1
|
Forcada-Nadal A, Bibak S, Salinas P, Contreras A, Rubio V, Llácer J. Structures of the cyanobacterial nitrogen regulators NtcA and PipX complexed to DNA shed light on DNA binding by NtcA and implicate PipX in the recruitment of RNA polymerase. Nucleic Acids Res 2025; 53:gkaf096. [PMID: 39995039 PMCID: PMC11850224 DOI: 10.1093/nar/gkaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
The CRP-FNR (cAMP receptor protein-fumarate/nitrate reductase regulator) superfamily of transcriptional regulators includes the cyanobacterial master regulator NtcA, which orchestrates large responses of cyanobacteria to nitrogen scarcity. NtcA uses as allosteric activator 2-oxoglutarate (2OG), a signal of nitrogen poorness and carbon richness, and binds a co-activating protein (PipX) that shuttles between the signaling protein PII and NtcA depending on nitrogen richness, thus connecting PII signaling and gene expression regulation. Here, combining structural (X-ray crystallography of six types of crystals including NtcA complexes with DNA, 2OG, and PipX), modeling, and functional [electrophoretic mobility shift assays and bacterial two-hybrid (BACTH)] studies, we clarify the reasons for the exquisite specificity for the binding of NtcA to its target DNA, its mechanisms of activation by 2OG, and its co-activation by PipX. Our crystal structures of PipX-NtcA-DNA complexes prove that PipX does not interact with DNA, although it increases NtcA-DNA contacts, and that it stabilizes the active, DNA-binding-competent conformation of NtcA. Superimposition of this complex on a very recently reported cryo-electron microscopy structure of NtcA in a transcription activity complex with RNA polymerase (RNAP), shows that PipX binding helps recruit RNAP by PipX interaction with RNAP, particularly with its gamma and sigma (region 4) subunits, a structural prediction supported here by BACTH experiments.
Collapse
Affiliation(s)
- Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), E-46010, Valencia, Spain
- Group 739 at the IBV-CSIC of the Centro de Investigación Biomédica en Red en Enfermedades Raras of the Instituto de Salud Carlos III (CIBERER-ISCIII), E-28029, Spain
| | - Sirine Bibak
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03690, San Vicente del Raspeig, Spain
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03690, San Vicente del Raspeig, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03690, San Vicente del Raspeig, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), E-46010, Valencia, Spain
- Group 739 at the IBV-CSIC of the Centro de Investigación Biomédica en Red en Enfermedades Raras of the Instituto de Salud Carlos III (CIBERER-ISCIII), E-28029, Spain
| | - José L Llácer
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), E-46010, Valencia, Spain
- Group 739 at the IBV-CSIC of the Centro de Investigación Biomédica en Red en Enfermedades Raras of the Instituto de Salud Carlos III (CIBERER-ISCIII), E-28029, Spain
| |
Collapse
|
2
|
Dong H, Zhang J, Zhang K, Zhang F, Wang S, Wang Q, Xu C, Yin K, Gu L. The cAMP receptor protein from Gardnerella vaginalis is not regulated by ligands. Commun Biol 2024; 7:1233. [PMID: 39354127 PMCID: PMC11445507 DOI: 10.1038/s42003-024-06957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Overgrowth of Gardnerella vaginalis causes an imbalance in vaginal microecology. The pathogenicity of G. vaginalis is directly regulated by the cAMP receptor protein (CRP). In this study, we resolve the crystal structure of CRPGv at a resolution of 2.22 Å and find some significant differences from homologous proteins. The first 23 amino acids of CRPGv are inserted into the ligand binding pocket, creating a strong steric barrier to ligand entry that has not been seen previously in its homologues. In the absence of ligands, the two α helices used by CRPGv to bind oligonucleotide chains are exposed and can specifically bind TGTGA-N6-TCACA sequences. cAMP and other ligands of CRP homologs are not cofactors of CRPGv. There is no coding gene of the adenylate cyclase, and cAMP could not be identified in G. vaginalis by liquid chromatography tandem mass spectrometry. We speculate that CRPGv may achieve fine regulation through a conformational transformation different from that of its homologous proteins, and this conformational transformation is no longer dependent on small molecules, but may be aided by accessory proteins. CRPGv is the first discovered CRP that is not ligand-regulated, and its active conformation provides a structural basis for drug screening.
