1
|
Heckle LA, Kozminski KG. Osh-dependent and -independent Regulation of PI4P Levels During Polarized Growth of Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar104. [PMID: 37556206 PMCID: PMC10559303 DOI: 10.1091/mbc.e23-03-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Polarized secretion facilitates polarized cell growth. For a secretory vesicle to dock at the plasma membrane, it must mature with a progressive association or dissociation of molecules that are, respectively, necessary for or inhibitory to vesicle docking, including an exchange of Rab GTPases. In current models, oxysterol-binding protein homologue 4 (Osh4p) establishes a phosphatidylinositol 4-phosphate (PI4P) gradient along the secretory trafficking pathway such that vesicles have higher PI4P levels after budding from the trans-Golgi relative to when vesicles arrive at the plasma membrane. In this study, using the lipid-binding domain P4M and live-cell imaging, we show that secretory vesicle-associated PI4P levels remain constant when vesicles traffic from the trans-Golgi to the plasma membrane. We also show that deletion of OSH4 does not alter vesicle-associated PI4P levels, though loss of any individual member of the OSH family or complete loss of OSH family function alters the intracellular distribution of PI4P. We propose a model in which the Rab GTPases Ypt32p and Sec4p remain associated with a secretory vesicle during trafficking, independent of PI4P levels and Osh4p. Together these data indicate the necessity of experiments revealing the location and timing of events required for vesicle maturation.
Collapse
Affiliation(s)
- Lindsay A. Heckle
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Keith G. Kozminski
- Department of Biology, University of Virginia, Charlottesville, VA 22904
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
2
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. Mol Biol Cell 2023; 34:ar38. [PMID: 36857153 PMCID: PMC10162416 DOI: 10.1091/mbc.e23-01-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport. To explore this possibility, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab Ypt51. The Sec2GEF-GFP-CUE construct localized to bright puncta predominantly near sites of polarized growth, and this localization was dependent on the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with various efficiencies. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near-normal efficiency, implying that Golgi-derived secretory vesicles were delivered to polarized sites of cell growth despite the misdirection of Sec4 and its effectors. A low efficiency mechanism for localization of Sec2 to secretory vesicles that is independent of known cues might be responsible. In total, the results suggest that while Rabs may play a critical role in specifying the direction of vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Eric Griffis
- Nikon Imaging Center, University of California, San Diego, La Jolla, CA 92093-0694
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| |
Collapse
|
3
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527811. [PMID: 36798320 PMCID: PMC9934678 DOI: 10.1101/2023.02.09.527811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport because anterograde vesicles are marked with a different Rab than retrograde vesicles. To explore this proposal, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab, Ypt51. The Sec2GEF-GFP-CUE construct was found to localize to bright puncta predominantly near sites of polarized growth and this localization was strongly dependent upon the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with varying efficiency. The puncta appeared to consist of clusters of 80 nm vesicles and although the puncta are largely static, FRAP analysis suggests that traffic into and out of these clusters continues. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near normal efficiency, implying that Golgi derived secretory vesicles were delivered to polarized sites of cell growth, where they tethered and fused with the plasma membrane despite the misdirection of Sec4 and its effectors. In total, the results suggest that while Rabs play a critical role in regulating vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Eric Griffis
- Nikon Imaging Center, University of California at San Diego, La Jolla, California, United States
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| |
Collapse
|
4
|
