1
|
Bhadra P, Römisch K, Helms V. Effect of Sec62 on the conformation of the Sec61 channel in yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184050. [PMID: 36116515 DOI: 10.1016/j.bbamem.2022.184050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Most eukaryotic secretory and membrane proteins are funneled by the Sec61 complex into the secretory pathway. Furthermore, some substrate peptides rely on two essential accessory proteins, Sec62 and Sec63, being present to assist with their translocation via the Sec61 channel in post-translational translocation. Cryo-electron microscopy (cryo-EM) recently succeeded in determining atomistic structures of unbound and signal sequence-engaged Sec complexes from Saccharomyces cerevisiae, involving the Sec61 channel and the proteins Sec62, Sec63, Sec71 and Sec72. In this study, we investigated the conformational effects of Sec62 on Sec61. Indeed, we observed in molecular dynamics simulations that the conformational dynamics of lateral gate, plug and pore region of Sec61 are altered by the presence/absence of Sec62. In molecular dynamics simulations that were started from the cryo-EM structures of Sec61 coordinated to Sec62 or of apo Sec61, we observed that the luminal side of the lateral gate gradually adopts a closed conformation similar to the apo state during unbound state simulations. In contrast, it adopts a wider conformation in the bound state. Furthermore, we demonstrate that the conformation of the active (substrate-bound) state of the Sec61 channel shifts toward an alternative conformation in the absence of the substrate. We suggest that the signal peptide holds/stabilizes the active state conformation of Sec61 during post-translational translocation. Thus, our study explains the effect of Sec62 on the conformation of the Sec61 channel and describes the conformational transitions of Sec61 channel.
Collapse
Affiliation(s)
- Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarland Informatics Campus, Saarbrücken, Saarland, Germany
| | - Karin Römisch
- Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Saarland, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarland Informatics Campus, Saarbrücken, Saarland, Germany.
| |
Collapse
|
2
|
Bhadra P, Helms V. Molecular Modeling of Signal Peptide Recognition by Eukaryotic Sec Complexes. Int J Mol Sci 2021; 22:10705. [PMID: 34639046 PMCID: PMC8509349 DOI: 10.3390/ijms221910705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we review recent molecular modelling and simulation studies of the Sec translocon, the primary component/channel of protein translocation into the endoplasmic reticulum (ER) and bacterial periplasm, respectively. Our focus is placed on the eukaryotic Sec61, but we also mention modelling studies on prokaryotic SecY since both systems operate in related ways. Cryo-EM structures are now available for different conformational states of the Sec61 complex, ranging from the idle or closed state over an inhibited state with the inhibitor mycolactone bound near the lateral gate, up to a translocating state with bound substrate peptide in the translocation pore. For all these states, computational studies have addressed the conformational dynamics of the translocon with respect to the pore ring, the plug region, and the lateral gate. Also, molecular simulations are addressing mechanistic issues of insertion into the ER membrane vs. translocation into the ER, how signal-peptides are recognised at all in the translocation pore, and how accessory proteins affect the Sec61 conformation in the co- and post-translational pathways.