Collapse
Affiliation(s)
- Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Shuai Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China.
| |
Collapse
|
3
|
Yuan Y, Al Bulushi T, Sastry AV, Sancar C, Szubin R, Golden SS, Palsson BO. Machine learning reveals the transcriptional regulatory network and circadian dynamics of Synechococcus elongatus PCC 7942. Proc Natl Acad Sci U S A 2024; 121:e2410492121. [PMID: 39269777 PMCID: PMC11420160 DOI: 10.1073/pnas.2410492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Synechococcus elongatus is an important cyanobacterium that serves as a versatile and robust model for studying circadian biology and photosynthetic metabolism. Its transcriptional regulatory network (TRN) is of fundamental interest, as it orchestrates the cell's adaptation to the environment, including its response to sunlight. Despite the previous characterization of constituent parts of the S. elongatus TRN, a comprehensive layout of its topology remains to be established. Here, we decomposed a compendium of 300 high-quality RNA sequencing datasets of the model strain PCC 7942 using independent component analysis. We obtained 57 independently modulated gene sets, or iModulons, that explain 67% of the variance in the transcriptional response and 1) accurately reflect the activity of known transcriptional regulations, 2) capture functional components of photosynthesis, 3) provide hypotheses for regulon structures and functional annotations of poorly characterized genes, and 4) describe the transcriptional shifts under dynamic light conditions. This transcriptome-wide analysis of S. elongatus provides a quantitative reconstruction of the TRN and presents a knowledge base that can guide future investigations. Our systems-level analysis also provides a global TRN structure for S. elongatus PCC 7942.
Collapse
Affiliation(s)
- Yuan Yuan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Tahani Al Bulushi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Anand V. Sastry
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Cigdem Sancar
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Richard Szubin
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Susan S. Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| | - Bernhard O. Palsson
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA92093
- Department of Pediatrics, University of California, San Diego, La Jolla, CA92093
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby2800, Denmark
| |
Collapse
|
4
|
Krynická V, Komenda J. The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria. PLANT & CELL PHYSIOLOGY 2024; 65:1103-1114. [PMID: 38619128 PMCID: PMC11287208 DOI: 10.1093/pcp/pcae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
Collapse
Affiliation(s)
- Vendula Krynická
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| |
Collapse
|
5
|
Lucius S, Hagemann M. The primary carbon metabolism in cyanobacteria and its regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1417680. [PMID: 39036361 PMCID: PMC11257934 DOI: 10.3389/fpls.2024.1417680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. Many cyanobacterial strains can live in different trophic modes, ranging from photoautotrophic and heterotrophic to mixotrophic growth. However, the regulatory mechanisms allowing a flexible switch between these lifestyles are poorly understood. As anabolic fixation of CO2 in the Calvin-Benson-Bassham (CBB) cycle and catabolic sugar-degradation pathways share intermediates and enzymatic capacity, a tight regulatory network is required to enable simultaneous opposed metabolic fluxes. The Entner-Doudoroff (ED) pathway was recently predicted as one glycolytic route, which cooperates with other pathways in glycogen breakdown. Despite low carbon flux through the ED pathway, metabolite analyses of mutants deficient in the ED pathway revealed a distinct phenotype pointing at a strong regulatory impact of this route. The small Cp12 protein downregulates the CBB cycle in darkness by inhibiting phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase. New results of metabolomic and redox level analyses on strains with Cp12 variants extend the known role of Cp12 regulation towards the acclimation to external glucose supply under diurnal conditions as well as to fluctuations in CO2 levels in the light. Moreover, carbon and nitrogen metabolism are closely linked to maintain an essential C/N homeostasis. The small protein PirC was shown to be an important regulator of phosphoglycerate mutase, which identified this enzyme as central branching point for carbon allocation from CBB cycle towards lower glycolysis. Altered metabolite levels in the mutant ΔpirC during nitrogen starvation experiments confirm this regulatory mechanism. The elucidation of novel mechanisms regulating carbon allocation at crucial metabolic branching points could identify ways for targeted redirection of carbon flow towards desired compounds, and thus help to further establish cyanobacteria as green cell factories for biotechnological applications with concurrent utilization of sunlight and CO2.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Salinas P, Bibak S, Cantos R, Tremiño L, Jerez C, Mata-Balaguer T, Contreras A. Studies on the PII-PipX-NtcA Regulatory Axis of Cyanobacteria Provide Novel Insights into the Advantages and Limitations of Two-Hybrid Systems for Protein Interactions. Int J Mol Sci 2024; 25:5429. [PMID: 38791467 PMCID: PMC11121479 DOI: 10.3390/ijms25105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the E. coli cytoplasm of the adenylate cyclase of Bordetella pertussis, should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a "false positive", the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the E. coli host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Asunción Contreras
- Departamento. de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (P.S.); (S.B.); (R.C.); (L.T.); (C.J.); (T.M.-B.)
| |
Collapse
|
7
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
8
|
Jerez C, Llop A, Salinas P, Bibak S, Forchhammer K, Contreras A. Analysing the Cyanobacterial PipX Interaction Network Using NanoBiT Complementation in Synechococcus elongatus PCC7942. Int J Mol Sci 2024; 25:4702. [PMID: 38731921 PMCID: PMC11083307 DOI: 10.3390/ijms25094702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.