El-Sayed ASA, Rady AM, Mohamed HT, Zein N, Yassin MA, Mohamed NZ, Hassan A, Amer MM, El-Sharakawy R, El-Sharkawy AA, El-Sayed N, Ali MG. Aspergillus Niger thermostable Cytosine deaminase-dextran conjugates with enhanced structure stability, proteolytic resistance, and Antiproliferative activity. BMC Microbiol 2023; 23:9. [PMID: 36627557 PMCID: PMC9830863 DOI: 10.1186/s12866-023-02754-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Cytosine deaminase (CDA) is a prodrug mediating enzyme converting 5-flurocytosine into 5-flurouracil with profound broad-range anticancer activity towards various cell lines. Availability, molecular stability, and catalytic efficiency are the main limiting factors halting the clinical applications of this enzyme on prodrug and gene therapies, thus, screening for CDA with unique biochemical and catalytic properties was the objective. Thermotolerant/ thermophilic fungi could be a distinctive repertoire for enzymes with affordable stability and catalytic efficiency. Among the recovered thermotolerant isolates, Aspergillus niger with optimal growth at 45 °C had the highest CDA productivity. The enzyme was purified, with purification 15.4 folds, molecular mass 48 kDa and 98 kDa, under denaturing and native PAGE, respectively. The purified CDA was covalently conjugated with dextran with the highest immobilization yield of 75%. The free and CDA-dextran conjugates have the same optimum pH 7.4, reaction temperature 37 °C, and pI 4.5, and similar response to the inhibitors and amino acids suicide analogues, ensuring the lack of effect of dextran conjugation on the CDA conformational structure. CDA-Dextran conjugates had more resistance to proteolysis in response to proteinase K and trypsin by 2.9 and 1.5 folds, respectively. CDA-Dextran conjugates displayed a dramatic structural and thermal stability than the free enzyme, authenticating the acquired structural and catalytic stability upon dextran conjugation. The thermal stability of CDA was increased by about 1.5 folds, upon dextran conjugation, as revealed from the half-life time (T1/2). The affinity of CDA-conjugates (Km 0.15 mM) and free CDA (Km 0.22 mM) to deaminate 5-fluorocytosine was increased by 1.5 folds. Upon dextran conjugation, the antiproliferative activity of the CDA towards the different cell lines "MDA-MB, HepG-2, and PC-3" was significantly increased by mediating the prodrug 5-FC. The CDA-dextran conjugates strongly reduce the tumor size and weight of the Ehrlich cells (EAC), dramatically increase the titers of Caspase-independent apoptotic markers PARP-1 and AIF, with no cellular cytotoxic activity, as revealed from the hematological and biochemical parameters.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Amgad M. Rady
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt ,grid.442760.30000 0004 0377 4079Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, 12451 Egypt
| | - Hossam Taha Mohamed
- grid.442760.30000 0004 0377 4079Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, 12451 Egypt ,grid.7776.10000 0004 0639 9286Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Nabila Zein
- grid.31451.320000 0001 2158 2757Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Marwa A. Yassin
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Nabil Z. Mohamed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Abdallah Hassan
- grid.31451.320000 0001 2158 2757Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Mahmoud M. Amer
- grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| | - Reyad El-Sharakawy
- grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| | - Aya Ali El-Sharkawy
- grid.7776.10000 0004 0639 9286Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Nesma El-Sayed
- grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| | - Mostafa G. Ali
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt ,grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| |
Collapse
|
5
|
Gingras RM, Sulpizio AM, Park J, Bretscher A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. eLife 2022; 11:e78750. [PMID: 36331188 PMCID: PMC9671497 DOI: 10.7554/elife.78750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most of the components in the yeast secretory pathway have been studied, yet a high-resolution temporal timeline of their participation is lacking. Here, we define the order of acquisition, lifetime, and release of critical components involved in late secretion from the Golgi to the plasma membrane. Of particular interest is the timing of the many reported effectors of the secretory vesicle Rab protein Sec4, including the myosin-V Myo2, the exocyst complex, the lgl homolog Sro7, and the small yeast-specific protein Mso1. At the trans-Golgi network (TGN) Sec4's GEF, Sec2, is recruited to Ypt31-positive compartments, quickly followed by Sec4 and Myo2 and vesicle formation. While transported to the bud tip, the entire exocyst complex, including Sec3, is assembled on to the vesicle. Before fusion, vesicles tether for 5 s, during which the vesicle retains the exocyst complex and stimulates lateral recruitment of Rho3 on the plasma membrane. Sec2 and Myo2 are rapidly lost, followed by recruitment of cytosolic Sro7, and finally the SM protein Sec1, which appears for just 2 s prior to fusion. Perturbation experiments reveal an ordered and robust series of events during tethering that provide insights into the function of Sec4 and effector exchange.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Abigail M Sulpizio
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Joelle Park
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
6
|