Collapse
Affiliation(s)
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Postfach 15 11 50, 66041 Saarbruecken, Germany;
| |
Collapse
|
3
|
Efficient integration of transmembrane domains depends on the folding properties of the upstream sequences. Proc Natl Acad Sci U S A 2021; 118:2102675118. [PMID: 34373330 PMCID: PMC8379923 DOI: 10.1073/pnas.2102675118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The topology of membrane proteins is defined by the successive integration of α-helical transmembrane domains at the Sec61 translocon. For each polypeptide segment of ∼20 residues entering the translocon, their combined hydrophobicities were previously shown to define membrane integration. Here, we discovered that different sequences preceding a potential transmembrane domain substantially affect the hydrophobicity threshold. Sequences that are rapidly folding, intrinsically disordered, very short, or strongly binding chaperones allow efficient integration at low hydrophobicity. Folding deficient mutant domains and artificial sequences not binding chaperones interfered with membrane integration likely by remaining partially unfolded and exposing hydrophobic surfaces that compete with the translocon for the emerging transmembrane segment, reducing integration efficiency. Rapid folding or strong chaperone binding thus promote efficient integration. The topology of most membrane proteins is defined by the successive integration of α-helical transmembrane domains at the Sec61 translocon. The translocon provides a pore for the transfer of polypeptide segments across the membrane while giving them lateral access to the lipid. For each polypeptide segment of ∼20 residues, the combined hydrophobicities of its constituent amino acids were previously shown to define the extent of membrane integration. Here, we discovered that different sequences preceding a potential transmembrane domain substantially affect its hydrophobicity requirement for integration. Rapidly folding domains, sequences that are intrinsically disordered or very short or capable of binding chaperones with high affinity, allow for efficient transmembrane integration with low-hydrophobicity thresholds for both orientations in the membrane. In contrast, long protein fragments, folding-deficient mutant domains, and artificial sequences not binding chaperones interfered with membrane integration, requiring higher hydrophobicity. We propose that the latter sequences, as they compact on their hydrophobic residues, partially folded but unable to reach a native state, expose hydrophobic surfaces that compete with the translocon for the emerging transmembrane segment, reducing integration efficiency. The results suggest that rapid folding or strong chaperone binding is required for efficient transmembrane integration.
Collapse
|
4
|
Bhadra P, Yadhanapudi L, Römisch K, Helms V. How does Sec63 affect the conformation of Sec61 in yeast? PLoS Comput Biol 2021; 17:e1008855. [PMID: 33780447 PMCID: PMC8031780 DOI: 10.1371/journal.pcbi.1008855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/08/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
The Sec complex catalyzes the translocation of proteins of the secretory pathway into the endoplasmic reticulum and the integration of membrane proteins into the endoplasmic reticulum membrane. Some substrate peptides require the presence and involvement of accessory proteins such as Sec63. Recently, a structure of the Sec complex from Saccharomyces cerevisiae, consisting of the Sec61 channel and the Sec62, Sec63, Sec71 and Sec72 proteins was determined by cryo-electron microscopy (cryo-EM). Here, we show by co-precipitation that the Sec61 channel subunit Sbh1 is not required for formation of stable Sec63-Sec61 contacts. Molecular dynamics simulations started from the cryo-EM conformation of Sec61 bound to Sec63 and of unbound Sec61 revealed how Sec63 affects the conformation of Sec61 lateral gate, plug, pore region and pore ring diameter via three intermolecular contact regions. Molecular docking of SRP-dependent vs. SRP-independent signal peptide chains into the Sec61 channel showed that the pore regions affected by presence/absence of Sec63 play a crucial role in positioning the signal anchors of SRP-dependent substrates nearby the lateral gate.
Collapse
Affiliation(s)
- Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| | - Lalitha Yadhanapudi
- Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Saarland, Germany
| | - Karin Römisch
- Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Saarland, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| |
Collapse
|
5
|
Niesen MJM, Zimmer MH, Miller TF. Dynamics of Co-translational Membrane Protein Integration and Translocation via the Sec Translocon. J Am Chem Soc 2020; 142:5449-5460. [PMID: 32130863 PMCID: PMC7338273 DOI: 10.1021/jacs.9b07820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An important aspect of cellular function is the correct targeting and delivery of newly synthesized proteins. Central to this task is the machinery of the Sec translocon, a transmembrane channel that is involved in both the translocation of nascent proteins across cell membranes and the integration of proteins into the membrane. Considerable experimental and computational effort has focused on the Sec translocon and its role in nascent protein biosynthesis, including the correct folding and expression of integral membrane proteins. However, the use of molecular simulation methods to explore Sec-facilitated protein biosynthesis is hindered by the large system sizes and long (i.e., minute) time scales involved. In this work, we describe the development and application of a coarse-grained simulation approach that addresses these challenges and allows for direct comparison with both in vivo and in vitro experiments. The method reproduces a wide range of experimental observations, providing new insights into the underlying molecular mechanisms, predictions for new experiments, and a strategy for the rational enhancement of membrane protein expression levels.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Matthew H Zimmer