Collapse
Affiliation(s)
- Carmen Jerez
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Sirine Bibak
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| |
Collapse
|
9
|
Kraus A, Spät P, Timm S, Wilson A, Schumann R, Hagemann M, Maček B, Hess WR. Protein NirP1 regulates nitrite reductase and nitrite excretion in cyanobacteria. Nat Commun 2024; 15:1911. [PMID: 38429292 PMCID: PMC10907346 DOI: 10.1038/s41467-024-46253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.
Collapse
Affiliation(s)
- Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, D-72076, Tübingen, Germany
| | - Stefan Timm
- Plant Physiology Department, Institute of Biosciences, University of Rostock, D-18059, Rostock, Germany
| | - Amy Wilson
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany
| | - Rhena Schumann
- Biological Station Zingst, University of Rostock, D-18374, Zingst, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biosciences, University of Rostock, D-18059, Rostock, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, D-72076, Tübingen, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, Freiburg University, D-79104, Freiburg, Germany.
| |
Collapse
|
10
|
Hidese R, Ohbayashi R, Kato Y, Matsuda M, Tanaka K, Imamura S, Ashida H, Kondo A, Hasunuma T. ppGpp accumulation reduces the expression of the global nitrogen homeostasis-modulating NtcA regulon by affecting 2-oxoglutarate levels. Commun Biol 2023; 6:1285. [PMID: 38145988 PMCID: PMC10749895 DOI: 10.1038/s42003-023-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 accumulates alarmone guanosine tetraphosphate (ppGpp) under stress conditions, such as darkness. A previous study observed that artificial ppGpp accumulation under photosynthetic conditions led to the downregulation of genes involved in the nitrogen assimilation system, which is activated by the global nitrogen regulator NtcA, suggesting that ppGpp regulates NtcA activity. However, the details of this mechanism have not been elucidated. Here, we investigate the metabolic responses associated with ppGpp accumulation by heterologous expression of the ppGpp synthetase RelQ. The pool size of 2-oxoglutarate (2-OG), which activates NtcA, is significantly decreased upon ppGpp accumulation. De novo 13C-labeled CO2 assimilation into the Calvin-Benson-Bassham cycle and glycolytic intermediates continues irrespective of ppGpp accumulation, whereas the labeling of 2-OG is significantly decreased under ppGpp accumulation. The low 2-OG levels in the RelQ overexpression cells could be because of the inhibition of metabolic enzymes, including aconitase, which are responsible for 2-OG biosynthesis. We propose a metabolic rearrangement by ppGpp accumulation, which negatively regulates 2-OG levels to maintain carbon and nitrogen balance.
Collapse
Affiliation(s)
- Ryota Hidese
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryudo Ohbayashi
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- Department of Biological Sciences, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Mami Matsuda
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- NTT Space Environment and Enegy Laboratories, Nippon Telegraph and Telephone Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan
| | - Hiroki Ashida
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-Ku, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
11
|
Li H, Bhattarai B, Barber M, Goel R. Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16016-16032. [PMID: 37819800 DOI: 10.1021/acs.est.3c03114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We conducted a field study to investigate the role of stringent response in cyanobacteria and coexisting bacterioplankton during nutrient-deprived periods at various stages of bloom in a freshwater lake (Utah Lake) for the first time. Using metagenomics and metatranscriptomics analyses, we examined the cyanobacterial ecology and expression of important functional genes related to stringent response, N and P metabolism, and regulation. Our findings mark a significant advancement in understanding the mechanisms by which toxic cyanobacteria survive and proliferate during nitrogen (N) and phosphorus (P) limitations. We successfully identified and analyzed the metagenome-assembled genomes (MAGs) of the dominant bloom-forming cyanobacteria, namely, Dolichospermum circinale, Aphanizomenon flos-aquae UKL13-PB, Planktothrix agardhii, and Microcystis aeruginosa. By mapping RNA-seq data to the coding sequences of the MAGs, we observed that these four prevalent cyanobacteria species activated multiple functions to adapt to the depletion of inorganic nutrients. During and after the blooms, the four dominant cyanobacteria species expressed high levels of transcripts related to toxin production, such as microcystins (mcy), anatoxins (ana), and cylindrospermopsins (cyr). Additionally, genes associated with polyphosphate (poly-P) storage and the stringent response alarmone (p)ppGpp synthesis/hydrolysis, including ppk, relA, and spoT, were highly activated in both cyanobacteria and bacterioplankton. Under N deficiency, the main N pathways shifted from denitrification and dissimilatory nitrate reduction in bacterioplankton toward N2-fixing and assimilatory nitrate reduction in certain cyanobacteria with a corresponding shift in the community composition. P deprivation triggered a stringent response mediated by spoT-dependent (p)ppGpp accumulation and activation of the Pho regulon in both cyanobacteria and bacterioplankton, facilitating inorganic and organic P uptake. The dominant cyanobacterial MAGs exhibited the presence of multiple alkaline phosphatase (APase) transcripts (e.g., phoA in Dolichospermum, phoX in Planktothrix, and Microcystis), suggesting their ability to synthesize and release APase enzymes to convert ambient organic P into bioavailable forms. Conversely, transcripts associated with bacterioplankton-dominated pathways like denitrification were low and did not align with the occurrence of intense cyanoHABs. The strong correlations observed among N, P, stringent response metabolisms and the succession of blooms caused by dominant cyanobacterial species provide evidence that the stringent response, induced by nutrient limitation, may activate unique N and P functions in toxin-producing cyanobacteria, thereby sustaining cyanoHABs.
