This possibility is still highly controversial, with prior studies providing contradictory findings. The lack of systematic approaches and methodological shortcomings complicates this debate even more. This review highlights the impact of working memory training at different ages on humans. Finally, it demonstrates several findings about the neural substrate of training in both humans and experimental animals, including non-human primates and rodents.
Collapse
Affiliation(s)
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, Gallos University Campus, University of Crete, Rethymno, 74100, Crete, Greece; University of Crete Research Center for the Humanities, The Social and Educational Sciences, University of Crete, Rethymno, 74100, Crete, Greece
| | - Kyriaki Sidiropoulou
- Dept of Biology, University of Crete, Greece; Institute of Molecular Biology and Biotechnology - Foundation for Research and Technology Hellas, Greece.
| |
Collapse
|
12
|
Li S, Zhou X, Constantinidis C, Qi XL. Plasticity of Persistent Activity and Its Constraints. Front Neural Circuits 2020; 14:15. [PMID: 32528254 PMCID: PMC7247814 DOI: 10.3389/fncir.2020.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulus information is maintained in working memory by action potentials that persist after the stimulus is no longer physically present. The prefrontal cortex is a critical brain area that maintains such persistent activity due to an intrinsic network with unique synaptic connectivity, NMDA receptors, and interneuron types. Persistent activity can be highly plastic depending on task demands but it also appears in naïve subjects, not trained or required to perform a task at all. Here, we review what aspects of persistent activity remain constant and what factors can modify it, focusing primarily on neurophysiological results from non-human primate studies. Changes in persistent activity are constrained by anatomical location, with more ventral and more anterior prefrontal areas exhibiting the greatest capacity for plasticity, as opposed to posterior and dorsal areas, which change relatively little with training. Learning to perform a cognitive task for the first time, further practicing the task, and switching between learned tasks can modify persistent activity. The ability of the prefrontal cortex to generate persistent activity also depends on age, with changes noted between adolescence, adulthood, and old age. Mean firing rates, variability and correlation of persistent discharges, but also time-varying firing rate dynamics are altered by these factors. Plastic changes in the strength of intrinsic network connections can be revealed by the analysis of synchronous spiking between neurons. These results are essential for understanding how the prefrontal cortex mediates working memory and intelligent behavior.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
13
|
Constantinidis C, Luna B. Neural Substrates of Inhibitory Control Maturation in Adolescence. Trends Neurosci 2019; 42:604-616. [PMID: 31443912 PMCID: PMC6721973 DOI: 10.1016/j.tins.2019.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022]
Abstract
Inhibitory control matures through adolescence and into early adulthood, impacting decision-making. Impairments in inhibitory control are associated with various psychopathologies, many of which emerge during adolescence. In this review, we examine the neural basis of developmental improvements in inhibitory control by integrating findings from humans and non-human primates, identifying the structural and functional specialization of executive brain systems that mediates cognitive maturation. Behavioral manifestations of response inhibition suggest that adolescents are capable of producing adult level responses on occasion, but lack the ability to engage systems mediating response inhibition in a consistent fashion. Maturation is associated with changes in structural anatomy as well as local and systems-level connectivity. Functional changes revealed by neuroimaging and neurophysiology indicate that maturation of inhibitory control is achieved through improvements in response preparation, error processing, and planned responses.
Collapse
Affiliation(s)
- Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Beatriz Luna
- Departments of Psychiatry, Pediatrics, and Psychology, University of Pittsburgh, and The Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Gómez CM, Barriga-Paulino CI, Rodríguez-Martínez EI, Rojas-Benjumea MÁ, Arjona A, Gómez-González J. The neurophysiology of working memory development: from childhood to adolescence and young adulthood. Rev Neurosci 2018; 29:261-282. [DOI: 10.1515/revneuro-2017-0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/09/2017] [Indexed: 12/27/2022]
Abstract
AbstractWorking memory (WM) is an important cognitive function that is necessary to perform our daily activities. The present review briefly describes the most accepted models underlying WM and the neural networks involved in its processing. The review focuses on how the neurophysiological mechanisms develop with age in the periods from childhood to adolescence and young adulthood. Studies using behavioral, neuroimaging, and electrophysiological techniques showed the progress of WM throughout the development. The present review focuses on the neurophysiology of the basic processes underlying WM operations, as indicated by electroencephalogram-derived signals, in order to take advantage of the excellent time resolution of this technique. Children and adults use similar cerebral mechanisms and areas to encode, recognize, and keep the stimuli in memory and update the WM contents, although adults rely more on anterior sites. The possibility that a functional reorganization of WM brain processing occurs around the adolescent period is suggested, and would partly justify the high prevalence of the emergence of mental pathology in the adolescent period.