Batystová K, Synek L, Klejchová M, Janková Drdová E, Sabol P, Potocký M, Žárský V, Hála M. Diversification of SEC15a and SEC15b isoforms of an exocyst subunit in seed plants is manifested in their specific roles in Arabidopsis sporophyte and male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1382-1396. [PMID: 35306706 DOI: 10.1111/tpj.15744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The exocyst complex is an octameric evolutionarily conserved tethering complex engaged in the regulation of polarized secretion in eukaryotic cells. Here, we focus on the systematic comparison of two isoforms of the SEC15 exocyst subunit, SEC15a and SEC15b. We infer that SEC15 gene duplication and diversification occurred in the common ancestor of seed plants (Spermatophytes). In Arabidopsis, SEC15a represents the main SEC15 isoform in the male gametophyte, and localizes to the pollen tube tip at the plasma membrane. Although pollen tubes of sec15a mutants are impaired, sporophytes show no phenotypic deviations. Conversely, SEC15b is the dominant isoform in the sporophyte and localizes to the plasma membrane in root and leaf cells. Loss-of-function sec15b mutants exhibit retarded elongation of hypocotyls and root hairs, a loss of apical dominance, dwarfed plant stature and reduced seed coat mucilage formation. Surprisingly, the sec15b mutants also exhibit compromised pollen tube elongation in vitro, despite its very low expression in pollen, suggesting a non-redundant role for the SEC15b isoform there. In pollen tubes, SEC15b localizes to distinct cytoplasmic structures. Reciprocally to this, SEC15a also functions in the sporophyte, where it accumulates at plasmodesmata. Importantly, although overexpressed SEC15a could fully complement the sec15b phenotypic deviations in the sporophyte, the pollen-specific overexpression of SEC15b was unable to fully compensate for the loss of SEC15a function in pollen. We conclude that the SEC15a and SEC15b isoforms evolved in seed plants, with SEC15a functioning mostly in pollen and SEC15b functioning mostly in the sporophyte.
Collapse
Affiliation(s)
- Klára Batystová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Martina Klejchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Edita Janková Drdová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| |
Collapse
|
7
|
Borchers AC, Langemeyer L, Ungermann C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol 2021; 220:212549. [PMID: 34383013 PMCID: PMC8366711 DOI: 10.1083/jcb.202105120] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.
Collapse
Affiliation(s)
- Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
8
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
9
|
Abstract
Small GTPases are organizers of a plethora of cellular processes. The time and place of their activation are tightly controlled by the localization and activation of their regulators, guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Remarkably, in some systems, the upstream regulators of GTPases are also found downstream of their activity. Resulting feedback loops can generate complex spatiotemporal dynamics of GTPases with important functional consequences. Here we discuss the concept of positive autoregulation of small GTPases by the GEF-effector feedback modules and survey recent developments in this exciting area of cell biology.
Collapse
Affiliation(s)
- Andrew B. Goryachev
- Centre for Synthetic and Systems Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
10
|
El-Sayed ASA, Mohamed NZ, Safan S, Yassin MA, Shaban L, Shindia AA, Shad Ali G, Sitohy MZ. Restoring the Taxol biosynthetic machinery of Aspergillus terreus by Podocarpus gracilior Pilger microbiome, with retrieving the ribosome biogenesis proteins of WD40 superfamily. Sci Rep 2019; 9:11534. [PMID: 31395904 PMCID: PMC6687737 DOI: 10.1038/s41598-019-47816-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Attenuating the Taxol yield of Aspergillus terreus with the subculturing and storage were the technical challenges that prevent this fungus to be a novel platform for industrial Taxol production. Thus, the objective of this study was to unravel the metabolic machineries of A. terreus associated with attenuation of Taxol productivity, and their restoring potency upon cocultivation with the Podocarpus gracilior microbiome. The Taxol yield of A. terreus was drastically reduced with the fungal subculturing. At the 10th subculture, the yield of Taxol was reduced by four folds (78.2 µg/l) comparing to the original culture (268 µg/l), as authenticated from silencing of molecular expression of the Taxol-rate limiting enzymes (GGPPS, TDS, DBAT and BAPT) by qPCR analyses. The visual fading of A. terreus conidial pigmentation with the subculturing, revealing the biosynthetic correlation of melanin and Taxol. The level of intracellular acetyl-CoA influx was reduced sequentially with the fungal subculturing, rationalizing the decreasing on Taxol and melanin yields. Fascinatingly, the Taxol biosynthetic machinery and cellular acetyl-CoA of A. terreus have been completely restored upon addition of 3% surface sterilized leaves of P. gracilior, suggesting the implantation of plant microbiome on re-triggering the molecular machinery of Taxol biosynthesis, their transcriptional factors, and/or increasing the influx of Acetyl-CoA. The expression of the proteins of 74.4, 68.2, 37.1 kDa were