Collapse
Affiliation(s)
- Hanyan Li
- Institute for Environmental Genomics, The University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma 73019, United States
| | - Bishav Bhattarai
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Michael Barber
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Llop A, Tremiño L, Cantos R, Contreras A. The Signal Transduction Protein PII Controls the Levels of the Cyanobacterial Protein PipX. Microorganisms 2023; 11:2379. [PMID: 37894037 PMCID: PMC10609283 DOI: 10.3390/microorganisms11102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer of carbon/nitrogen/energy richness, and the transcriptional regulator NtcA, which controls a large regulon involved in nitrogen assimilation. PipX is also involved in translational regulation through interaction with the ribosome-assembly GTPase EngA. However, increases in the PipX/PII ratio are toxic, presumably due to the abnormally increased binding of PipX to other partner(s). Here, we present mutational and structural analyses of reported PipX-PII and PipX-NtcA complexes, leading to the identification of single amino acid changes that decrease or abolish PipX toxicity. Notably, 4 out of 11 mutations decreasing toxicity did not decrease PipX levels, suggesting that the targeted residues (F12, D23, L36, and R54) provide toxicity determinants. In addition, one of those four mutations (D23A) argued against the over-activation of NtcA as the cause of PipX toxicity. Most mutations at residues contacting PII decreased PipX levels, indicating that PipX stability would depend on its ability to bind to PII, a conclusion supported by the light-induced decrease of PipX levels in Synechococcus elongatus PCC7942 (hereafter S. elongatus).
Collapse
Affiliation(s)
| | | | | | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (A.L.); (L.T.); (R.C.)
| |
Collapse
|
13
|
Llop A, Bibak S, Cantos R, Salinas P, Contreras A. The ribosome assembly GTPase EngA is involved in redox signaling in cyanobacteria. Front Microbiol 2023; 14:1242616. [PMID: 37637111 PMCID: PMC10448771 DOI: 10.3389/fmicb.2023.1242616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Photosynthetic organisms must cope with environmental challenges, like those imposed by the succession of days and nights or by sudden changes in light intensities, that trigger global changes in gene expression and metabolism. The photosynthesis machinery is particularly susceptible to environmental changes and adaptation to them often involves redox-sensing proteins that are the targets of reactive oxygen species generated by photosynthesis activity. Here we show that EngA, an essential GTPase and ribosome-assembly protein involved in ribosome biogenesis in bacteria and chloroplasts, also plays a role in acclimatization to environmentally relevant stress in Synechococcus elongatus PCC7942 and that PipX, a promiscuous regulatory protein that binds to EngA, appears to fine-tune EngA activity. During growth in cold or high light conditions, the EngA levels rise, with a concomitant increase of the EngA/PipX ratio. However, a sudden increase in light intensity turns EngA into a growth inhibitor, a response involving residue Cys122 of EngA, which is part of the GD1-G4 motif NKCES of EngA proteins, with the cysteine conserved just in the cyanobacteria-chloroplast lineage. This work expands the repertoire of ribosome-related factors transmitting redox signals in photosynthetic organisms and provides additional insights into the complexity of the regulatory interactions mediated by EngA and PipX.
Collapse
Affiliation(s)
| | | | | | | | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
14
|
Guo Y, Zhao X, Yao Z, Qian Z, Wang Y, Xian Q. The effects of exogenous amino acids on production of microcystin variants in Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106525. [PMID: 37087861 DOI: 10.1016/j.aquatox.2023.106525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Dissolved free amino acids are a significant component of dissolved organic nitrogen (DON) in natural waterbodies. The effects of four amino acids (glutamic acid, phenylalanine, leucine, and arginine) on the growth and microcystins (MCs) production of Microcystis aeruginosa were studied in batch culture. The profiles of five MCs variants and the expression levels of target genes involved in MCs biosynthesis and nitrogen metabolism were measured. When amino acids were used as the sole nitrogen source instead of nitrate at different levels (0.5, 2.0 and 8.0 mg/L based on N) in BG-11 medium, algal cell growth and intracellular MCs quotas were inhibited slightly by the treatments with glutamic acid and arginine. The treatments with phenylalanine and leucine, on the other hand, had a strong inhibitory effect on algal cell growth and MCs production. Moreover, the concentrations of Chlorophyll a, phycocyanin and allophycocyanin in cells cultured in glutamic acid, leucine and phenylalanine were lower than those in the control group with nitrate as nitrogen source. The existence of leucine or phenylalanine can lead to a significant increase in the relative abundance of MCs variants structured with the corresponding amino acids. The expression of microcystin-producing gene mcyD was downregulated while the gene pipX associated with nitrogen metabolism was upregulated during the cultivation of M. aeruginosa with amino acids as sole nitrogen source. M. aeruginosa undergoes significant alterations due to exogenous amino acids and exhibits advanced strategies for MCs production.
