1
|
Muhammednazaar S, Yao J, Necelis MR, Park YC, Shen Z, Bridges MD, Guo R, Swope N, Rhee MS, Kim M, Kim KH, Hubbell WL, Fleming KG, Columbus L, Kang SG, Hong H. Lipid bilayer strengthens the cooperative network of membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542905. [PMID: 37398072 PMCID: PMC10312574 DOI: 10.1101/2023.05.30.542905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Although membrane proteins fold and function in a lipid bilayer constituting cell membranes, their structure and functionality can be recapitulated in diverse amphiphilic assemblies whose compositions deviate from native membranes. It remains unclear how various hydrophobic environments can stabilize membrane proteins and whether lipids play any role therein. Here, using the evolutionary unrelated α-helical and β-barrel membrane proteins of Escherichia coli , we find that the hydrophobic thickness and the strength of amphiphile- amphiphile packing are critical environmental determinants of membrane protein stability. Lipid solvation enhances stability by facilitating residue burial in the protein interior and strengthens the cooperative network by promoting the propagation of local structural perturbations. This study demonstrates that lipids not only modulate membrane proteins' stability but also their response to external stimuli.
Collapse
|
2
|
Chang YC, Cao Z, Chen WT, Huang WC. Effects of stand-alone polar residue on membrane protein stability and structure. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184325. [PMID: 38653423 DOI: 10.1016/j.bbamem.2024.184325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Helical membrane proteins generally have a hydrophobic nature, with apolar side chains comprising the majority of the transmembrane (TM) helices. However, whenever polar side chains are present in the TM domain, they often exert a crucial role in structural interactions with other polar residues, such as TM helix associations and oligomerization. Moreover, polar residues in the TM region also often participate in protein functions, such as the Schiff base bonding between Lys residues and retinal in rhodopsin-like membrane proteins. Although many studies have focused on these functional polar residues, our understanding of stand-alone polar residues that are energetically unfavored in TM helixes is limited. Here, we adopted bacteriorhodopsin (bR) as a model system and systematically mutated 17 of its apolar Leu or Phe residues to polar Asn. Stability measurements of the resulting mutants revealed that all of these polar substitutions reduced bR stability to various extents, and the extent of destabilization of each mutant bR is also correlated to different structural factors, such as the relative accessible surface area and membrane depth of the mutation site. Structural analyses of these Asn residues revealed that they form sidechain-to-backbone hydrogen bonds that alleviate the unfavorable energetics in hydrophobic and apolar surroundings. Our results indicate that membrane proteins are able to accommodate certain stand-alone polar residues in the TM region without disrupting overall structures.
Collapse
Affiliation(s)
- Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Zheng Cao
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095, United States of America
| | - Wai-Ting Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Tan J, Wang M, Ni Z, Pei R, Shi F, Ye S. Intermolecular Protein-Water Coupling Impedes the Coupling Between the Amide A and Amide I Mode in Interfacial Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6587-6594. [PMID: 38486393 DOI: 10.1021/acs.langmuir.4c00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The coupling between different vibrational modes in proteins is essential for chemical dynamics and biological functions and is linked to the propagation of conformational changes and pathways of allosteric communication. However, little is known about the influence of intermolecular protein-H2O coupling on the vibrational coupling between amide A (NH) and amide I (C═O) bands. Here, we investigate the NH/CO coupling strength in various peptides with different secondary structures at the lipid cell membrane/H2O interface using femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) in which a femtosecond infrared pump is used to excite the amide A band, and SFG-VS is used to probe transient spectral evolution in the amide A and amide I bands. Our results reveal that the NH/CO coupling strength strongly depends on the bandwidth of the amide I mode and the coupling of proteins with water molecules. A large extent of protein-water coupling significantly reduces the delocalization of the amide I mode along the peptide chain and impedes the NH/CO coupling strength. A large NH/CO coupling strength is found to show a strong correlation with the high energy transfer rate found in the light-harvesting proteins of green sulfur bacteria, which may understand the mechanism of energy transfer through a molecular system and assist in controlling vibrational energy transfer by engineering the molecular structures to achieve high energy transfer efficiency.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruoqi Pei
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fangwen Shi
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
5
|
Min D. Folding speeds of helical membrane proteins. Biochem Soc Trans 2024; 52:491-501. [PMID: 38385525 PMCID: PMC10903471 DOI: 10.1042/bst20231315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Membrane proteins play key roles in human health, contributing to cellular signaling, ATP synthesis, immunity, and metabolite transport. Protein folding is the pivotal early step for their proper functioning. Understanding how this class of proteins adopts their native folds could potentially aid in drug design and therapeutic interventions for misfolding diseases. It is an essential piece in the whole puzzle to untangle their kinetic complexities, such as how rapid membrane proteins fold, how their folding speeds are influenced by changing conditions, and what mechanisms are at play. This review explores the folding speed aspect of multipass α-helical membrane proteins, encompassing plausible folding scenarios based on the timing and stability of helix packing interactions, methods for characterizing the folding time scales, relevant folding steps and caveats for interpretation, and potential implications. The review also highlights the recent estimation of the so-called folding speed limit of helical membrane proteins and discusses its consequent impact on the current picture of folding energy landscapes.
Collapse
Affiliation(s)
- Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Center for Wave Energy Materials, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Tiemann JKS, Zschach H, Lindorff-Larsen K, Stein A. Interpreting the molecular mechanisms of disease variants in human transmembrane proteins. Biophys J 2023:S0006-3495(22)03941-8. [PMID: 36600598 DOI: 10.1016/j.bpj.2022.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Next-generation sequencing of human genomes reveals millions of missense variants, some of which may lead to loss of protein function and ultimately disease. Here, we investigate missense variants in membrane proteins-key drivers in cell signaling and recognition. We find enrichment of pathogenic variants in the transmembrane region across 19,000 functionally classified variants in human membrane proteins. To accurately predict variant consequences, one fundamentally needs to understand the underlying molecular processes. A key mechanism underlying pathogenicity in missense variants of soluble proteins has been shown to be loss of stability. Membrane proteins, however, are widely understudied. Here, we interpret variant effects on a larger scale by performing structure-based estimations of changes in thermodynamic stability using a membrane-specific energy function and analyses of sequence conservation during evolution of 15 transmembrane proteins. We find evidence for loss of stability being the cause of pathogenicity in more than half of the pathogenic variants, indicating that this is a driving factor also in membrane-protein-associated diseases. Our findings show how computational tools aid in gaining mechanistic insights into variant consequences for membrane proteins. To enable broader analyses of disease-related and population variants, we include variant mappings for the entire human proteome.