exponentially suppressed with A. terreus subculturing, and strongly restored upon addition of P. gracilior leaves, ensuring their profoundly correlation with the molecular expression of Taxol biosynthetic genes. From the proteomic analysis, the restored proteins 74.4 kDa of A. terreus upon addition of P. gracilior leaves were annotated as ribosome biogenesis proteins YTM and microtubule-assembly proteins that belong to WD40 superfamily. Thus, further ongoing studies for molecular cloning and expression of these genes with strong promotors in A. terreus, have been initiated, to construct a novel platform of metabolically stable A. terreus for sustainable Taxol production. Attenuating the Taxol yield of A. terreus with the multiple-culturing and storage might be due to the reduction on main influx of acetyl-CoA, or downregulation of ribosome biogenesis proteins that belong to WD40 protein superfamily.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gul Shad Ali
- Mid-Florida Research Education Center, IFAS, University of Florida, Gainesville, USA
- Eukaryo Tech, LLC, Apopka, Florida, 32703, USA
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
11
|
El-Sayed ASA, Shindia AA, AbouZaid AA, Yassin AM, Ali GS, Sitohy MZ. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb Technol 2019; 124:41-53. [PMID: 30797478 DOI: 10.1016/j.enzmictec.2019.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Peptidylarginine deiminases (PADs) are a group of hydrolases, mediating the deimination of peptidylarginine residues into peptidyl-citrulline. Equivocal protein citrullination by PADs of fungal pathogens has a strong relation to the progression of multiple human diseases, however, the biochemical properties of fungal PADs remain ambiguous. Thus, this is the first report exploring the molecular properties of PAD from thermotolerant fungi, to imitate the human temperature. The teleomorph Emericella dentata and anamorph Aspergillus nidulans have been morphologically and molecularly identified, with observed robust growth at 37-40 °C, and strong PAD productivity. The physiological profiles of E. dentata and A. nidulans for PADs production in response to carbon, nitrogen sources, initial medium pH and incubation temperature were relatively identical, emphasizing the taxonomical proximity of these fungal isolates. PADs were purified from E. dentata and A. nidulans with apparent molecular masses 41 and 48 kDa, respectively. The peptide fingerprints of PADs from E. dentata and A. nidulans have been analyzed by MALDI-TOF/MS, displaying a higher sequence similarity to human PAD4 by 18% and 31%, respectively. The conserved peptide sequences of E. dentata and A. nidulans PADs displayed a higher similarity to human PAD than A. fumigatus PADs clade. PADs from both fungal isolates have an optimum pH and pH stability at 7.0-8.0, with putative pI 5.0-5.5, higher structural denaturation at pH 4.0-5.5 and 9.5-12 as revealed from absorbance at λ280nm. E. dentata PAD had a higher conformationally thermal stability than A. nidulans PAD as revealed from its lower Kr value. From the proteolytic mapping, the orientation of trypsinolytic recognition sites on the PADs surface from both fungal isolates was very similar. PADs from both isolates are calcium dependent, with participation of serine and cysteine residues on their catalytic sites. PADs displayed a higher affinity to deiminate the peptidylarginine residues with a feeble affinity to work as ADI. So, PADs from E. dentata and A. nidulans had a relatively similar conformational and kinetic properties. Further molecular modeling analysis are ongoing to explore the role of PADs in citrullination of human proteins in Aspergillosis, that will open a new avenue for unraveling the vague of protein-protein interaction of human A. nidulans pathogen.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza A AbouZaid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Amany M Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gul Shad Ali
- MREC, Department of Plant Pathology, University of Florida, Florida, 32703, USA
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
El-Sayed AS, Ali DM, Yassin MA, Zayed RA, Ali GS. Sterol inhibitor “Fluconazole” enhance the Taxol yield and molecular expression of its encoding genes cluster from Aspergillus flavipes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Abstract
Fission yeast Ypt2, an orthologue of the mammalian small GTPase Rab8, is responsible for post-Golgi membrane trafficking. During meiosis, Ypt2 localizes at the spindle pole body (SPB), where it regulates de novo biogenesis of the spore plasma membrane. Recruitment of Ypt2 to the SPB is dependent on its meiosis-specific GDP/GTP exchange factor (GEF), the SPB-resident protein Spo13. Here we have examined the SPB recruitment of Ypt2 by Spo13. The GEF activity of Spo13 was required, but not essential for recruitment. Furthermore, Ypt2 recruitment was regulated in a meiosis-specific manner and partially regulated by the nuclear Dbf2-related (NDR) kinase Sid2, indicating the existence of a novel regulatory mechanism for localization of Rab GTPases during meiosis.