Collapse
Affiliation(s)
- Yaxin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiating Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongcheng Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongyao Qian
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Llop A, Labella JI, Borisova M, Forchhammer K, Selim KA, Contreras A. Pleiotropic effects of PipX, PipY, or RelQ overexpression on growth, cell size, photosynthesis, and polyphosphate accumulation in the cyanobacterium Synechococcus elongatus PCC7942. Front Microbiol 2023; 14:1141775. [PMID: 37007489 PMCID: PMC10060972 DOI: 10.3389/fmicb.2023.1141775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The cyanobacterial protein PipY belongs to the Pyridoxal-phosphate (PLP)-binding proteins (PLPBP/COG0325) family of pyridoxal-phosphate-binding proteins, which are represented in all three domains of life. These proteins share a high degree of sequence conservation, appear to have purely regulatory functions, and are involved in the homeostasis of vitamin B6 vitamers and amino/keto acids. Intriguingly, the genomic context of the pipY gene in cyanobacteria connects PipY with PipX, a protein involved in signaling the intracellular energy status and carbon-to-nitrogen balance. PipX regulates its cellular targets via protein–protein interactions. These targets include the PII signaling protein, the ribosome assembly GTPase EngA, and the transcriptional regulators NtcA and PlmA. PipX is thus involved in the transmission of multiple signals that are relevant for metabolic homeostasis and stress responses in cyanobacteria, but the exact function of PipY is still elusive. Preliminary data indicated that PipY might also be involved in signaling pathways related to the stringent stress response, a pathway that can be induced in the unicellular cyanobacterium Synechococcus elongatus PCC7942 by overexpression of the (p)ppGpp synthase, RelQ. To get insights into the cellular functions of PipY, we performed a comparative study of PipX, PipY, or RelQ overexpression in S. elongatus PCC7942. Overexpression of PipY or RelQ caused similar phenotypic responses, such as growth arrest, loss of photosynthetic activity and viability, increased cell size, and accumulation of large polyphosphate granules. In contrast, PipX overexpression decreased cell length, indicating that PipX and PipY play antagonistic roles on cell elongation or cell division. Since ppGpp levels were not induced by overexpression of PipY or PipX, it is apparent that the production of polyphosphate in cyanobacteria does not require induction of the stringent response.
Collapse
Affiliation(s)
- Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Jose I. Labella
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Marina Borisova
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Khaled A. Selim
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- *Correspondence: Asunción Contreras,
| |
Collapse
|
16
|
Pradhan M, Kumar A, Kirti A, Pandey S, Rajaram H. NtcA, LexA and heptamer repeats involved in the multifaceted regulation of DNA repair genes recF, recO and recR in the cyanobacterium Nostoc PCC7120. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194907. [PMID: 36638863 DOI: 10.1016/j.bbagrm.2023.194907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Regulation of DNA repair genes in cyanobacteria is an unexplored field despite some of them exhibiting high radio-resistance. With RecF pathway speculated to be the major double strand break repair pathway in Nostoc sp. strain PCC7120, regulation of recF, recO and recR genes was investigated. Bioinformatic approach-based identification of promoter and regulatory elements was validated using qRT-PCR analysis, reporter gene and DNA binding assays. Different deletion constructs of the upstream regulatory regions of these genes were analysed in host Nostoc as well as heterologous system Escherichia coli. Studies revealed: (1) Positive regulation of all three genes by NtcA, (2) Negative regulation by LexA, (3) Involvement of contiguous heptamer repeats with/without its yet to be identified interacting partner in regulating (i) binding of NtcA and LexA to recO promoter and its translation, (ii) transcription or translation of recF, (4) Translational regulation of recF and recO through non-canonical and distant S.D. sequence and of recR through a rare initiation codon. Presence of NtcA either precludes binding of LexA to AnLexA-Box or negates its repressive action resulting in higher expression of these genes under nitrogen-fixing conditions in Nostoc. Thus, in Nostoc, expression of recF, recO and recR genes is intricately regulated through multiple regulatory elements/proteins. Contiguous heptamer repeats present across the Nostoc genome in the vicinity of start codon or promoter is likely to have a global regulatory role. This is the first report detailing regulation of DSB repair genes in any algae.