Collapse
Affiliation(s)
- Johanna Katarina Sofie Tiemann
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrike Zschach
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Amelie Stein
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Harris NJ, Pellowe GA, Blackholly LR, Gulaidi-Breen S, Findlay HE, Booth PJ. Methods to study folding of alpha-helical membrane proteins in lipids. Open Biol 2022; 12:220054. [PMID: 35855589 PMCID: PMC9297032 DOI: 10.1098/rsob.220054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How alpha-helical membrane proteins fold correctly in the highly hydrophobic membrane interior is not well understood. Their folding is known to be highly influenced by the lipids within the surrounding bilayer, but the majority of folding studies have focused on detergent-solubilized protein rather than protein in a lipid environment. There are different ways to study folding in lipid bilayers, and each method has its own advantages and disadvantages. This review will discuss folding methods which can be used to study alpha-helical membrane proteins in bicelles, liposomes, nanodiscs or native membranes. These folding methods include in vitro folding methods in liposomes such as denaturant unfolding studies, and single-molecule force spectroscopy studies in bicelles, liposomes and native membranes. This review will also discuss recent advances in co-translational folding studies, which use cell-free expression with liposomes or nanodiscs or are performed in vivo with native membranes.
Collapse
Affiliation(s)
- Nicola J. Harris
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A. Pellowe
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Laura R. Blackholly
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | | | - Heather E. Findlay
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paula J. Booth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
9
|
Freitas FC, Maldonado M, Oliveira Junior AB, Onuchic JN, Oliveira RJD. Biotin-painted proteins have thermodynamic stability switched by kinetic folding routes. J Chem Phys 2022; 156:195101. [PMID: 35597640 DOI: 10.1063/5.0083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotin-labeled proteins are widely used as tools to study protein-protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues. So far, biotin-based technologies proved to be effective instruments as affinity and proximity tags. However, the influence of biotinylation on aspects such as folding, binding, mobility, thermodynamic stability, and kinetics needs to be investigated. Here, we selected two proteins [biotin carboxyl carrier protein (BCCP) and FKBP3] to test the influence of biotinylation on thermodynamic and kinetic properties. Apo (without biotin) and holo (biotinylated) protein structures were used separately to generate all-atom structure-based model simulations in a wide range of temperatures. Holo BCCP contains one biotinylation site, and FKBP3 was modeled with up to 23 biotinylated lysines. The two proteins had their estimated thermodynamic stability changed by altering their energy landscape. In all cases, after comparison between the apo and holo simulations, differences were observed on the free-energy profiles and folding routes. Energetic barriers were altered with the density of states clearly showing changes in the transition state. This study suggests that analysis of large-scale datasets of biotinylation-based proximity experiments might consider possible alterations in thermostability and folding mechanisms imposed by the attached biotins.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Michelli Maldonado
- Departamento de Matemática, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Antonio Bento Oliveira Junior
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
10
|
Corin K, Bowie JU. How physical forces drive the process of helical membrane protein folding. EMBO Rep 2022; 23:e53025. [PMID: 35133709 PMCID: PMC8892262 DOI: 10.15252/embr.202153025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Protein folding is a fundamental process of life with important implications throughout biology. Indeed, tens of thousands of mutations have been associated with diseases, and most of these mutations are believed to affect protein folding rather than function. Correct folding is also a key element of design. These factors have motivated decades of research on protein folding. Unfortunately, knowledge of membrane protein folding lags that of soluble proteins. This gap is partly caused by the greater technical challenges associated with membrane protein studies, but also because of additional complexities. While soluble proteins fold in a homogenous water environment, membrane proteins fold in a setting that ranges from bulk water to highly charged to apolar. Thus, the forces that drive folding vary in different regions of the protein, and this complexity needs to be incorporated into our understanding of the folding process. Here, we review our understanding of membrane protein folding biophysics. Despite the greater challenge, better model systems and new experimental techniques are starting to unravel the forces and pathways in membrane protein folding.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - James U Bowie
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
11
|
Tan J, Ni Z, Ye S. Protein-Water Coupling Tunes the Anharmonicity of Amide I Modes in the Interfacial Membrane-Bound Proteins. J Chem Phys 2022; 156:105103. [DOI: 10.1063/5.0078632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Junjun Tan
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| | - Zijian Ni
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale Nanoscience Laboratory, China
| | - Shuji Ye
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| |
Collapse
|
12
|
Hong H, Choi HK, Yoon TY. Untangling the complexity of membrane protein folding. Curr Opin Struct Biol 2022; 72:237-247. [PMID: 34995926 DOI: 10.1016/j.sbi.2021.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Delineating the folding steps of helical-bundle membrane proteins has been a challenging task. Many questions remain unanswered, including the conformation and stability of the states populated during folding, the shape of the energy barriers between the states, and the role of lipids as a solvent in mediating the folding. Recently, theoretical frames have matured to a point that permits detailed dissection of the folding steps, and advances in experimental techniques at both single-molecule and ensemble levels enable selective modulation of specific steps for quantitative determination of the folding energy landscapes. We also discuss how lipid molecules would play an active role in shaping the folding energy landscape of membrane proteins, and how folding of multi-domain membrane proteins can be understood based on our current knowledge. We conclude this review by offering an outlook for emerging questions in the study of membrane protein folding.
Collapse
Affiliation(s)
- Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| | - Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
13
|
Marx DC, Fleming KG. Membrane proteins enter the fold. Curr Opin Struct Biol 2021; 69:124-130. [PMID: 33975156 DOI: 10.1016/j.sbi.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 11/19/2022]
Abstract
Membrane proteins have historically been recalcitrant to biophysical folding studies. However, recent adaptations of methods from the soluble protein folding field have found success in their applications to transmembrane proteins composed of both α-helical and β-barrel conformations. Avoiding aggregation is critical for the success of these experiments. Altogether these studies are leading to discoveries of folding trajectories, foundational stabilizing forces and better-defined endpoints that enable more accurate interpretation of thermodynamic data. Increased information on membrane protein folding in the cell shows that the emerging biophysical principles are largely recapitulated even in the complex biological environment.