Collapse
Affiliation(s)
- Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.,Department of Chemistry and Biochemistry, National Institute of Technology, Suzuka College, Suzuka, Mie, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| |
Collapse
|
14
|
Efficient protein production by yeast requires global tuning of metabolism. Nat Commun 2017; 8:1131. [PMID: 29070809 PMCID: PMC5656615 DOI: 10.1038/s41467-017-00999-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/09/2017] [Indexed: 01/20/2023] Open
Abstract
The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion. The contribution of metabolic pathways to protein secretion is largely unknown. Here, the authors find conserved metabolic patterns in yeast by examining genome-wide transcriptional responses in high protein secretion mutants and reveal critical factors that can be tuned for efficient protein secretion.
Collapse
|
15
|
Moderate Expression of SEC16 Increases Protein Secretion by Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.03400-16. [PMID: 28476767 DOI: 10.1128/aem.03400-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is widely used to produce biopharmaceutical proteins. However, the limited capacity of the secretory pathway may reduce its productivity. Here, we increased the secretion of a heterologous α-amylase, a model protein used for studying the protein secretory pathway in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased α-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species resulting from the heterologous α-amylase production was reduced. A genome-wide expression analysis indicated decreased endoplasmic reticulum stress in the strain that moderately overexpressed SEC16, which was consistent with a decreased volume of the endoplasmic reticulum. Additionally, fewer mitochondria were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-α-glucosidase, indicating that this mechanism is of general relevance.IMPORTANCE There is an increasing demand for recombinant proteins to be used as enzymes and pharmaceuticals. The yeast Saccharomyces cerevisiae is a cell factory that is widely used to produce recombinant proteins. Our study revealed that moderate overexpression of SEC16 increased recombinant protein secretion in S. cerevisiae This new strategy can be combined with other targets to engineer cell factories to efficiently produce protein in the future.
Collapse
|
16
|
Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro. Appl Biochem Biotechnol 2016; 181:1513-1532. [PMID: 27796875 DOI: 10.1007/s12010-016-2299-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 01/11/2023]
Abstract
Pseudomonas putida L-methionine γ-lyase (PpMGL) has been recognized as an efficient anticancer agent, however, its antigenicity and stability remain as critical challenges for its clinical use. From our studies, Aspergillus flavipes L-methionine γ-lyase (AfMGL) displayed more affordable biochemical properties than PpMGL. Thus, the objective of this work was to comparatively assess the functional properties of AfMGL and PpMGL via stability of their internal aldimine linkage, tautomerism of pyridoxal 5'-phosphate (PLP) and structural stability responsive to physicochemical factors. The internal Schiff base of AfMGL and PpMGL have the same stability to hydroxylamine and human serum albumin. Acidic pHs resulted in strong cleavage of the internal Schiff base, inducing the unfolding of MGLs, compared to neutral-alkaline pHs. At λ 280 nm excitation, both AfMGL and PpMGL have identical fluorescence emission spectra at λ 335 nm for the intrinsic tryptophan and λ 560 nm for the internal Schiff base. The maximum PLP tautomeric shift of ketoenamine to enolimine was detected at acidic pH causing complete enzyme unfolding, subunits dissociation and tautomeric shift of intrinsic PLP, rather than neutral-alkaline ones. The T m of AfMGL and PpMGL in presence of thermal stabilizer/ destabilizer was assayed by DSF. The T m of AfMGL and PpMGL was 73.1 °C and 74.4 °C, respectively, suggesting the higher proximity to the tertiary structure of both enzymes. The T m of AfMGL and PpMGL was slightly increased by trehalose and EDTA in contrast to guanidine HCl and urea. The active site and PLP-binding domains are identically conserved in both AfMGL and PpMGL.