Collapse
Affiliation(s)
- Mitali Pradhan
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
17
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
The Conserved Family of the Pyridoxal Phosphate-Binding Protein (PLPBP) and Its Cyanobacterial Paradigm PipY. Life (Basel) 2022; 12:life12101622. [PMID: 36295057 PMCID: PMC9605639 DOI: 10.3390/life12101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The PLPBP family of pyridoxal phosphate-binding proteins has a high degree of sequence conservation and is represented in all three domains of life. PLPBP members, of which a few representatives have been studied in different contexts, are single-domain proteins with no known enzymatic activity that exhibit the fold type III of PLP-holoenzymes, consisting in an α/β barrel (TIM-barrel), where the PLP cofactor is solvent-exposed. Despite the constant presence of cofactor PLP (a key catalytic element in PLP enzymes), PLPBP family members appear to have purely regulatory functions affecting the homeostasis of vitamin B6 vitamers and amino/keto acids. Perturbation of these metabolites and pleiotropic phenotypes have been reported in bacteria and zebrafish after PLPBP gene inactivation as well as in patients with vitamin B6-dependent epilepsy that results from loss-of-function mutations at the PLPBP. Here, we review information gathered from diverse studies and biological systems, emphasizing the structural and functional conservation of the PLPBP members and discussing the informative nature of model systems and experimental approaches. In this context, the relatively high level of structural and functional characterization of PipY from Synechococcus elongatus PCC 7942 provides a unique opportunity to investigate the PLPBP roles in the context of a signaling pathway conserved in cyanobacteria.
Collapse
|
19
|
Giordano M, Goodman CA, Huang F, Raven JA, Ruan Z. A mechanistic study of the influence of nitrogen and energy availability on the NH4+ sensitivity of nitrogen assimilation in Synechococcus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5596-5611. [PMID: 35595516 PMCID: PMC9467657 DOI: 10.1093/jxb/erac219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 05/23/2023]
Abstract
In most algae, NO3- assimilation is tightly controlled and is often inhibited by the presence of NH4+. In the marine, non-colonial, non-diazotrophic cyanobacterium Synechococcus UTEX 2380, NO3- assimilation is sensitive to NH4+ only when N does not limit growth. We sequenced the genome of Synechococcus UTEX 2380, studied the genetic organization of the nitrate assimilation related (NAR) genes, and investigated expression and kinetics of the main NAR enzymes, under N or light limitation. We found that Synechococcus UTEX 2380 is a β-cyanobacterium with a full complement of N uptake and assimilation genes and NAR regulatory elements. The nitrate reductase of our strain showed biphasic kinetics, previously observed only in freshwater or soil diazotrophic Synechococcus strains. Nitrite reductase and glutamine synthetase showed little response to our growth treatments, and their activity was usually much higher than that of nitrate reductase. NH4+ insensitivity of NAR genes may be associated with the stimulation of the binding of the regulator NtcA to NAR gene promoters by the high 2-oxoglutarate concentrations produced under N limitation. NH4+ sensitivity in energy-limited cells fits with the fact that, under these conditions, the use of NH4+ rather than NO3- decreases N-assimilation cost, whereas it would exacerbate N shortage under N limitation.
Collapse
Affiliation(s)
- Mario Giordano
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
- Institute of Microbiology ASCR, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science, Venezia, Italy
| | - Charles A Goodman
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA
| | - Fengying Huang
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5 DA, UK
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | |
Collapse
|
20
|
Bolay P, Hemm L, Florencio FJ, Hess WR, Muro-Pastor MI, Klähn S. The sRNA NsiR4 fine-tunes arginine synthesis in the cyanobacterium Synechocystis sp. PCC 6803 by post-transcriptional regulation of PirA. RNA Biol 2022; 19:811-818. [PMID: 35678613 PMCID: PMC9196836 DOI: 10.1080/15476286.2022.2082147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
As the only oxygenic phototrophs among prokaryotes, cyanobacteria employ intricate mechanisms to regulate common metabolic pathways. These mechanisms include small protein inhibitors exerting their function by protein-protein interaction with key metabolic enzymes and regulatory small RNAs (sRNAs). Here we show that the sRNA NsiR4, which is highly expressed under nitrogen limiting conditions, interacts with the mRNA of the recently described small protein PirA in the model strain Synechocystis sp. PCC 6803. In particular, NsiR4 targets the pirA 5'UTR close to the ribosome binding site. Heterologous reporter assays confirmed that this interaction interferes with pirA translation. PirA negatively impacts arginine synthesis under ammonium excess by competing with the central carbon/nitrogen regulator PII that binds to and thereby activates the key enzyme of arginine synthesis, N-acetyl-L-glutamate-kinase (NAGK). Consistently, ectopic nsiR4 expression in Synechocystis resulted in lowered PirA accumulation in response to ammonium upshifts, which also affected intracellular arginine pools. As NsiR4 and PirA are inversely regulated by the global nitrogen transcriptional regulator NtcA, this regulatory axis enables fine tuning of arginine synthesis and conveys additional metabolic flexibility under highly fluctuating nitrogen regimes. Pairs of small protein inhibitors and of sRNAs that control the abundance of these enzyme effectors at the post-transcriptional level appear as fundamental building blocks in the regulation of primary metabolism in cyanobacteria.