Collapse
Affiliation(s)
- Dagan C Marx
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, United States
| | - Karen G Fleming
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, United States.
| |
Collapse
|
14
|
General method to stabilize mesophilic proteins in hyperthermal water. iScience 2021; 24:102503. [PMID: 34113834 PMCID: PMC8169989 DOI: 10.1016/j.isci.2021.102503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
The stability of protein structures and biological functions at normal temperature is closely linked with the universal aqueous environment of organisms. Preserving bioactivities of proteins in hyperthermia water would expand their functional capabilities beyond those in native environments. However, only a limited number of proteins derived from hyperthermophiles are thermostable at elevated temperatures. Triggered by this, here we describe a general method to stabilize mesophilic proteins in hyperthermia water. The mesophilic proteins, protected by amphiphilic polymers with multiple binding sites, maintain their secondary and tertiary structures after incubation even in boiling water. This approach, outside the conventional environment for bioactivities of mesophilic proteins, provides a general strategy to dramatically increase the Tm (melting temperature) of mesophilic proteins without any changes to amino sequences of the native proteins. Current work offers a new insight with protein stability engineering for potential application, including vaccine storage and enzyme engineering. Preserving bioactivities of proteins in hyperthermia water is promising. Amphiphilic polymers could protect mesophilic proteins even in boiling water. Mesophilic proteins protected by amphiphilic polymers show dramatically increased Tm. The method offers application prospect for vaccine storage and enzyme engineering.
Collapse
|
15
|
Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2020083118. [PMID: 33753487 DOI: 10.1073/pnas.2020083118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR's G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule-derived ΔΔG for mutant L223A (-2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔG for mutant V217A was 2.2-fold larger (-2.4 ± 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217 and a natively bound squalene lipid, highlighting the contribution of membrane protein-lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔG for a fully folded membrane protein embedded in its native bilayer.
Collapse
|
16
|
Kulandaisamy A, Zaucha J, Frishman D, Gromiha MM. MPTherm-pred: Analysis and Prediction of Thermal Stability Changes upon Mutations in Transmembrane Proteins. J Mol Biol 2020; 433:166646. [PMID: 32920050 DOI: 10.1016/j.jmb.2020.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 01/06/2023]
Abstract
The stability of membrane proteins differs from globular proteins due to the presence of nonpolar membrane-spanning regions. Using a dataset of 929 membrane protein mutations whose effects on thermal stability (ΔTm) were experimentally determined, we found that the average ΔTm due to 190 stabilizing and 232 destabilizing mutations occurring in membrane-spanning regions are 2.43(3.1) °C and -5.48(5.5) °C, respectively. The ΔTm values for mutations occurring in solvent-exposed regions are 2.56(2.82) and - 6.8(7.2) °C. We have systematically analyzed the factors influencing the stability of mutants and observed that changes in hydrophobicity, number of contacts between Cα atoms and frequency of aliphatic residues are important determinants of the stability change induced by mutations occurring in membrane-spanning regions. We have developed structure- and sequence-based machine learning predictors of ΔTm due to mutations specifically for membrane proteins. They showed a correlation and mean absolute error (MAE) of 0.72 and 2.85 °C, respectively, between experimental and predicted ΔTm for mutations in membrane-spanning regions on 10-fold group-wise cross-validation. The average correlation and MAE for mutations in aqueous regions are 0.73 and 3.7 °C, respectively. These MAE values are about 50% lower than standard deviations from the mean ΔTm values. The reliability of the method was affirmed on a test set of mutations occurring in evolutionary independent protein sequences. The developed MPTherm-pred server for predicting thermal stability changes upon mutations in membrane proteins is available at https://web.iitm.ac.in/bioinfo2/mpthermpred/. Our results provide insights into factors influencing the stability of membrane proteins and can aid in designing mutants that are more resistant to thermal stress.
Collapse
Affiliation(s)
- A Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Jan Zaucha
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany; Department of Bioinformatics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India.
| |
Collapse
|
17
|
Yu H, Jacobson DR, Luo H, Perkins TT. Quantifying the Native Energetics Stabilizing Bacteriorhodopsin by Single-Molecule Force Spectroscopy. PHYSICAL REVIEW LETTERS 2020; 125:068102. [PMID: 32845671 DOI: 10.1103/physrevlett.125.068102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
We quantified the equilibrium (un)folding free energy ΔG_{0} of an eight-amino-acid region starting from the fully folded state of the model membrane-protein bacteriorhodopsin using single-molecule force spectroscopy. Analysis of equilibrium and nonequilibrium data yielded consistent, high-precision determinations of ΔG_{0} via multiple techniques (force-dependent kinetics, Crooks fluctuation theorem, and inverse Boltzmann analysis). We also deduced the full 1D projection of the free-energy landscape in this region. Importantly, ΔG_{0} was determined in bacteriorhodopsin's native bilayer, an advance over traditional results obtained by chemical denaturation in nonphysiological detergent micelles.
Collapse
Affiliation(s)
- Hao Yu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - David R Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Hao Luo
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
18
|
Jacobson DR, Uyetake L, Perkins TT. Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp. Biophys J 2019; 118:667-675. [PMID: 31882249 DOI: 10.1016/j.bpj.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/15/2023] Open
Abstract
Precise quantification of the energetics and interactions that stabilize membrane proteins in a lipid bilayer is a long-sought goal. Toward this end, atomic force microscopy has been used to unfold individual membrane proteins embedded in their native lipid bilayer, typically by retracting the cantilever at a constant velocity. Recently, unfolding intermediates separated by as few as two amino acids were detected using focused-ion-beam-modified ultrashort cantilevers. However, unambiguously discriminating between such closely spaced states remains challenging, in part because any individual unfolding trajectory only occupies a subset of the total number of intermediates. Moreover, structural assignment of these intermediates via worm-like-chain analysis is hindered by brief dwell times compounded with thermal and instrumental noise. To overcome these issues, we moved the cantilever in a sawtooth pattern of 6-12 nm, offset by 0.25-1 nm per cycle, generating a "zigzag" force ramp of alternating positive and negative loading rates. We applied this protocol to the model membrane protein bacteriorhodopsin (bR). In contrast to conventional studies that extract bR's photoactive retinal along with the first transmembrane helix, we unfolded bR in the presence of its retinal. To do so, we introduced a previously developed enzymatic-cleavage site between helices E and F and pulled from the top of the E helix using a site-specific, covalent attachment. The resulting zigzag unfolding trajectories occupied 40% more states per trajectory and occupied those states for longer times than traditional constant-velocity records. In total, we identified 31 intermediates during the unfolding of five helices of EF-cleaved bR. These included a previously reported, mechanically robust intermediate located between helices C and B that, with our enhanced resolution, is now shown to be two distinct states separated by three amino acids. Interestingly, another intermediate directly interacted with the retinal, an interaction confirmed by removing the retinal.