Collapse
|
17
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
18
|
Abstract
ASBTRACT Rab GTPases serve as master regulators of membrane traffic, each typically controlling several different aspects of a specific stage of membrane traffic by recruiting diverse effector proteins such as cytoskeletal motors, vesicle tethering proteins and regulators of SNARE complex assembly. Rabs, in turn, are regulated by specific guanine nucleotide exchange factors (GEFs), which catalyze the displacement of GDP and binding of GTP, as well as GTPase activating proteins (GAPs) that stimulate the slow intrinsic rate of GTP hydrolysis. Here I review our studies on the final stages of the yeast secretory pathway that have led us to propose that adjacent Rabs on a pathway are networked to one another through their regulators; specifically we have shown that the Rab, Ypt32, in its GTP-bound form recruits both Sec2, the GEF that activates the downstream Rab, Sec4, as well as Gyp1, the GAP that inactivates the upstream Rab, Ypt1. The postulated effect of these counter-current cascades is a programmed series of abrupt Rab transitions that lead to critical changes in the functional identity of the membrane as it flows along the exocytic pathway. Phosphoinositides also play key roles in the temporal and spatial regulation of membrane traffic. The Golgi pool of phosphatidylinositol 4-phosphate (PI(4)P) works in concert with Ypt32 to initially recruit Sec2, yet a subsequent drop in PI(4)P levels directs a regulatory switch in Sec2 function in which it binds to the Sec4 effector Sec15 generating a positive feedback loop. PI(4)P distribution together with Sec2 phosphorylation by a casein kinase determines when and where each regulatory circuit is used.
Collapse
Affiliation(s)
- Peter Novick
- a Department of Cellular and Molecular Medicine , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
19
|
Stalder D, Novick PJ. The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p. Mol Biol Cell 2015; 27:686-701. [PMID: 26700316 PMCID: PMC4750927 DOI: 10.1091/mbc.e15-09-0651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/17/2015] [Indexed: 12/04/2022] Open
Abstract
Sec2p is phosphorylated by the redundant casein kinases Yck1p and Yck2p. This promotes the interaction of Sec2p with the downstream effector, Sec15p, and contributes to Sec2p localization and function. Phosphorylation requires prior association of Sec2p with vesicles and reduction of the inhibitory Golgi lipid PI(4)P from the vesicle membrane. Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling.
Collapse
Affiliation(s)
- Danièle Stalder
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter J Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
20
|
El-Sayed ASA, Yassin MA, Ali GS. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation. PLoS One 2015; 10:e0144304. [PMID: 26633307 PMCID: PMC4669086 DOI: 10.1371/journal.pone.0144304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| | - Marwa A. Yassin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| |
Collapse
|
21
|
Gupta YK, Dagdas YF, Martinez-Rocha AL, Kershaw MJ, Littlejohn GR, Ryder LS, Sklenar J, Menke F, Talbot NJ. Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae. THE PLANT CELL 2015; 27:3277-89. [PMID: 26566920 PMCID: PMC4682301 DOI: 10.1105/tpc.15.00552] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 05/21/2023]
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion.