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F Miller
- Department of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Spiess M, Junne T, Janoschke M. Membrane Protein Integration and Topogenesis at the ER. Protein J 2019; 38:306-316. [DOI: 10.1007/s10930-019-09827-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Niesen MJM, Müller-Lucks A, Hedman R, von Heijne G, Miller TF. Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. Biophys J 2018; 115:1885-1894. [PMID: 30366631 DOI: 10.1016/j.bpj.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/15/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
During ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. This study utilizes a combination of arrest peptide experiments and coarse-grained molecular dynamics to measure and elucidate the molecular origins of forces that are exerted on NCs during cotranslational membrane insertion and translocation via the Sec translocon. The approach enables deconvolution of force contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. In particular, we show that forces due to NC-lipid interactions provide a readout of conformational changes in the Sec translocon, demonstrating that lateral gate opening only occurs when a sufficiently hydrophobic segment of NC residues reaches the translocon. The combination of experiment and theory introduced here provides a detailed picture of the molecular interactions and conformational changes during ribosomal translation that govern protein biogenesis.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Annika Müller-Lucks
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rickard Hedman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
8
|
Ulmschneider JP, Smith JC, White SH, Ulmschneider MB. The importance of the membrane interface as the reference state for membrane protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2539-2548. [PMID: 30293965 DOI: 10.1016/j.bbamem.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/26/2022]
Abstract
The insertion of nascent polypeptide chains into lipid bilayer membranes and the stability of membrane proteins crucially depend on the equilibrium partitioning of polypeptides. For this, the transfer of full sequences of amino-acid residues into the bilayer, rather than individual amino acids, must be understood. Earlier studies have revealed that the most likely reference state for partitioning very hydrophobic sequences is the membrane interface. We have used μs-scale simulations to calculate the interface-to-transmembrane partitioning free energies ΔGS→TM for two hydrophobic carrier sequences in order to estimate the insertion free energy for all 20 amino acid residues when bonded to the center of a partitioning hydrophobic peptide. Our results show that prior single-residue scales likely overestimate the partitioning free energies of polypeptides. The correlation of ΔGS→TM with experimental full-peptide translocon insertion data is high, suggesting an important role for the membrane interface in translocon-based insertion. The choice of carrier sequence greatly modulates the contribution of each single-residue mutation to the overall partitioning free energy. Our results demonstrate the importance of quantifying the observed full-peptide partitioning equilibrium, which is between membrane interface and transmembrane inserted, rather than combining individual water-to-membrane amino acid transfer free energies.
Collapse
Affiliation(s)
- Jakob P Ulmschneider
- School of Physics and Astronomy and the Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | - Jeremy C Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Biochemistry & Cellular Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Stephen H White
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA, USA
| | | |
Collapse
|
9
|
Gumbart JC, Ulmschneider MB, Hazel A, White SH, Ulmschneider JP. Computed Free Energies of Peptide Insertion into Bilayers are Independent of Computational Method. J Membr Biol 2018; 251:345-356. [PMID: 29520628 PMCID: PMC6030508 DOI: 10.1007/s00232-018-0026-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
We show that the free energy of inserting hydrophobic peptides into lipid bilayer membranes from surface-aligned to transmembrane inserted states can be reliably calculated using atomistic models. We use two entirely different computational methods: high temperature spontaneous peptide insertion calculations as well as umbrella sampling potential-of-mean-force (PMF) calculations, both yielding the same energetic profiles. The insertion free energies were calculated using two different protein and lipid force fields (OPLS protein/united-atom lipids and CHARMM36 protein/all-atom lipids) and found to be independent of the simulation parameters. In addition, the free energy of insertion is found to be independent of temperature for both force fields. However, we find major difference in the partitioning kinetics between OPLS and CHARMM36, likely due to the difference in roughness of the underlying free energy surfaces. Our results demonstrate not only a reliable method to calculate insertion free energies for peptides, but also represent a rare case where equilibrium simulations and PMF calculations can be directly compared.