Collapse
Affiliation(s)
- David R Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado
| | - Lyle Uyetake
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
19
|
Bhaduri S, Zhang H, Erramilli S, Cramer WA. Structural and functional contributions of lipids to the stability and activity of the photosynthetic cytochrome b 6 f lipoprotein complex. J Biol Chem 2019; 294:17758-17767. [PMID: 31597701 DOI: 10.1074/jbc.ra119.009331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/08/2019] [Indexed: 11/06/2022] Open
Abstract
The photosynthetic cytochrome b 6 f complex, a homodimer containing eight distinct subunits and 26 transmembrane helices per monomer, catalyzes proton-coupled electron transfer across the thylakoid membrane. The 2.5-Å-resolution structure of the complex from the cyanobacterium Nostoc sp. revealed the presence of 23 lipid-binding sites per monomer. Although the crystal structure of the cytochrome b 6 f from a plant source has not yet been solved, the identities of the lipids present in a plant b 6 f complex have previously been determined, indicating that the predominant lipid species are monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), phosphatidylglycerol (PG), and sulfoquinovosyldiacylglycerol (SQDG). Despite the extensive structural analyses of b 6 f-lipid interactions, the basis of the stabilization by lipids remains poorly understood. In the present study, we report on the effect of individual lipids on the structural and functional integrity of the b 6 f complex, purified from Spinacea oleracea It was found that (i) galactolipids (MGDG, DGDG, and SQDG) and phospholipids dilinolenoyl-phosphatidylglycerol (DLPG), 1,2-dioleoylphosphatidylglycerol (DOPG), and 1,2-dioleoyl-sn-glycerol-3-phosphatidylcholine (DOPC) structurally stabilize the complex to varying degrees; (ii) SQDG has a major role in stabilizing the dimeric complex; (iii) the b 6 f complex is stabilized by incorporation into nanodiscs or bicelles; (iv) removal of bound phospholipid by phospholipase A2 inactivates the cytochrome complex; and (v) activity can be restored significantly by the addition of the anionic lipid PG, which is attributed to stabilization of the quinone portal and the hinge region of the iron-sulfur protein.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906
| | - Huamin Zhang
- SSCI, a Division of Albany Molecular Research Inc., West Lafayette, Indiana 47906
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois 60637
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906
| |
Collapse
|
20
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
21
|
Yang Y, Gunasekara M, Muhammednazaar S, Li Z, Hong H. Proteolysis mediated by the membrane-integrated ATP-dependent protease FtsH has a unique nonlinear dependence on ATP hydrolysis rates. Protein Sci 2019; 28:1262-1275. [PMID: 31008538 DOI: 10.1002/pro.3629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+) proteases utilize ATP hydrolysis to actively unfold native or misfolded proteins and translocate them into a protease chamber for degradation. This basic mechanism yields diverse cellular consequences, including the removal of misfolded proteins, control of regulatory circuits, and remodeling of protein conformation. Among various bacterial AAA+ proteases, FtsH is only membrane-integrated and plays a key role in membrane protein quality control. Previously, we have shown that FtsH has substantial unfoldase activity for degrading membrane proteins overcoming a dual energetic burden of substrate unfolding and membrane dislocation. Here, we asked how efficiently FtsH utilizes ATP hydrolysis to degrade membrane proteins. To answer this question, we measured degradation rates of the model membrane substrate GlpG at various ATP hydrolysis rates in the lipid bilayers. We find that the dependence of degradation rates on ATP hydrolysis rates is highly nonlinear: (i) FtsH cannot degrade GlpG until it reaches a threshold ATP hydrolysis rate; (ii) after exceeding the threshold, the degradation rates steeply increase and saturate at the ATP hydrolysis rates far below the maxima. During the steep increase, FtsH efficiently utilizes ATP hydrolysis for degradation, consuming only 40-60% of the total ATP cost measured at the maximal ATP hydrolysis rates. This behavior does not fundamentally change against water-soluble substrates as well as upon addition of the macromolecular crowding agent Ficoll 70. The Hill analysis shows that the nonlinearity stems from coupling of three to five ATP hydrolysis events to degradation, which represents unique cooperativity compared to other AAA+ proteases including ClpXP, HslUV, Lon, and proteasomes.
Collapse
Affiliation(s)
- Yiqing Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Mihiravi Gunasekara
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | | | - Zhen Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
22
|
Huang H, Ge B, Sun C, Zhang S, Huang F. Membrane curvature affects the stability and folding kinetics of bacteriorhodopsin. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Energy landscape underlying spontaneous insertion and folding of an alpha-helical transmembrane protein into a bilayer. Nat Commun 2018; 9:4949. [PMID: 30470737 PMCID: PMC6251876 DOI: 10.1038/s41467-018-07320-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022] Open
Abstract
Membrane protein folding mechanisms and rates are notoriously hard to determine. A recent force spectroscopy study of the folding of an α-helical membrane protein, GlpG, showed that the folded state has a very high kinetic stability and a relatively low thermodynamic stability. Here, we simulate the spontaneous insertion and folding of GlpG into a bilayer. An energy landscape analysis of the simulations suggests that GlpG folds via sequential insertion of helical hairpins. The rate-limiting step involves simultaneous insertion and folding of the final helical hairpin. The striking features of GlpG's experimentally measured landscape can therefore be explained by a partially inserted metastable state, which leads us to a reinterpretation of the rates measured by force spectroscopy. Our results are consistent with the helical hairpin hypothesis but call into question the two-stage model of membrane protein folding as a general description of folding mechanisms in the presence of bilayers.
Collapse
|
24
|
Lippens JL, Egea PF, Spahr C, Vaish A, Keener JE, Marty MT, Loo JA, Campuzano ID. Rapid LC-MS Method for Accurate Molecular Weight Determination of Membrane and Hydrophobic Proteins. Anal Chem 2018; 90:13616-13623. [PMID: 30335969 PMCID: PMC6580849 DOI: 10.1021/acs.analchem.8b03843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic target characterization involves many components, including accurate molecular weight (MW) determination. Knowledge of the accurate MW allows one to detect the presence of post-translational modifications, proteolytic cleavages, and importantly, if the correct construct has been generated and purified. Denaturing liquid chromatography-mass spectrometry (LC-MS) can be an attractive method for obtaining this information. However, membrane protein LC-MS methodology has remained relatively under-explored and under-incorporated in comparison to methods for soluble proteins. Here, systematic investigation of multiple gradients and column chemistries has led to the development of a 5 min denaturing LC-MS method for acquiring membrane protein accurate MW measurements. Conditions were interrogated with membrane proteins, such as GPCRs and ion channels, as well as bispecific antibody constructs of variable sizes with the aim to provide the community with rapid LC-MS methods necessary to obtain chromatographic and accurate MW measurements in a medium- to high-throughput manner. The 5 min method detailed has successfully produced MW measurements for hydrophobic proteins with a wide MW range (17.5 to 105.3 kDa) and provided evidence that some constructs indeed contain unexpected modifications or sequence clipping. This rapid LC-MS method is also capable of baseline separating formylated and nonformylated aquaporinZ membrane protein.