Collapse
Affiliation(s)
- Yogesh K Gupta
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Yasin F Dagdas
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | - Michael J Kershaw
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | - Lauren S Ryder
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Frank Menke
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
22
|
Vetter M, Wang J, Lorentzen E, Deretic D. Novel topography of the Rab11-effector interaction network within a ciliary membrane targeting complex. Small GTPases 2015; 6:165-73. [PMID: 26399276 DOI: 10.1080/21541248.2015.1091539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Small GTPases function as universal molecular switches due to the nucleotide dependent conformational changes of their switch regions that allow interacting proteins to discriminate between the active GTP-bound and the inactive GDP-bound states. Guanine nucleotide exchange factors (GEFs) recognize the inactive GDP-bound conformation whereas GTPase activating proteins (GAPs), and the GTPase effectors recognize the active GTP-bound state. Small GTPases are linked to each other through regulatory and effector proteins into functional networks that regulate intracellular membrane traffic through diverse mechanisms that include GEF and GAP cascades, GEF-effector interactions, common effectors and positive feedback loops linking interacting proteins. As more structural and functional information is becoming available, new types of interactions between regulatory proteins, and new mechanisms by which GTPases are networked to control membrane traffic are being revealed. This review will focus on the structure and function of the novel Rab11-FIP3-Rabin8 dual effector complex and its implications for the targeting of sensory receptors to primary cilia, dysfunction of which causes cilia defects underlying human diseases and disorders know as ciliopathies.
Collapse
Affiliation(s)
- Melanie Vetter
- a Department of Structural Cell Biology ; Max-Planck-Institute of Biochemistry ; Martinsried , Germany
| | - Jing Wang
- b Departments of Surgery ; Division of Ophthalmology; University of New Mexico ; Albuquerque , NM USA
| | - Esben Lorentzen
- a Department of Structural Cell Biology ; Max-Planck-Institute of Biochemistry ; Martinsried , Germany
| | - Dusanka Deretic
- b Departments of Surgery ; Division of Ophthalmology; University of New Mexico ; Albuquerque , NM USA.,c Cell Biology and Physiology ; University of New Mexico ; Albuquerque , NM USA
| |
Collapse
|
23
|
Genome-Wide Transcription Study of Cryptococcus neoformans H99 Clinical Strain versus Environmental Strains. PLoS One 2015; 10:e0137457. [PMID: 26360021 PMCID: PMC4567374 DOI: 10.1371/journal.pone.0137457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird’s droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis.
Collapse
|
24
|
Donovan KW, Bretscher A. Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J Cell Biol 2015; 210:181-9. [PMID: 26169352 PMCID: PMC4508886 DOI: 10.1083/jcb.201501118] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
Post-Golgi secretory vesicle trafficking is a coordinated process, with transport and regulatory mechanisms to ensure appropriate exocytosis. While the contributions of many individual regulatory proteins to this process are well studied, the timing and dependencies of events have not been defined. Here we track individual secretory vesicles and associated proteins in vivo during tethering and fusion in budding yeast. Secretory vesicles tether to the plasma membrane very reproducibly for ∼18 s, which is extended in cells defective for membrane fusion and significantly lengthened and more variable when GTP hydrolysis of the exocytic Rab is delayed. Further, the myosin-V Myo2p regulates the tethering time in a mechanism unrelated to its interaction with exocyst component Sec15p. Two-color imaging of tethered vesicles with Myo2p, the GEF Sec2p, and several exocyst components allowed us to document a timeline for yeast exocytosis in which Myo2p leaves 4 s before fusion, whereas Sec2p and all the components of the exocyst disperse coincident with fusion.
Collapse
Affiliation(s)
- Kirk W Donovan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
25
|
Liu D, Novick P. Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p. ACTA ACUST UNITED AC 2015; 207:59-72. [PMID: 25313406 PMCID: PMC4195821 DOI: 10.1083/jcb.201404122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p-Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92130
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92130
| |
Collapse
|
26
|
Abstract
Rab proteins represent the largest branch of the Ras-like small GTPase superfamily and there are 66 Rab genes in the human genome. They alternate between GTP- and GDP-bound states, which are facilitated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and function as molecular switches in regulation of intracellular membrane trafficking in all eukaryotic cells. Each Rab targets to an organelle and specify a transport step along exocytic, endocytic, and recycling pathways as well as the crosstalk between these pathways. Through interactions with multiple effectors temporally, a Rab can control membrane budding and formation of transport vesicles, vesicle movement along cytoskeleton, and membrane fusion at the target compartment. The large number of Rab proteins reflects the complexity of the intracellular transport system, which is essential for the localization and function of membrane and secretory proteins such as hormones, growth factors, and their membrane receptors. As such, Rab proteins have emerged as important regulators for signal transduction, cell growth, and differentiation. Altered Rab expression and/or activity have been implicated in diseases ranging from neurological disorders, diabetes to cancer.
