1
|
Sykes A, Caruth L, Gross S, Verma SS, Hoshi T, Deutsch C. Disease-associated Kv1.3 variants are energy compromised with impaired nascent chain folding. J Mol Biol 2025:169226. [PMID: 40409708 DOI: 10.1016/j.jmb.2025.169226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Nascent proteins fold in a stepwise manner during all stages of biogenesis. This progression is particularly complex for ion channels composed of multiple biogenic and functional domains and subunits. The human Kv1.3 ion channel, encoded by KCNA3, is expressed in neuronal and immune cells. Its dysregulation produces chronic inflammatory disease and autoimmune disorders, which affect many in the US population, especially women. Using the unbiased 'genome-first' approach with integrated patient biobank databases, we identified KCNA3 gene variants associated with human disease and examined their impact on Kv1.3 channel biogenesis. Our tertiary and quaternary folding assays and all-atom molecular dynamics simulations show that KCNA3 gene variants in T1, the channel's intersubunit recognition domain, manifest early-stage T1 folding defects, energetic instabilities, and conformational distortion of subunits concomitant with tertiary unwinding. These findings identify molecular mechanisms by which patient-associated variants influence channel assembly, potentially contributing to diverse clinical phenotypes underlying human disease.
Collapse
Affiliation(s)
- Aaron Sykes
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085
| | - Lannawill Caruth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085
| | - Sophia Gross
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085
| | - Shefali Setia Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085.
| |
Collapse
|
2
|
Westerfield JM, Kozojedová P, Juli C, Metola A, von Heijne G. Cotranslational membrane insertion of the voltage-sensitive K + channel KvAP. Proc Natl Acad Sci U S A 2025; 122:e2412492122. [PMID: 40163725 PMCID: PMC12002286 DOI: 10.1073/pnas.2412492122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Voltage-sensor domains (VSDs), found in many voltage-sensitive ion channels and enzymes, are composed of four transmembrane helices (TMHs), including the atypical, highly positively charged S4 helix. VSDs are cotranslationally inserted into the membrane, raising the question of how the highly charged S4 helix is integrated into the lipid bilayer as it exits the ribosome. Here, we have used force profile analysis (FPA) to follow the cotranslational insertion of the six-TMH KvAP voltage-sensitive ion channel into the Escherichia coli inner membrane. We find that the insertion process proceeds through three semi-independent steps: i) insertion of the S1-S2 helix hairpin, ii) insertion of the S3-S5 helices, and iii) insertion of the Pore and S6 helices. Our analysis highlights the importance of the concerted insertion of helical hairpins, the dramatic influence of the positively charged residues in S4, and the unexpectedly strong forces and effects on downstream TMHs elicited by amphipathic and re-entrant helices.
Collapse
Affiliation(s)
- Justin M. Westerfield
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Petra Kozojedová
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Cara Juli
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Ane Metola
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
- Science for Life Laboratory, Stockholm University, SolnaSE-171 21, Sweden
| |
Collapse
|
3
|
Chen Z, Minor DL. Electrosome assembly: Structural insights from high voltage-activated calcium channel (CaV)-chaperone interactions. Biochem Soc Trans 2025; 53:BST20240422. [PMID: 39912874 DOI: 10.1042/bst20240422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Ion channels are multicomponent complexes (termed here as"electrosomes") that conduct the bioelectrical signals required for life. It has been appreciated for decades that assembly is critical for proper channel function, but knowledge of the factors that undergird this important process has been lacking. Although there are now exemplar structures of representatives of most major ion channel classes, there has been no direct structural information to inform how these complicated, multipart complexes are put together or whether they interact with chaperone proteins that aid in their assembly. Recent structural characterization of a complex of the endoplasmic membrane protein complex (EMC) chaperone and a voltage-gated calcium channel (CaV) assembly intermediate comprising the pore-forming CaVα1 and cytoplasmic CaVβ subunits offers the first structural view into the assembly of a member of the largest ion channel class, the voltagegated ion channel (VGIC) superfamily. The structure shows how the EMC remodels the CaVα1/CaVβ complex through a set of rigid body movements for handoff to the extracellular CaVα2δ subunit to complete channel assembly in a process that involves intersubunit coordination of a divalent cation and ordering of CaVα1 elements. These findings set a new framework for deciphering the structural underpinnings of ion channel biogenesis that has implications for understanding channel function, how drugs and disease mutations act, and for investigating how other membrane proteins may engage the ubiquitous EMC chaperone.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Department of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- California Institute for Quantitative Biomedical Research, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Kavli Institute for Fundamental Neuroscience, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720 CA 94720, U.S.A