Collapse
Affiliation(s)
- Jennifer L. Lippens
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - Pascal F. Egea
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Chris Spahr
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - Amit Vaish
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Joseph A. Loo
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Iain D.G. Campuzano
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| |
Collapse
|
25
|
Gaffney KA, Hong H. The rhomboid protease GlpG has weak interaction energies in its active site hydrogen bond network. J Gen Physiol 2018; 151:282-291. [PMID: 30420443 PMCID: PMC6400518 DOI: 10.1085/jgp.201812047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023] Open
Abstract
Rhomboid proteases are membrane-integrated enzymes that hydrolyze peptide bonds in the transmembrane domains of protein substrates. Gaffney and Hong experimentally determine interaction energies between active site residues to reveal weak coupling, which may explain the slow proteolysis mediated by GlpG. Intramembrane rhomboid proteases are of particular interest because of their function to hydrolyze a peptide bond of a substrate buried in the membrane. Crystal structures of the bacterial rhomboid protease GlpG have revealed a catalytic dyad (Ser201-His254) and oxyanion hole (His150/Asn154/the backbone amide of Ser201) surrounded by the protein matrix and contacting a narrow water channel. Although multiple crystal structures have been solved, the catalytic mechanism of GlpG is not completely understood. Because it is a serine protease, hydrogen bonding interactions between the active site residues are thought to play a critical role in the catalytic cycle. Here, we dissect the interaction energies among the active site residues His254, Ser201, and Asn154 of Escherichia coli GlpG, which form a hydrogen bonding network. We combine double mutant cycle analysis with stability measurements using steric trapping. In mild detergent, the active site residues are weakly coupled with interaction energies (ΔΔGInter) of ‒1.4 kcal/mol between His254 and Ser201 and ‒0.2 kcal/mol between Ser201 and Asn154. Further, by analyzing the propagation of single mutations of the active site residues, we find that these residues are important not only for function but also for the folding cooperativity of GlpG. The weak interaction between Ser and His in the catalytic dyad may partly explain the unusually slow proteolysis by GlpG compared with other canonical serine proteases. Our result suggests that the weak hydrogen bonds in the active site are sufficient to carry out the proteolytic function of rhomboid proteases.
Collapse
Affiliation(s)
- Kristen A Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Heedeok Hong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI .,Department of Chemistry, Michigan State University, East Lansing, MI
| |
Collapse
|
26
|
Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, Baker D. Accurate computational design of multipass transmembrane proteins. Science 2018; 359:1042-1046. [PMID: 29496880 DOI: 10.1126/science.aaq1739] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
Abstract
The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions.
Collapse
Affiliation(s)
- Peilong Lu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles (UCLA), CA 90095, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Kathy Y Wei
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael D Vahey
- Department of Bioengineering and Biophysics Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Scott E Boyken
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jorge A Fallas
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Vikram Khipple Mulligan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles (UCLA), CA 90095, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. .,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Gaines JC, Acebes S, Virrueta A, Butler M, Regan L, O'Hern CS. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins. Proteins 2018; 86:581-591. [PMID: 29427530 PMCID: PMC5912992 DOI: 10.1002/prot.25479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 12/26/2022]
Abstract
We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins.
Collapse
Affiliation(s)
- J C Gaines
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
| | - S Acebes
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520
| | - A Virrueta
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520
| | - M Butler
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90007
| | - L Regan
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, 06520
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520
| | - C S O'Hern
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520
- Integrated Graduate Program in Physical and Engineering Biology (IGPPEB), Yale University, New Haven, Connecticut, 06520
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520
- Department of Physics, Yale University, New Haven, Connecticut, 06520
- Department of Applied Physics, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
28
|
Gruenhagen TC, Ziarek JJ, Schlebach JP. Bicelle size modulates the rate of bacteriorhodopsin folding. Protein Sci 2018; 27:1109-1112. [PMID: 29604129 DOI: 10.1002/pro.3414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/09/2022]
Abstract
The conformational equilibria of integral membrane proteins have proven extremely difficult to characterize within native lipid bilayers. To circumvent technical issues, investigations of the structure and stability of α-helical membrane proteins are often carried out in mixed micelle or bicelle solvents that mimic the membrane and facilitate measurements of reversible folding. Under these conditions, the energetics of membrane protein folding are typically proportional to the mole fraction of an anionic detergent in the micelle. However, investigations of the folding and unfolding of bacteriorhodopsin (bR) surprisingly revealed that the folding rate is also highly sensitive to the bulk molar concentration of lipids and detergents. We show here that this rate enhancement coincides with changes in bicelle size and suggest this effect arises through restriction of the conformational search space during folding. In conjunction with previous mutagenic studies, these results provide additional evidence that a topological search limits the rate of bR folding. Furthermore, this finding provides insights into the manner by which micellar and bicellar environments influence the conformational stability of polytopic membrane proteins.
Collapse
Affiliation(s)
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, 47405-7102
| | | |
Collapse
|
29
|
Lipid bilayer composition modulates the unfolding free energy of a knotted α-helical membrane protein. Proc Natl Acad Sci U S A 2018; 115:E1799-E1808. [PMID: 29432185 DOI: 10.1073/pnas.1714668115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
α-Helical membrane proteins have eluded investigation of their thermodynamic stability in lipid bilayers. Reversible denaturation curves have enabled some headway in determining unfolding free energies. However, these parameters have been limited to detergent micelles or lipid bicelles, which do not possess the same mechanical properties as lipid bilayers that comprise the basis of natural membranes. We establish reversible unfolding of the membrane transporter LeuT in lipid bilayers, enabling the comparison of apparent unfolding free energies in different lipid compositions. LeuT is a bacterial ortholog of neurotransmitter transporters and contains a knot within its 12-transmembrane helical structure. Urea is used as a denaturant for LeuT in proteoliposomes, resulting in the loss of up to 30% helical structure depending upon the lipid bilayer composition. Urea unfolding of LeuT in liposomes is reversible, with refolding in the bilayer recovering the original helical structure and transport activity. A linear dependence of the unfolding free energy on urea concentration enables the free energy to be extrapolated to zero denaturant. Increasing lipid headgroup charge or chain lateral pressure increases the thermodynamic stability of LeuT. The mechanical and charge properties of the bilayer also affect the ability of urea to denature the protein. Thus, we not only gain insight to the long-sought-after thermodynamic stability of an α-helical protein in a lipid bilayer but also provide a basis for studies of the folding of knotted proteins in a membrane environment.