Collapse
|
15
|
Lam SM, Chua GH, Li XJ, Su B, Shui G. Biological relevance of fatty acyl heterogeneity to the neural membrane dynamics of rhesus macaques during normative aging. Oncotarget 2018; 7:55970-55989. [PMID: 27517158 PMCID: PMC5302890 DOI: 10.18632/oncotarget.11190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/30/2016] [Indexed: 12/04/2022] Open
Abstract
Lipidomic analyses of the frontal cortex of Rhesus macaques across three selected age groups (young, sexually-mature, old) revealed that docosahexaenoic acids (DHAs) displayed notable and unique accretions in sexually-mature macaques for all phospholipid classes examined, which were not observable in all remaining polyunsaturated fatty acids (PUFAs) investigated. On the other hand, arachidonic acid (ARA) exhibited sharp attritions in the membrane lipidomes of sexually-mature macaques, a decline which was attenuated only for cardiolipins (CLs). DHA enrichment in phospholipids was lost in old macaques, with accompanying augmentations in very-long-chain sphingomyelins (VLC-SMs). Age-dependent alterations in membrane lipidomes point to a possibly complex temporal interplay between DHA-enriched membrane microdomains and SM-/cholesterol-rich rafts in neural membranes during normative aging. Lipid co-regulation data revealed an increasingly intense degree of co-regulation between membrane lipid classes with age, and suggest that reduction in CLs during normative brain aging may prompt alternative membrane lipid synthetic pathways driven by a compromised energy availability in the aging brain.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gek Huey Chua
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jiang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Abstract
Working memory - the ability to maintain and manipulate information over a period of seconds - is a core component of higher cognitive functions. The storage capacity of working memory is limited but can be expanded by training, and evidence of the neural mechanisms underlying this effect is accumulating. Human imaging studies and neurophysiological recordings in non-human primates, together with computational modelling studies, reveal that training increases the activity of prefrontal neurons and the strength of connectivity in the prefrontal cortex and between the prefrontal and parietal cortex. Dopaminergic transmission could have a facilitatory role. These changes more generally inform us of the plasticity of higher cognitive functions.
Collapse
|
17
|
Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts. J Neurosci 2015; 35:13076-89. [PMID: 26400938 DOI: 10.1523/jneurosci.1262-15.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The anterior cingulate cortex (ACC) and prefrontal cortex (PFC) are believed to coactivate during goal-directed behavior to identify, select, and monitor relevant sensory information. Here, we tested whether coactivation of neurons across macaque ACC and PFC would be evident at the level of pairwise neuronal correlations during stimulus selection in a spatial attention task. We found that firing correlations emerged shortly after an attention cue, were evident for 50-200 ms time windows, were strongest for neuron pairs in area 24 (ACC) and areas 8 and 9 (dorsal PFC), and were independent of overall firing rate modulations. For a subset of cell pairs from ACC and dorsal PFC, the observed functional spike-train connectivity carried information about the direction of the attention shift. Reliable firing correlations were evident across area boundaries for neurons with broad spike waveforms (putative excitatory neurons) as well as for pairs of putative excitatory neurons and neurons with narrow spike waveforms (putative interneurons). These findings reveal that stimulus selection is accompanied by slow time scale firing correlations across those ACC/PFC subfields implicated to control and monitor attention. This functional coupling was informative about which stimulus was selected and thus indexed possibly the exchange of task-relevant information. We speculate that interareal, transient firing correlations reflect the transient coordination of larger, reciprocally interacting brain networks at a characteristic 50-200 ms time scale. Significance statement: Our manuscript identifies interareal spike-train correlations between primate anterior cingulate and dorsal prefrontal cortex during a period where attentional stimulus selection is likely controlled by these very same circuits. Interareal correlations emerged during the covert attention shift to one of two peripheral stimuli, proceeded on a slow 50-200 ms time scale, and occurred between putative pyramidal and putative interneurons. Spike-train correlations emerged particularly for cell pairs tuned to similar contralateral target locations, thus indexing the interareal coordination of attention-relevant information. These findings characterize a possible way by which prefrontal and anterior cingulate cortex circuits implement their control functions through coordinated firing when macaque monkeys select and monitor relevant stimuli for goal-directed behaviors.