| |
Collapse
|
4
|
Sykes A, Caruth L, Setia Verma S, Hoshi T, Deutsch C. Disease-associated Kv1.3 variants are energy compromised with impaired nascent chain folding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.631970. [PMID: 39868087 PMCID: PMC11761497 DOI: 10.1101/2025.01.17.631970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Human Kv1.3, encoded by KCNA3 , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.3 protein expression. The intersubunit recognition domain, T1, at the cytosolic N-terminus of Kv1.3, acquires secondary, tertiary, and quaternary structures during early biogenesis while the nascent protein is attached to the ribosome and/or the ER membrane. In this study, we ask whether native KCNA3 gene variants in T1 are associated with human disease and whether they manifest early-stage folding defects, energetic instabilities, and conformational distortion of subunits. We use three approaches: first, the unbiased "genome-first" approach to determine phenotype associations of specific KCNA3 rare variants. Second, we use biochemical assays to assess early-stage tertiary and quaternary folding and membrane association of these variants during early biogenesis. Third, we use all-atom molecular dynamics simulations of the T1 tetramer to assess structural macroscopic and energetic stability differences between wildtype (WT) Kv1.3 and a single-point variant, R114G. Measured folding probabilities and membrane associations are dramatically reduced in several of the native variants compared to WT. Simulations strikingly show that the R114G variant produces more energetically unstable and dynamic T1 domains, concomitant with tertiary unwinding and impaired formation of symmetrical tetramers. Our findings identify molecular mechanisms by which rare variants influence channel assembly, potentially contributing to diverse clinical phenotypes underlying human disease.
Collapse
|
5
|
Wang YJ, Di XJ, Zhang PP, Chen X, Williams MP, Han DY, Nashmi R, Henderson BJ, Moss FJ, Mu TW. Hsp47 promotes biogenesis of multi-subunit neuroreceptors in the endoplasmic reticulum. eLife 2024; 13:e84798. [PMID: 38963323 PMCID: PMC11257679 DOI: 10.7554/elife.84798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Pei-Pei Zhang
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Marnie P Williams
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Dong-Yun Han
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Raad Nashmi
- Department of Biology, University of VictoriaVictoriaCanada
| | - Brandon J Henderson
- Department of Biomedical Sciences, Marshall UniversityHuntingtonUnited States
| | - Fraser J Moss
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
6
|
Wang YJ, Di XJ, Mu TW. Quantitative interactome proteomics identifies a proteostasis network for GABA A receptors. J Biol Chem 2022; 298:102423. [PMID: 36030824 PMCID: PMC9493394 DOI: 10.1016/j.jbc.2022.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Quaternary structure independent folding of voltage-gated ion channel pore domain subunits. Nat Struct Mol Biol 2022; 29:537-548. [PMID: 35655098 PMCID: PMC9809158 DOI: 10.1038/s41594-022-00775-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023]
Abstract
Every voltage-gated ion channel (VGIC) has a pore domain (PD) made from four subunits, each comprising an antiparallel transmembrane helix pair bridged by a loop. The extent to which PD subunit structure requires quaternary interactions is unclear. Here, we present crystal structures of a set of bacterial voltage-gated sodium channel (BacNaV) 'pore only' proteins that reveal a surprising collection of non-canonical quaternary arrangements in which the PD tertiary structure is maintained. This context-independent structural robustness, supported by molecular dynamics simulations, indicates that VGIC-PD tertiary structure is independent of quaternary interactions. This fold occurs throughout the VGIC superfamily and in diverse transmembrane and soluble proteins. Strikingly, characterization of PD subunit-binding Fabs indicates that non-canonical quaternary PD conformations can occur in full-length VGICs. Together, our data demonstrate that the VGIC-PD is an autonomously folded unit. This property has implications for VGIC biogenesis, understanding functional states, de novo channel design, and VGIC structural origins.