Collapse
Affiliation(s)
- Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC 417, Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
27
|
Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proc Natl Acad Sci U S A 2014; 112:148-53. [PMID: 25535387 DOI: 10.1073/pnas.1412089112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Exocytosis is tightly regulated in many cellular processes, from neurite expansion to tumor proliferation. Rab8, a member of the Rab family of small GTPases, plays an important role in membrane trafficking from the trans-Golgi network and recycling endosomes to the plasma membrane. Rabin8 is a guanine nucleotide exchange factor (GEF) and major activator of Rab8. Investigating how Rabin8 is activated in cells is thus pivotal to the understanding of the regulation of exocytosis. Here we show that phosphorylation serves as an important mechanism for Rabin8 activation. We identified Rabin8 as a direct phospho-substrate of ERK1/2 in response to EGF signaling. At the molecular level, ERK phosphorylation relieves the autoinhibition of Rabin8, thus promoting its GEF activity. We further demonstrate that blocking ERK1/2-mediated phosphorylation of Rabin8 inhibits transferrin recycling to the plasma membrane. Together, our results suggest that ERK1/2 activate Rabin8 to regulate vesicular trafficking to the plasma membrane in response to extracellular signaling.
Collapse
|
28
|
Orr A, Wickner W, Rusin SF, Kettenbach AN, Zick M. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion. Mol Biol Cell 2014; 26:305-15. [PMID: 25411340 PMCID: PMC4294677 DOI: 10.1091/mbc.e14-08-1298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acidic lipids act as coreceptors with Ypt7p to bind the HOPS complex to support membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion. Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained unclear. We now report that acidic lipids function with Ypt7p as coreceptors for HOPS, supporting membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Scott F Rusin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arminja N Kettenbach
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 Norris Cotton Cancer Center, Lebanon, NH 03756
| | - Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
29
|
Ling Y, Hayano S, Novick P. Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature. Mol Biol Cell 2014; 25:3389-400. [PMID: 25165144 PMCID: PMC4214785 DOI: 10.1091/mbc.e14-06-1087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In yeast, the oxysterol-binding proteins Osh1–Osh7 are collectively needed to maintain the normal distribution of PI4P. Osh4p is recruited to secretory vesicles in a PI4P-dependent manner and plays an important role in vesicle maturation. Phosphatidylinositol-4-phosphate (PI4P) is produced on both the Golgi and the plasma membrane. Despite extensive vesicular traffic between these compartments, genetic analysis suggests that the two pools of PI4P do not efficiently mix with one another. Several lines of evidence indicate that the PI4P produced on the Golgi is normally incorporated into secretory vesicles, but the fate of that pool has been unclear. We show here that in yeast the oxysterol-binding proteins Osh1–Osh7 are collectively needed to maintain the normal distribution of PI4P and that Osh4p is critical in this function. Osh4p associates with secretory vesicles at least in part through its interaction with PI4P and is needed, together with lipid phosphatases, to reduce the level of PI4P as vesicles approach sites of exocytosis. This reduction in PI4P is necessary for a switch in the regulation of the Sec4p exchange protein, Sec2p, from an interaction with the upstream Rab, Ypt31/32, to an interaction with a downstream Sec4p effector, Sec15p. Spatial regulation of PI4P levels thereby plays an important role in vesicle maturation.
Collapse
Affiliation(s)
- Yading Ling
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Scott Hayano
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
30
|
Profile of Peter Novick. Proc Natl Acad Sci U S A 2014; 111:3-4. [PMID: 24335703 DOI: 10.1073/pnas.1321513110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|