Collapse
|
30
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 590] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
31
|
Lippens JL, Nshanian M, Spahr C, Egea PF, Loo JA, Campuzano IDG. Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:183-193. [PMID: 28971338 PMCID: PMC5786498 DOI: 10.1007/s13361-017-1799-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 05/18/2023]
Abstract
Membrane protein characterization is consistently hampered by challenges with expression, purification, and solubilization. Among several biophysical techniques employed for their characterization, native-mass spectrometry (MS) has emerged as a powerful tool for the analysis of membrane proteins and complexes. Here, two MS platforms, the FT-ICR and Q-ToF, have been explored to analyze the homotetrameric water channel protein, AquaporinZ (AqpZ), under non-denaturing conditions. This 97 kDa membrane protein complex can be readily liberated from the octylglucoside (OG) detergent micelle under a range of instrument conditions on both MS platforms. Increasing the applied collision energy of the FT-ICR collision cell yielded varying degrees of tetramer (97 kDa) liberation from the OG micelles, as well as dissociation into the trimeric (72 kDa) and monomeric (24 kDa) substituents. Tandem-MS on the Q-ToF yielded higher intensity tetramer signal and, depending on the m/z region selected, the observed monomer signal varied in intensity. Precursor ion selection of an m/z range above the expected protein signal distribution, followed by mild collisional activation, is able to efficiently liberate AqpZ with a high S/N ratio. The tetrameric charge state distribution obtained on both instruments demonstrated superpositioning of multiple proteoforms due to varying degrees of N-terminal formylation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Chris Spahr
- Discovery Attribute Sciences, Amgen, Thousand Oaks, CA, 91320, USA
| | - Pascal F Egea
- Department of Biological Chemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
32
|
Tan J, Zhang B, Luo Y, Ye S. Ultrafast Vibrational Dynamics of Membrane-Bound Peptides at the Lipid Bilayer/Water Interface. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Baixiong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale; Synergetic Innovation Center of Quantum Information & Quantum Physics; University of Science and Technology of China; Hefei Anhui 230026 P. R. China
| |
Collapse
|
33
|
Tan J, Zhang B, Luo Y, Ye S. Ultrafast Vibrational Dynamics of Membrane-Bound Peptides at the Lipid Bilayer/Water Interface. Angew Chem Int Ed Engl 2017; 56:12977-12981. [PMID: 28869714 DOI: 10.1002/anie.201706996] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/22/2017] [Indexed: 11/06/2022]
Abstract
Vibrational energy transfer (VET) of proteins at cell membrane plays critical roles in controlling the protein functionalities, but its detection is very challenging. By using a surface-sensitive femtosecond time-resolved sum-frequency generation vibrational spectroscopy with infrared pump, the detection of the ultrafast VET in proteins at cell membrane has finally become possible. The vibrational relaxation time of the N-H groups is determined to be 1.70(±0.05) ps for the α-helix located in the hydrophobic core of the lipid bilayer and 0.9(±0.05) ps for the membrane-bound β-sheet structure. The N-H groups with strong hydrogen bonding gain faster relaxation time. By pumping the amide A band and probing amide I band, the vibrational relaxation from N-H mode to C=O mode through two pathways (direct coupling and through intermediate states) is revealed. The ratio of the pathways depends on the NH⋅⋅⋅O=C hydrogen-bonding strength. Strong hydrogen bonding favors the coupling through intermediate states.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Baixiong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
34
|
Jefferson RE, Min D, Corin K, Wang JY, Bowie JU. Applications of Single-Molecule Methods to Membrane Protein Folding Studies. J Mol Biol 2017; 430:424-437. [PMID: 28549924 DOI: 10.1016/j.jmb.2017.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Protein folding is a fundamental life process with many implications throughout biology and medicine. Consequently, there have been enormous efforts to understand how proteins fold. Almost all of this effort has focused on water-soluble proteins, however, leaving membrane proteins largely wandering in the wilderness. The neglect has occurred not because membrane proteins are unimportant but rather because they present many theoretical and technical complications. Indeed, quantitative membrane protein folding studies are generally restricted to a handful of well-behaved proteins. Single-molecule methods may greatly alter this picture, however, because the ability to work at or near infinite dilution removes aggregation problems, one of the main technical challenges of membrane protein folding studies.
Collapse
Affiliation(s)
- Robert E Jefferson
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Karolina Corin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Jing Yang Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
35
|
Guo R, Gaffney K, Yang Z, Kim M, Sungsuwan S, Huang X, Hubbell WL, Hong H. Steric trapping reveals a cooperativity network in the intramembrane protease GlpG. Nat Chem Biol 2016; 12:353-360. [PMID: 26999782 PMCID: PMC4837050 DOI: 10.1038/nchembio.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
Membrane proteins are assembled through balanced interactions among protein, lipids and water. Studying their folding while maintaining the native lipid environment is necessary but challenging. Here we present methods for analyzing key elements in membrane protein folding including thermodynamic stability, compactness of the unfolded state and folding cooperativity under native conditions. The methods are based on steric trapping which couples unfolding of a doubly-biotinylated protein to binding of monovalent streptavidin (mSA). We further advanced this technology for general application by developing versatile biotin probes possessing spectroscopic reporters that are sensitized by mSA binding or protein unfolding. By applying these methods to an intramembrane protease GlpG of Escherichia coli, we elucidated a widely unraveled unfolded state, subglobal unfolding of the region encompassing the active site, and a network of cooperative and localized interactions to maintain the stability. These findings provide crucial insights into the folding energy landscape of membrane proteins.
Collapse
Affiliation(s)
- Ruiqiong Guo
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kristen Gaffney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Miyeon Kim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Suttipun Sungsuwan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
Vestergaard M, Kraft JF, Vosegaard T, Thøgersen L, Schiøtt B. Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations. J Phys Chem B 2015; 119:15831-43. [PMID: 26610232 DOI: 10.1021/acs.jpcb.5b08463] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increased interest in studying membrane proteins has led to the development of new membrane mimics such as bicelles and nanodiscs. However, only limited knowledge is available of how these membrane mimics are affected by embedded proteins and how well they mimic a lipid bilayer. Herein, we present molecular dynamics simulations to elucidate structural and dynamic properties of small bicelles and compare them to a large alignable bicelle, a small nanodisc, and a lipid bilayer. Properties such as lipid packing and properties related to embedding both an α-helical peptide and a transmembrane protein are investigated. The small bicelles are found to be very dynamic and mainly assume a prolate shape substantiating that small bicelles cannot be regarded as well-defined disclike structures. However, addition of a peptide results in an increased tendency to form disc-shaped bicelles. The small bicelles and the nanodiscs show increased peptide solvation and difference in peptide orientation compared to embedding in a bilayer. The large bicelle imitated a bilayer well with respect to both curvature and peptide solvation, although peripheral binding of short tailed lipids to the embedded proteins is observed, which could hinder ligand binding or multimer formation.
