Ooms MD, Dinh CT, Sargent EH, Sinton D. Photon management for augmented photosynthesis.
Nat Commun 2016;
7:12699. [PMID:
27581187 PMCID:
PMC5025804 DOI:
10.1038/ncomms12699]
[Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/22/2016] [Indexed: 11/09/2022] Open
Abstract
Microalgae and cyanobacteria are some of nature's finest examples of solar energy conversion systems, effortlessly transforming inorganic carbon into complex molecules through photosynthesis. The efficiency of energy-dense hydrocarbon production by photosynthetic organisms is determined in part by the light collected by the microorganisms. Therefore, optical engineering has the potential to increase the productivity of algae cultivation systems used for industrial-scale biofuel synthesis. Herein, we explore and report emerging and promising material science and engineering innovations for augmenting microalgal photosynthesis.
Photosynthetic microalgae could provide an ecologically sustainable route to produce solar biofuels and high-value chemicals. Here, the authors review various optical management strategies used to manipulate the incident light in order to increase the efficiency of microalgae biofuel production.
Collapse