Collapse
Affiliation(s)
- Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Luisa Hemm
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Francisco J Florencio
- de Sevilla, Instituto de Bioquímica Vegetal Y FotosíntesisCSIC-Universidad, Sevilla, Spain
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - M Isabel Muro-Pastor
- de Sevilla, Instituto de Bioquímica Vegetal Y FotosíntesisCSIC-Universidad, Sevilla, Spain
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
21
|
Sakamoto T, Takatani N, Sonoike K, Jimbo H, Nishiyama Y, Omata T. Dissection of the Mechanisms of Growth Inhibition Resulting from Loss of the PII Protein in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2021; 62:721-731. [PMID: 33650637 PMCID: PMC8474142 DOI: 10.1093/pcp/pcab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 05/08/2023]
Abstract
In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the coactivator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PIIper se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate the formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by the addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which was not observed in mutants defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in an impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.
Collapse
Affiliation(s)
- Takayuki Sakamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480 Japan
| | - Haruhiko Jimbo
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
- Graduate School of Arts and Sciences, University of Tokyo,Tokyo 153-8902Japan
| | - Yoshitaka Nishiyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| | - Tatsuo Omata
- * Corresponding author: E-mail, ; Fax, +81-52-789-4107
| |
Collapse
|
22
|
Discovery of a small protein factor involved in the coordinated degradation of phycobilisomes in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2012277118. [PMID: 33509926 PMCID: PMC7865187 DOI: 10.1073/pnas.2012277118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During genome analysis, genes encoding small proteins are frequently neglected. Accordingly, small proteins have remained underinvestigated in all domains of life. Based on a previous systematic search for such genes, we present the functional analysis of the 66 amino acids protein NblD in a photosynthetic cyanobacterium. We show that NblD plays a crucial role during the coordinated dismantling of phycobilisome light-harvesting complexes. This disassembly is triggered when the cells become starved for nitrogen, a condition that frequently occurs in nature. Similar to NblA that tags phycobiliproteins for proteolysis, NblD binds to phycocyanin polypeptides but has a different function. The results show that, even in a well-investigated process, crucial new players can be discovered if small proteins are taken into consideration. Phycobilisomes are the major pigment–protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin β-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.
Collapse
|
23
|
Phycobilisome breakdown effector NblD is required to maintain the cellular amino acid composition during nitrogen starvation. J Bacteriol 2021; 204:JB0015821. [PMID: 34228497 PMCID: PMC8765419 DOI: 10.1128/jb.00158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small proteins are critically involved in the acclimation response of photosynthetic cyanobacteria to nitrogen starvation. NblD is the 66-amino-acid effector of nitrogen-limitation-induced phycobilisome breakdown, which is believed to replenish the cellular amino acid pools. To address the physiological functions of NblD, the concentrations of amino acids, intermediates of the arginine catabolism pathway and several organic acids were measured during the response to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803 wild type and in an nblD deletion strain. A characteristic signature of metabolite pool composition was identified, which shows that NblD-mediated phycobilisome degradation is required to maintain the cellular amino acid and organic acid pools during nitrogen starvation. Specific deviations from the wild type suggest wider-reaching effects that also affect such processes as redox homeostasis via glutathione and tetrapyrrole biosynthesis, both of which are linked to the strongly decreased glutamate pool, and transcriptional reprogramming via an enhanced concentration of 2-oxoglutarate, the metabolite co-regulator of the NtcA transcription factor. The essential role played by NblD in metabolic homeostasis is consistent with the widespread occurrence of NblD throughout the cyanobacterial radiation and the previously observed strong positive selection for the nblD gene under fluctuating nitrogen supply. Importance Cyanobacteria play important roles in the global carbon and nitrogen cycles. In their natural environment, these organisms are exposed to fluctuating nutrient conditions. Nitrogen starvation induces a coordinated nitrogen-saving program that includes the breakdown of nitrogen-rich photosynthetic pigments, particularly phycobiliproteins. The small protein NblD was recently identified as an effector of phycobilisome breakdown in cyanobacteria. In this study, we demonstrate that the NblD-mediated degradation of phycobiliproteins is needed to sustain cellular pools of soluble amino acids and other crucial metabolites. The essential role played by NblD in metabolic homeostasis explains why genes encoding this small protein are conserved in almost all members of cyanobacterial radiation.