Collapse
Affiliation(s)
- Mikkel Vestergaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Johan F Kraft
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Danish Center for Ultrahigh-Field NMR Spectroscopy and Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Lea Thøgersen
- Center for Membrane Pumps in Cells and Disease (PUMPKIN), Bioinformatics Research Centre, Aarhus University , C.F. Møllers Alle 8, DK-8000 Aarhus C, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Vorobyov I, Kim I, Chu ZT, Warshel A. Refining the treatment of membrane proteins by coarse-grained models. Proteins 2015; 84:92-117. [PMID: 26531155 DOI: 10.1002/prot.24958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023]
Abstract
Obtaining a quantitative description of the membrane proteins stability is crucial for understanding many biological processes. However the advance in this direction has remained a major challenge for both experimental studies and molecular modeling. One of the possible directions is the use of coarse-grained models but such models must be carefully calibrated and validated. Here we use a recent progress in benchmark studies on the energetics of amino acid residue and peptide membrane insertion and membrane protein stability in refining our previously developed coarse-grained model (Vicatos et al., Proteins 2014;82:1168). Our refined model parameters were fitted and/or tested to reproduce water/membrane partitioning energetics of amino acid side chains and a couple of model peptides. This new model provides a reasonable agreement with experiment for absolute folding free energies of several β-barrel membrane proteins as well as effects of point mutations on a relative stability for one of those proteins, OmpLA. The consideration and ranking of different rotameric states for a mutated residue was found to be essential to achieve satisfactory agreement with the reference data.
Collapse
Affiliation(s)
- Igor Vorobyov
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Ilsoo Kim
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Zhen T Chu
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062
| |
Collapse
|
38
|
Chi H, Wang X, Li J, Ren H, Huang F. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES. Sci Rep 2015; 5:17037. [PMID: 26585937 PMCID: PMC4653635 DOI: 10.1038/srep17037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/23/2015] [Indexed: 01/20/2023] Open
Abstract
The in vitro folding of newly translated human CC chemokine receptor type 5
(CCR5), which belongs to the physiologically important family of G protein-coupled
receptors (GPCRs), has been studied in a cell-free system supplemented with the
surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its
biologically active state but only slowly and inefficiently. However, on addition of
the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was
significantly enhanced, as was the structural stability and functional expression of
the soluble form of CCR5. The chaperonin GroEL was partially effective on its own,
but for maximum efficiency both the GroEL and its GroES lid were necessary. These
results are direct evidence for chaperone-assisted membrane protein folding and
therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane
proteins.
Collapse
Affiliation(s)
- Haixia Chi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
39
|
Min D, Jefferson RE, Bowie JU, Yoon TY. Mapping the energy landscape for second-stage folding of a single membrane protein. Nat Chem Biol 2015; 11:981-7. [PMID: 26479439 DOI: 10.1038/nchembio.1939] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
Abstract
Membrane proteins are designed to fold and function in a lipid membrane, yet folding experiments within a native membrane environment are challenging to design. Here we show that single-molecule forced unfolding experiments can be adapted to study helical membrane protein folding under native-like bicelle conditions. Applying force using magnetic tweezers, we find that a transmembrane helix protein, Escherichia coli rhomboid protease GlpG, unfolds in a highly cooperative manner, largely unraveling as one physical unit in response to mechanical tension above 25 pN. Considerable hysteresis is observed, with refolding occurring only at forces below 5 pN. Characterizing the energy landscape reveals only modest thermodynamic stability (ΔG = 6.5 kBT) but a large unfolding barrier (21.3 kBT) that can maintain the protein in a folded state for long periods of time (t1/2 ∼3.5 h). The observed energy landscape may have evolved to limit the existence of troublesome partially unfolded states and impart rigidity to the structure.
Collapse
Affiliation(s)
- Duyoung Min
- National Creative Research Initiative Center for Single-Molecule Systems Biology, KAIST, Daejeon, South Korea.,Department of Physics, KAIST, Daejeon, South Korea
| | - Robert E Jefferson
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Tae-Young Yoon
- National Creative Research Initiative Center for Single-Molecule Systems Biology, KAIST, Daejeon, South Korea.,Department of Physics, KAIST, Daejeon, South Korea
| |
Collapse
|
40
|
Nadeau VG, Gao A, Deber CM. Design and characterization of a membrane protein unfolding platform in lipid bilayers. PLoS One 2015; 10:e0120253. [PMID: 25799099 PMCID: PMC4370600 DOI: 10.1371/journal.pone.0120253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/20/2015] [Indexed: 11/29/2022] Open
Abstract
Accurate measurement of membrane protein stability—and particularly how it may vary as a result of disease-phenotypic mutations—ideally requires a denaturant that can unfold a membrane-embedded structure while leaving the solubilizing environment unaffected. The steric trap method fulfills this requirement by using monovalent streptavidin (mSA) molecules to unfold membrane proteins engineered with two spatially close biotin tags. Here we adapted this method to an 87-residue helix-loop-helix (hairpin) construct derived from helices 3 and 4 in the transmembrane domain of the human cystic fibrosis transmembrane conductance regulator (CFTR), wherein helix-helix tertiary interactions are anticipated to confer a portion of construct stability. The wild type CFTR TM3/4 hairpin construct was modified with two accessible biotin tags for mSA-induced unfolding, along with two helix-terminal pyrene labels to monitor loss of inter-helical contacts by pyrene excimer fluorescence. A series of eight constructs with biotin tags at varying distances from the helix-terminal pyrene labels were expressed, purified and labeled appropriately; all constructs exhibited largely helical circular dichroism spectra. We found that addition of mSA to an optimized construct in lipid vesicles led to a complete and reversible loss in pyrene excimer fluorescence and mSA binding, and hence hairpin unfolding—results further supported by SDS-PAGE visualization of mSA bound and unbound species. While some dimeric/oligomeric populations persist that may affect quantitation of the unfolding step, our characterization of the design yields a promising prototype of a future platform for the systematic study of membrane protein folding in a lipid bilayer environment.