Collapse
|
8
|
Coyote-Maestas W, Nedrud D, He Y, Schmidt D. Determinants of trafficking, conduction, and disease within a K + channel revealed through multiparametric deep mutational scanning. eLife 2022; 11:e76903. [PMID: 35639599 PMCID: PMC9273215 DOI: 10.7554/elife.76903] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
A long-standing goal in protein science and clinical genetics is to develop quantitative models of sequence, structure, and function relationships to understand how mutations cause disease. Deep mutational scanning (DMS) is a promising strategy to map how amino acids contribute to protein structure and function and to advance clinical variant interpretation. Here, we introduce 7429 single-residue missense mutations into the inward rectifier K+ channel Kir2.1 and determine how this affects folding, assembly, and trafficking, as well as regulation by allosteric ligands and ion conduction. Our data provide high-resolution information on a cotranslationally folded biogenic unit, trafficking and quality control signals, and segregated roles of different structural elements in fold stability and function. We show that Kir2.1 surface trafficking mutants are underrepresented in variant effect databases, which has implications for clinical practice. By comparing fitness scores with expert-reviewed variant effects, we can predict the pathogenicity of 'variants of unknown significance' and disease mechanisms of known pathogenic mutations. Our study in Kir2.1 provides a blueprint for how multiparametric DMS can help us understand the mechanistic basis of genetic disorders and the structure-function relationships of proteins.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David Nedrud
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yungui He
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| | - Daniel Schmidt
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
9
|
Scott H, Huang W, Andra K, Mamillapalli S, Gonti S, Day A, Zhang K, Mehzabeen N, Battaile KP, Raju A, Lovell S, Bann JG, Taylor DJ. Structure of the anthrax protective antigen D425A dominant negative mutant reveals a stalled intermediate state of pore maturation. J Mol Biol 2022; 434:167548. [PMID: 35304125 DOI: 10.1016/j.jmb.2022.167548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The tripartite protein complex produced by anthrax bacteria (Bacillus anthracis) is a member of the AB family of β-barrel pore-forming toxins. The protective antigen (PA) component forms an oligomeric prepore that assembles on the host cell surface and serves as a scaffold for binding of lethal and edema factors. Following endocytosis, the acidic environment of the late endosome triggers a pH-induced conformational rearrangement to promote maturation of the PA prepore to a functional, membrane spanning pore that facilitates delivery of lethal and edema factors to the cytosol of the infected host. Here, we show that the dominant-negative D425A mutant of PA stalls anthrax pore maturation in an intermediate state at acidic pH. Our 2.7 Å cryo-EM structure of the intermediate state reveals structural rearrangements that involve constriction of the oligomeric pore combined with an intramolecular dissociation of the pore-forming module. In addition to defining the early stages of anthrax pore maturation, the structure identifies asymmetric conformational changes in the oligomeric pore that are influenced by the precise configuration of adjacent protomers.
Collapse
Affiliation(s)
- Harry Scott
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kiran Andra
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | - Srinivas Gonti
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Alexander Day
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kaiming Zhang
- Stanford Linear Accelerator Center and the Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P Battaile
- IMCA-CAT, APS, Argonne National Laboratory, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439, USA
| | - Anjali Raju
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Song KC, Molina AV, Chen R, Gagnon IA, Koh YH, Roux B, Sosnick TR. Folding and misfolding of potassium channel monomers during assembly and tetramerization. Proc Natl Acad Sci U S A 2021; 118:e2103674118. [PMID: 34413192 PMCID: PMC8403937 DOI: 10.1073/pnas.2103674118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics and folding of potassium channel pore domain monomers are connected to the kinetics of tetramer assembly. In all-atom molecular dynamics simulations of Kv1.2 and KcsA channels, monomers adopt multiple nonnative conformations while the three helices remain folded. Consistent with this picture, NMR studies also find the monomers to be dynamic and structurally heterogeneous. However, a KcsA construct with a disulfide bridge engineered between the two transmembrane helices has an NMR spectrum with well-dispersed peaks, suggesting that the monomer can be locked into a native-like conformation that is similar to that observed in the folded tetramer. During tetramerization, fluoresence resonance energy transfer (FRET) data indicate that monomers rapidly oligomerize upon insertion into liposomes, likely forming a protein-dense region. Folding within this region occurs along separate fast and slow routes, with τfold ∼40 and 1,500 s, respectively. In contrast, constructs bearing the disulfide bond mainly fold via the faster pathway, suggesting that maintaining the transmembrane helices in their native orientation reduces misfolding. Interestingly, folding is concentration independent despite the tetrameric nature of the channel, indicating that the rate-limiting step is unimolecular and occurs after monomer association in the protein-dense region. We propose that the rapid formation of protein-dense regions may help with the assembly of multimeric membrane proteins by bringing together the nascent components prior to assembly. Finally, despite its name, the addition of KcsA's C-terminal "tetramerization" domain does not hasten the kinetics of tetramerization.