Collapse
Affiliation(s)
| | | | | | - Stephen H White
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA, USA
| | - Jakob P Ulmschneider
- Department of Physics and the Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Sachelaru I, Winter L, Knyazev DG, Zimmermann M, Vogt A, Kuttner R, Ollinger N, Siligan C, Pohl P, Koch HG. YidC and SecYEG form a heterotetrameric protein translocation channel. Sci Rep 2017; 7:101. [PMID: 28273911 PMCID: PMC5427846 DOI: 10.1038/s41598-017-00109-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/08/2017] [Indexed: 11/26/2022] Open
Abstract
The heterotrimeric SecYEG complex cooperates with YidC to facilitate membrane protein insertion by an unknown mechanism. Here we show that YidC contacts the interior of the SecY channel resulting in a ligand-activated and voltage-dependent complex with distinct ion channel characteristics. The SecYEG pore diameter decreases from 8 Å to only 5 Å for the YidC-SecYEG pore, indicating a reduction in channel cross-section by YidC intercalation. In the presence of a substrate, YidC relocates to the rim of the pore as indicated by increased pore diameter and loss of YidC crosslinks to the channel interior. Changing the surface charge of the pore by incorporating YidC into the channel wall increases the anion selectivity, and the accompanying change in wall hydrophobicity is liable to alter the partition of helices from the pore into the membrane. This could explain how the exit of transmembrane domains from the SecY channel is facilitated by YidC.
Collapse
Affiliation(s)
- Ilie Sachelaru
- grid.5963.9Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104 Germany ,grid.5963.9Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
| | - Lukas Winter
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Denis G. Knyazev
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Mirjam Zimmermann
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Andreas Vogt
- grid.5963.9Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104 Germany ,grid.5963.9Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany ,grid.5963.9Spemann-Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Roland Kuttner
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Nicole Ollinger
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Christine Siligan
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020, Linz, Austria.
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104, Germany. .,Spemann-Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Niesen MJM, Wang CY, Van Lehn RC, Miller TF. Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration. PLoS Comput Biol 2017; 13:e1005427. [PMID: 28328943 PMCID: PMC5381951 DOI: 10.1371/journal.pcbi.1005427] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/05/2017] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency.
Collapse
Affiliation(s)
- Michiel J. M. Niesen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Connie Y. Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Reid C. Van Lehn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
12
|
Stone TA, Schiller N, Workewych N, von Heijne G, Deber CM. Hydrophobic Clusters Raise the Threshold Hydrophilicity for Insertion of Transmembrane Sequences in Vivo. Biochemistry 2016; 55:5772-5779. [PMID: 27620701 DOI: 10.1021/acs.biochem.6b00650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insertion of a nascent membrane protein segment by the translocon channel into the bilayer is naturally promoted by high segmental hydrophobicity, but its selection as a transmembrane (TM) segment is complicated by the diverse environments (aqueous vs lipidic) the protein encounters and by the fact that most TM segments contain a substantial amount (∼30%) of polar residues, as required for protein structural stabilization and/or function. To examine the contributions of these factors systematically, we designed and synthesized a peptide library consisting of pairs of compositionally identical, but sequentially different, peptides with 19-residue core sequences varying (i) in Leu positioning (with five or seven Leu residues clustered into a contiguous "block" in the middle of the segment or "scrambled" throughout the sequence) and (ii) in Ser content (0-6 residues). The library was analyzed by a combination of biophysical and biological techniques, including HPLC retention times, circular dichroism measurements of helicity in micelle and phospholipid bilayer media, and relative blue shifts in Trp fluorescence maxima, as well as by the extent of membrane insertion in a translocon-mediated assay using microsomal membranes from dog pancreas endoplasmic reticulum. We found that local blocks of high hydrophobicity heighten the translocon's propensity to insert moderately hydrophilic sequences, until a "threshold hydrophilicity" is surpassed whereby segments no longer insert even in the presence of Leu blocks. This study codifies the prerequisites of apolar/polar content and residue positioning that define nascent TM segments, illustrates the accuracy in their prediction, and highlights how a single disease-causing mutation can tip the balance toward anomalous translocation/insertion.