Collapse
Affiliation(s)
- Vincent G. Nadeau
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Anqi Gao
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Charles M. Deber
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- * E-mail:
| |
Collapse
|
41
|
Hong H. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:1-31. [DOI: 10.1007/978-3-319-17344-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Toward understanding driving forces in membrane protein folding. Arch Biochem Biophys 2014; 564:297-313. [DOI: 10.1016/j.abb.2014.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
|
43
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
44
|
Schlebach J, Woodall N, Bowie JU, Park C. Bacteriorhodopsin folds through a poorly organized transition state. J Am Chem Soc 2014; 136:16574-81. [PMID: 25369295 PMCID: PMC4277764 DOI: 10.1021/ja508359n] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Indexed: 11/30/2022]
Abstract
The folding mechanisms of helical membrane proteins remain largely uncharted. Here we characterize the kinetics of bacteriorhodopsin folding and employ φ-value analysis to explore the folding transition state. First, we developed and confirmed a kinetic model that allowed us to assess the rate of folding from SDS-denatured bacteriorhodopsin (bRU) and provides accurate thermodynamic information even under influence of retinal hydrolysis. Next, we obtained reliable φ-values for 16 mutants of bacteriorhodopsin with good coverage across the protein. Every φ-value was less than 0.4, indicating the transition state is not uniquely structured. We suggest that the transition state is a loosely organized ensemble of conformations.
Collapse
Affiliation(s)
- Jonathan
P. Schlebach
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575
Stadium Mall Drive, West Lafayette, Indiana 47907, United
States
- Interdisciplinary
Life Science Graduate Program, Purdue University, 155 South Grant Street, West Lafayette, Indiana 47907, United States
| | - Nicholas
B. Woodall
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - James U. Bowie
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Box 951569, Los Angeles, California 90095-1569, United States
| | - Chiwook Park
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575
Stadium Mall Drive, West Lafayette, Indiana 47907, United
States
- Interdisciplinary
Life Science Graduate Program, Purdue University, 155 South Grant Street, West Lafayette, Indiana 47907, United States
- Bindley
Bioscience Center, Purdue University, 1203 West State Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
45
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
46
|
Cymer F, von Heijne G, White SH. Mechanisms of integral membrane protein insertion and folding. J Mol Biol 2014; 427:999-1022. [PMID: 25277655 DOI: 10.1016/j.jmb.2014.09.014] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
The biogenesis, folding, and structure of α-helical membrane proteins (MPs) are important to understand because they underlie virtually all physiological processes in cells including key metabolic pathways, such as the respiratory chain and the photosystems, as well as the transport of solutes and signals across membranes. Nearly all MPs require translocons--often referred to as protein-conducting channels--for proper insertion into their target membrane. Remarkable progress toward understanding the structure and functioning of translocons has been made during the past decade. Here, we review and assess this progress critically. All available evidence indicates that MPs are equilibrium structures that achieve their final structural states by folding along thermodynamically controlled pathways. The main challenge for cells is the targeting and membrane insertion of highly hydrophobic amino acid sequences. Targeting and insertion are managed in cells principally by interactions between ribosomes and membrane-embedded translocons. Our review examines the biophysical and biological boundaries of MP insertion and the folding of polytopic MPs in vivo. A theme of the review is the under-appreciated role of basic thermodynamic principles in MP folding and assembly. Thermodynamics not only dictates the final folded structure but also is the driving force for the evolution of the ribosome-translocon system of assembly. We conclude the review with a perspective suggesting a new view of translocon-guided MP insertion.
Collapse
Affiliation(s)
- Florian Cymer
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm.,Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems University of California, Irvine Irvine, CA 92697
| |
Collapse
|
47
|
Khadria AS, Mueller BK, Stefely JA, Tan CH, Pagliarini DJ, Senes A. A Gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3. J Am Chem Soc 2014; 136:14068-77. [PMID: 25216398 PMCID: PMC4195374 DOI: 10.1021/ja505017f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions between α-helices within the hydrophobic environment of lipid bilayers are integral to the folding and function of transmembrane proteins; however, the major forces that mediate these interactions remain debated, and our ability to predict these interactions is still largely untested. We recently demonstrated that the frequent transmembrane association motif GASright, the GxxxG-containing fold of the glycophorin A dimer, is optimal for the formation of extended networks of Cα-H hydrogen bonds, supporting the hypothesis that these bonds are major contributors to association. We also found that optimization of Cα-H hydrogen bonding and interhelical packing is sufficient to computationally predict the structure of known GASright dimers at near atomic level. Here, we demonstrate that this computational method can be used to characterize the structure of a protein not previously known to dimerize, by predicting and validating the transmembrane dimer of ADCK3, a mitochondrial kinase. ADCK3 is involved in the biosynthesis of the redox active lipid, ubiquinone, and human ADCK3 mutations cause a cerebellar ataxia associated with ubiquinone deficiency, but the biochemical functions of ADCK3 remain largely undefined. Our experimental analyses show that the transmembrane helix of ADCK3 oligomerizes, with an interface based on an extended Gly-zipper motif, as predicted by our models. The data provide strong evidence for the hypothesis that optimization of Cα-H hydrogen bonding is an important factor in the association of transmembrane helices. This work also provides a structural foundation for investigating the role of transmembrane association in regulating the biological activity of ADCK3.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
48
|
Hausrath AC. Model for coupled insertion and folding of membrane-spanning proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022707. [PMID: 25215758 DOI: 10.1103/physreve.90.022707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Current understanding of the forces directing the folding of integral membrane proteins is very limited compared to the detailed picture available for water-soluble proteins. While mechanistic studies of the folding process in vitro have been conducted for only a small number of membrane proteins, the available evidence indicates that their folding process is thermodynamically driven like that of soluble proteins. In vivo, however, the majority of integral membrane proteins are installed in membranes by dedicated machinery, suggesting that the cellular systems may act to facilitate and regulate the spontaneous physical process of folding. Both the in vitro folding process and the in vivo pathway must navigate an energy landscape dominated by the energetically favorable burial of hydrophobic segments in the membrane interior and the opposition to folding due to the need for passage of polar segments across the membrane. This manuscript describes a simple, exactly solvable model which incorporates these essential features of membrane protein folding. The model is used to compare the folding time under conditions which depict both the in vitro and in vivo pathways. It is proposed that the cellular complexes responsible for insertion of membrane proteins act by lowering the energy barrier for passage of polar regions through the membrane, thereby allowing the chain to more rapidly achieve the folded state.
Collapse
Affiliation(s)
- Andrew C Hausrath
- Department of Chemistry and Biochemistry and Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|