Collapse
Affiliation(s)
- Kevin C Song
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Andrew V Molina
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637
| | - Ruofan Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637
| | - Isabelle A Gagnon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Young Hoon Koh
- Graduate Program in the Biophysical Sciences, The University of Chicago, Chicago, IL 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Tobin R Sosnick
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637;
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
11
|
McDonald SK, Levitz TS, Valiyaveetil FI. A Shared Mechanism for the Folding of Voltage-Gated K + Channels. Biochemistry 2019; 58:1660-1671. [PMID: 30793887 DOI: 10.1021/acs.biochem.9b00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we probe the folding of KvAP, a voltage-gated K+ (Kv) channel. The KvAP channel, though of archaebacterial origin, is structurally and functionally similar to eukaryotic Kv channels. An advantage of the KvAP channel is that it can be folded in vitro from an extensively unfolded state and the folding can be controlled by temperature. We utilize these properties of the KvAP channel to separately study the membrane insertion and the tetramerization stages during folding. We use two quantitative assays: a Cys PEGylation assay to monitor membrane insertion and a cross-linking assay to monitor tetramerization. We show that during folding the KvAP polypeptide is rapidly inserted into the lipid bilayer with a "native-like" topology. We identify a segment at the C-terminus that is important for multimerization of the KvAP channel. We show that this C-terminal domain forms a dimer, which raises the possibility that the tetramerization of the KvAP channel proceeds through a dimer of dimers pathway. Our studies show that the in vitro folding of the KvAP channel mirrors aspects of the cellular assembly pathway for voltage-gated K+ channels and therefore suggest that evolutionarily distinct Kv channels share a common folding pathway. The pathway for the folding and assembly of a Kv channel is of central importance as defects in this pathway have been implicated in the etiology of several disease states. Our studies indicate that the KvAP channel provides an experimentally tractable system for elucidating the folding mechanism of Kv channels.
Collapse
Affiliation(s)
- Sarah K McDonald
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Talya S Levitz
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology , Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road , Portland , Oregon 97239 , United States
| |
Collapse
|
12
|
Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors. Proc Natl Acad Sci U S A 2018; 115:E8172-E8180. [PMID: 30104359 DOI: 10.1073/pnas.1807981115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite not spanning phospholipid bilayers, monotopic integral proteins (MIPs) play critical roles in organizing biochemical reactions on membrane surfaces. Defining the structural basis by which these proteins are anchored to membranes has been hampered by the paucity of unambiguously identified MIPs and a lack of computational tools that accurately distinguish monolayer-integrating motifs from bilayer-spanning transmembrane domains (TMDs). We used quantitative proteomics and statistical modeling to identify 87 high-confidence candidate MIPs in lipid droplets, including 21 proteins with predicted TMDs that cannot be accommodated in these monolayer-enveloped organelles. Systematic cysteine-scanning mutagenesis showed the predicted TMD of one candidate MIP, DHRS3, to be a partially buried amphipathic α-helix in both lipid droplet monolayers and the cytoplasmic leaflet of endoplasmic reticulum membrane bilayers. Coarse-grained molecular dynamics simulations support these observations, suggesting that this helix is most stable at the solvent-membrane interface. The simulations also predicted similar interfacial amphipathic helices when applied to seven additional MIPs from our dataset. Our findings suggest that interfacial helices may be a common motif by which MIPs are integrated into membranes, and provide high-throughput methods to identify and study MIPs.