Collapse
Affiliation(s)
- Tracy A Stone
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto M5G 0A4, Ontario, Canada.,Department of Biochemistry, University of Toronto , Toronto M5S 1A8, Ontario, Canada
| | - Nina Schiller
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University , Box 1031, SE-171 21 Solna, Sweden
| | - Natalie Workewych
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto M5G 0A4, Ontario, Canada
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University , Box 1031, SE-171 21 Solna, Sweden
| | - Charles M Deber
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto M5G 0A4, Ontario, Canada.,Department of Biochemistry, University of Toronto , Toronto M5S 1A8, Ontario, Canada
| |
Collapse
|
13
|
Gumbart JC, Chipot C. Decrypting protein insertion through the translocon with free-energy calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1663-71. [PMID: 26896694 DOI: 10.1016/j.bbamem.2016.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Protein insertion into a membrane is a complex process involving numerous players. The most prominent of these players is the Sec translocon complex, a conserved protein-conducting channel present in the cytoplasmic membrane of bacteria and the membrane of the endoplasmic reticulum in eukaryotes. The last decade has seen tremendous leaps forward in our understanding of how insertion is managed by the translocon and its partners, coming from atomic-detailed structures, innovative experiments, and well-designed simulations. In this review, we discuss how experiments and simulations, hand-in-hand, teased out the secrets of the translocon-facilitated membrane insertion process. In particular, we focus on the role of free-energy calculations in elucidating membrane insertion. Amazingly, despite all its apparent complexity, protein insertion into membranes is primarily driven by simple thermodynamic and kinetic principles. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique and University of Illinois at Urbana-Champaign, UMR n° 7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Junne T, Spiess M. Integration of transmembrane domains is regulated by their downstream sequences. J Cell Sci 2016; 130:372-381. [DOI: 10.1242/jcs.194472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
The Sec61 translocon catalyzes translocation of proteins into the endoplasmic reticulum and the lateral integration of transmembrane segments into the lipid bilayer. Integration is mediated by the hydrophobicity of a polypeptide segment consistent with thermodynamic equilibration between the translocon and the lipid membrane. Integration efficiency of a generic series of increasingly hydrophobic sequences (H-segments) was found to diverge significantly in different reporter constructs as a function of the ∼100 residues carboxyterminal of the H-segments. The hydrophobicity threshold of integration was considerably lowered by insertion of generic ∼20-residue peptides either made of flexible glycine-serine repeats, containing multiple negative charges, or consisting of an oligo-proline stretch. A highly flexible, 100-residue glycine-serine stretch maximally enhanced this effect. The apparent free energy of integration was found to be changed by more than 3 kcal/mol with the downstream sequences tested. The C-terminal sequences could also be shown to affect integration of natural mildly hydrophobic sequences. The results suggest that the conformation of the nascent polypeptide in the protected cavity between ribosome and translocon significantly influences the release of the H-segment into the bilayer.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
15
|
Kang K, Takahara M, Sakaue H, Sakaguchi M. Capsid protease domain as a tool for assessing protein-domain folding during organelle import of nascent polypeptides in living cells. J Biochem 2015; 159:497-508. [DOI: 10.1093/jb/mvv129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023] Open
|
16
|
Stone TA, Schiller N, von Heijne G, Deber CM. Hydrophobic blocks facilitate lipid compatibility and translocon recognition of transmembrane protein sequences. Biochemistry 2015; 54:1465-73. [PMID: 25635746 PMCID: PMC4341838 DOI: 10.1021/bi5014886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Biophysical hydrophobicity scales
suggest that partitioning of
a protein segment from an aqueous phase into a membrane is governed
by its perceived segmental hydrophobicity but do not establish specifically
(i) how the segment is identified in vivo for translocon-mediated
insertion or (ii) whether the destination lipid bilayer is biochemically
receptive to the inserted sequence. To examine the congruence between
these dual requirements, we designed and synthesized a library of
Lys-tagged peptides of a core length sufficient to span a bilayer
but with varying patterns of sequence, each composed of nine Leu residues,
nine Ser residues, and one (central) Trp residue. We found that peptides
containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS),
in comparison to those containing discontinuous stretches of Leu residues
(non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS),
displayed greater helicity (circular dichroism spectroscopy), traveled
slower during sodium dodecyl sulfate–polyacrylamide gel electrophoresis,
had longer reverse phase high-performance liquid chromatography retention
times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine
liposomes, each observation indicating superior lipid compatibility
when a Leu-block is present. These parameters were largely paralleled
in a biological membrane insertion assay using microsomal membranes
from dog pancreas endoplasmic reticulum, where we found only the Leu-block
sequences successfully inserted; intriguingly, an amphipathic peptide
(SLLSSLLSSWLLSSLLSSL;
Leu face, Ser face) with biophysical properties similar to those of
Leu-block peptides failed to insert. Our overall results identify
local sequence lipid compatibility rather than average hydrophobicity
as a principal determinant of transmembrane segment potential, while
demonstrating that further subtleties of hydrophobic and helical patterning,
such as circumferential hydrophobicity in Leu-block segments, promote
translocon-mediated insertion.