Collapse
|
18
|
Liu J, Zhang X, Yu C, Duan Y, Zhuo J, Cui Y, Liu B, Li K, Jiang T, Liu Y. Impaired Parahippocampus Connectivity in Mild Cognitive Impairment and Alzheimer’s Disease. J Alzheimers Dis 2015; 49:1051-64. [PMID: 26599055 DOI: 10.3233/jad-150727] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jieqiong Liu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chunshui Yu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunyun Duan
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junjie Zhuo
- Brainnetome Center, Institute of Automation, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, the Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, the Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, the Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, the Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Legon W, Punzell S, Dowlati E, Adams SE, Stiles AB, Moran RJ. Altered Prefrontal Excitation/Inhibition Balance and Prefrontal Output: Markers of Aging in Human Memory Networks. Cereb Cortex 2015; 26:4315-4326. [DOI: 10.1093/cercor/bhv200] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Klingberg T. Childhood cognitive development as a skill. Trends Cogn Sci 2014; 18:573-9. [PMID: 25042686 DOI: 10.1016/j.tics.2014.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 12/01/2022]
Abstract
Theories view childhood development as being either driven by structural maturation of the brain or being driven by skill-learning. It is hypothesized here that working memory (WM) development during childhood is partly driven by training effects in the environment, and that similar neural mechanisms underlie training-induced plasticity and childhood development. In particular, the functional connectivity of a fronto-parietal network is suggested to be associated with WM capacity. The striatum, dopamine receptor D2 (DRD2) activity, and corticostriatal white-matter tracts, on the other hand, seem to be more important for plasticity and change of WM capacity during both training and development. In this view, the development of WM capacity during childhood partly involves the same mechanisms as skill-learning.
Collapse
Affiliation(s)
- Torkel Klingberg
- Department of Neuroscience, Karolinska Institute, Retzius Väg 8, 17176 Stockholm, Sweden.
| |
Collapse
|
21
|
Gonzalez-Burgos G, Miyamae T, Pafundo DE, Yoshino H, Rotaru DC, Hoftman G, Datta D, Zhang Y, Hammond M, Sampson AR, Fish KN, Ermentrout GB, Lewis DA. Functional Maturation of GABA Synapses During Postnatal Development of the Monkey Dorsolateral Prefrontal Cortex. Cereb Cortex 2014; 25:4076-93. [PMID: 24904071 DOI: 10.1093/cercor/bhu122] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Development of inhibition onto pyramidal cells may be crucial for the emergence of cortical network activity, including gamma oscillations. In primate dorsolateral prefrontal cortex (DLPFC), inhibitory synaptogenesis starts in utero and inhibitory synapse density reaches adult levels before birth. However, in DLPFC, the expression levels of γ-aminobutyric acid (GABA) synapse-related gene products changes markedly during development until young adult age, suggesting a highly protracted maturation of GABA synapse function. Therefore, we examined the development of GABA synapses by recording GABAAR-mediated inhibitory postsynaptic currents (GABAAR-IPSCs) from pyramidal cells in the DLPFC of neonatal, prepubertal, peripubertal, and adult macaque monkeys. We found that the decay of GABAAR-IPSCs, possibly including those from parvalbumin-positive GABA neurons, shortened by prepubertal age, while their amplitude increased until the peripubertal period. Interestingly, both GABAAR-mediated quantal response size, estimated by miniature GABAAR-IPSCs, and the density of GABAAR synaptic appositions, measured with immunofluorescence microscopy, were stable with age. Simulations in a computational model network with constant GABA synapse density showed that the developmental changes in GABAAR-IPSC properties had a significant impact on oscillatory activity and predicted that, whereas DLPFC circuits can generate gamma frequency oscillations by prepubertal age, mature levels of gamma band power are attained at late stages of development.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Diego E Pafundo
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA Current address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, USA
| | - Hiroki Yoshino
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA Current address: Department of Psychiatry, Nara Medical University, Japan
| | - Diana C Rotaru
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA Current address: Department of Integrative Neurophysiology, Vrije Universiteit, Amsterdam, Netherlands
| | - Gil Hoftman
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dibyadeep Datta
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yun Zhang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mahjub Hammond
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allan R Sampson
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - G Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|