Collapse
|
13
|
Altrichter S, Haase M, Loh B, Kuhn A, Leptihn S. Mechanism of the Spontaneous and Directional Membrane Insertion of a 2-Transmembrane Ion Channel. ACS Chem Biol 2017; 12:380-388. [PMID: 27960258 DOI: 10.1021/acschembio.6b01085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein insertion into membranes is a process occurring in every cell and every cellular compartment. Yet, many thermodynamic aspects of this fundamental biophysical process are not well understood. We investigated physicochemical parameters that influence protein insertion using the model protein KcsA, a 2-transmembrane ion channel. To understand what drives insertion and to identify individual steps of protein integration into a highly apolar environment, we investigated the contribution of electrostatic interactions and lipid composition on protein insertion on a single molecule level. We show that insertion of KcsA is spontaneous and directional as the cytosolic part of the protein does not translocate across the membrane barrier. Surprisingly, not hydrophobic residues but charged amino acids are crucial for the insertion of the unfolded protein into the membrane. Our results demonstrate the importance of electrostatic interactions between membrane and protein during the insertion process of hydrophobic polypeptides into the apolar membrane. On the basis of the observation that negatively charged lipids increase insertion events while high ionic strength in the surrounding aqueous phase decreases insertion events, a two-step mechanism is proposed. Here, an initial electrostatic attraction between membrane and protein represents the first step prior to insertion of hydrophobic residues into the hydrocarbon core of the membrane.
Collapse
Affiliation(s)
- Steffen Altrichter
- Institute of Microbiology
and Molecular Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Maximilian Haase
- Institute of Microbiology
and Molecular Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Belinda Loh
- Institute of Microbiology
and Molecular Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology
and Molecular Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | - Sebastian Leptihn
- Institute of Microbiology
and Molecular Biology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| |
Collapse
|
14
|
Kovach CP, Al Koborssy D, Huang Z, Chelette BM, Fadool JM, Fadool DA. Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel. Front Physiol 2016; 7:178. [PMID: 27242550 PMCID: PMC4871887 DOI: 10.3389/fphys.2016.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
Gene-targeted deletion of the potassium channel Kv1.3 (Kv1.3−∕−) results in “Super-smeller” mice with a sensory phenotype that includes an increased olfactory ability linked to changes in olfactory circuitry, increased abundance of olfactory cilia, and increased expression of odorant receptors and the G-protein, Golf. Kv1.3−∕− mice also have a metabolic phenotype including lower body weight and decreased adiposity, increased total energy expenditure (TEE), increased locomotor activity, and resistance to both diet- and genetic-induced obesity. We explored two cellular aspects to elucidate the mechanism by which loss of Kv1.3 channel in the olfactory bulb (OB) may enhance glucose utilization and metabolic rate. First, using in situ hybridization we find that Kv1.3 and the insulin-dependent glucose transporter type 4 (GLUT4) are co-localized to the mitral cell layer of the OB. Disruption of Kv1.3 conduction via construction of a pore mutation (W386F Kv1.3) was sufficient to independently translocate GLUT4 to the plasma membrane in HEK 293 cells. Because olfactory sensory perception and the maintenance of action potential (AP) firing frequency by mitral cells of the OB is highly energy demanding and Kv1.3 is also expressed in mitochondria, we next explored the structure of this organelle in mitral cells. We challenged wildtype (WT) and Kv1.3−∕− male mice with a moderately high-fat diet (MHF, 31.8 % kcal fat) for 4 months and then examined OB ultrastructure using transmission electron microscopy. In WT mice, mitochondria were significantly enlarged following diet-induced obesity (DIO) and there were fewer mitochondria, likely due to mitophagy. Interestingly, mitochondria were significantly smaller in Kv1.3−∕− mice compared with that of WT mice. Similar to their metabolic resistance to DIO, the Kv1.3−∕− mice had unchanged mitochondria in terms of cross sectional area and abundance following a challenge with modified diet. We are very interested to understand how targeted disruption of the Kv1.3 channel in the OB can modify TEE. Our study demonstrates that Kv1.3 regulates mitochondrial structure and alters glucose utilization; two important metabolic changes that could drive whole system changes in metabolism initiated at the OB.
Collapse
Affiliation(s)
- Christopher P Kovach
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Dolly Al Koborssy
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | - Zhenbo Huang
- Program in Neuroscience, Florida State University Tallahassee, FL, USA
| | | | - James M Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Debra A Fadool
- Program in Neuroscience, Florida State UniversityTallahassee, FL, USA; Department of Biological Science, Florida State UniversityTallahassee, FL, USA; Institute of Molecular Biophysics, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
15
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|