Collapse
Affiliation(s)
- Tracy A Stone
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto M5G 0A4, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Rutz C, Klein W, Schülein R. N-Terminal Signal Peptides of G Protein-Coupled Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:267-87. [DOI: 10.1016/bs.pmbts.2015.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Cymer F, von Heijne G, White SH. Mechanisms of integral membrane protein insertion and folding. J Mol Biol 2014; 427:999-1022. [PMID: 25277655 DOI: 10.1016/j.jmb.2014.09.014] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
The biogenesis, folding, and structure of α-helical membrane proteins (MPs) are important to understand because they underlie virtually all physiological processes in cells including key metabolic pathways, such as the respiratory chain and the photosystems, as well as the transport of solutes and signals across membranes. Nearly all MPs require translocons--often referred to as protein-conducting channels--for proper insertion into their target membrane. Remarkable progress toward understanding the structure and functioning of translocons has been made during the past decade. Here, we review and assess this progress critically. All available evidence indicates that MPs are equilibrium structures that achieve their final structural states by folding along thermodynamically controlled pathways. The main challenge for cells is the targeting and membrane insertion of highly hydrophobic amino acid sequences. Targeting and insertion are managed in cells principally by interactions between ribosomes and membrane-embedded translocons. Our review examines the biophysical and biological boundaries of MP insertion and the folding of polytopic MPs in vivo. A theme of the review is the under-appreciated role of basic thermodynamic principles in MP folding and assembly. Thermodynamics not only dictates the final folded structure but also is the driving force for the evolution of the ribosome-translocon system of assembly. We conclude the review with a perspective suggesting a new view of translocon-guided MP insertion.
Collapse
Affiliation(s)
- Florian Cymer
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm.,Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems University of California, Irvine Irvine, CA 92697
| |
Collapse
|
19
|
Affiliation(s)
- Irisbel Guzman
- Department
of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Department
of Chemistry, Department of Physics, Center for the Physics of Living
Cells, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Reithinger JH, Yim C, Kim S, Lee H, Kim H. Structural and functional profiling of the lateral gate of the Sec61 translocon. J Biol Chem 2014; 289:15845-55. [PMID: 24753257 PMCID: PMC4140938 DOI: 10.1074/jbc.m113.533794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Sec61 translocon mediates the translocation and membrane insertion of proteins. For the integration of proteins into the membrane, the Sec61 translocon opens laterally to the lipid bilayer. Previous studies suggest that the lateral opening of the channel is mediated by the helices TM2b and TM7 of a pore-forming subunit of the Sec61 translocon. To map key residues in TM2b and TM7 in yeast Sec61 that modulate lateral gating activity, we performed alanine scanning and in vivo site-directed photocross-linking experiments. Alanine scanning identified two groups of critical residues in the lateral gate, one group that leads to defects in the translocation and membrane insertion of proteins and the other group that causes faster translocation and facilitates membrane insertion. Photocross-linking data show that the former group of residues is located at the interface of the lateral gate. Furthermore, different degrees of defects for the membrane insertion of single- and double-spanning membrane proteins were observed depending on whether the mutations were located in TM2b or TM7. These results demonstrate subtle differences in the molecular mechanism of the signal sequence binding/opening of the lateral gate and membrane insertion of a succeeding transmembrane segment in a polytopic membrane protein.
Collapse
Affiliation(s)
- Johannes H Reithinger
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Chewon Yim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Sungmin Kim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Hunsang Lee
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Hyun Kim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| |
Collapse
|
21
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|