Collapse
|
24
|
Forchhammer K, Selim KA. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 2020; 44:33-53. [PMID: 31617886 PMCID: PMC8042125 DOI: 10.1093/femsre/fuz025] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon/nitrogen (C/N) balance sensing is a key requirement for the maintenance of cellular homeostasis. Therefore, cyanobacteria have evolved a sophisticated signal transduction network targeting the metabolite 2-oxoglutarate (2-OG), the carbon skeleton for nitrogen assimilation. It serves as a status reporter for the cellular C/N balance that is sensed by transcription factors NtcA and NdhR and the versatile PII-signaling protein. The PII protein acts as a multitasking signal-integrating regulator, combining the 2-OG signal with the energy state of the cell through adenyl-nucleotide binding. Depending on these integrated signals, PII orchestrates metabolic activities in response to environmental changes through binding to various targets. In addition to 2-OG, other status reporter metabolites have recently been discovered, mainly indicating the carbon status of the cells. One of them is cAMP, which is sensed by the PII-like protein SbtB. The present review focuses, with a main emphasis on unicellular model strains Synechoccus elongatus and Synechocystis sp. PCC 6803, on the physiological framework of these complex regulatory loops, the tight linkage to metabolism and the molecular mechanisms governing the signaling processes.
Collapse
Affiliation(s)
- Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Khaled A Selim
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
25
|
Labella JI, Cantos R, Salinas P, Espinosa J, Contreras A. Distinctive Features of PipX, a Unique Signaling Protein of Cyanobacteria. Life (Basel) 2020; 10:life10060079. [PMID: 32481703 PMCID: PMC7344720 DOI: 10.3390/life10060079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA, two key regulators involved in the integration of signals of the nitrogen/carbon and energy status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria. PipX provides a mechanistic link between PII, the most widely distributed signaling protein, and NtcA, a global transcriptional regulator of cyanobacteria. PII, required for cell survival unless PipX is inactivated or down-regulated, functions by protein–protein interactions with transcriptional regulators, transporters, and enzymes. In addition, PipX appears to be involved in a wider signaling network, supported by the following observations: (i) PII–PipX complexes interact with PlmA, an as yet poorly characterized transcriptional regulator also restricted to cyanobacteria; (ii) the pipX gene is functionally connected with pipY, a gene encoding a universally conserved pyridoxal phosphate binding protein (PLPBP) involved in vitamin B6 and amino acid homeostasis, whose loss-of-function mutations cause B6-dependent epilepsy in humans, and (iii) pipX is part of a relatively robust, six-node synteny network that includes pipY and four additional genes that might also be functionally connected with pipX. In this overview, we propose that the study of the protein–protein interaction and synteny networks involving PipX would contribute to understanding the peculiarities and idiosyncrasy of signaling pathways that are conserved in cyanobacteria.
Collapse
|
26
|
Ganesh I, Gwon DA, Lee JW. Gas-Sensing Transcriptional Regulators. Biotechnol J 2020; 15:e1900345. [PMID: 32362055 DOI: 10.1002/biot.201900345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Indexed: 11/10/2022]
Abstract
Gas molecules are ubiquitous in the environment and are used as nutrient and energy sources for living organisms. Many organisms, therefore, have developed gas-sensing systems to respond efficiently to changes in the atmospheric environment. In microorganisms and plants, two-component systems (TCSs) and transcription factors (TFs) are two primary mechanisms to sense gas molecules. In this review, gas-sensing transcriptional regulators, TCSs, and TFs, focusing on protein structures, mechanisms of gas molecule interaction, DNA binding regions of transcriptional regulators, signal transduction mechanisms, and gene expression regulation are discussed. At first, transcriptional regulators that directly sense gas molecules with the help of a prosthetic group is described and then gas-sensing systems that indirectly recognize the presence of gas molecules is explained. Overall, this review provides a comprehensive understanding of gas-sensing transcriptional regulators in microorganisms and plants, and proposes a future perspective on the use of gas-sensing transcriptional regulators.
Collapse
Affiliation(s)
- Irisappan Ganesh
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
27
|
Thiel T. Organization and regulation of cyanobacterial nif gene clusters: implications for nitrogenase expression in plant cells. FEMS Microbiol Lett 2020; 366:5470946. [PMID: 31062027 DOI: 10.1093/femsle/fnz077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
For over 50 years scientists have considered the possibility of engineering a plant with nitrogen fixation capability, freeing farmers from their dependence on nitrogen fertilizers. With the development of the tools of synthetic biology, more progress has been made toward this goal in the last 5 years than in the previous five decades. Most of the effort has focused on nitrogenase genes from Klebsiella oxytoca, which has complex gene regulation. There may be advantages in using nitrogenase genes from cyanobacteria, which comprise large polycistronic gene clusters that may be easier to manipulate and eventually express in a plant. The fact that some diatoms have a cyanobacterial nitrogen fixing organelle further supports the idea that a cyanobacterial nitrogenase gene cluster may function in a newly-engineered, cyanobacterial-based plant organelle, a nitroplast. This review describes recent attempts to express the nif genes from Anabaena variabilis ATCC 29413, Leptolyngbya boryana dg5 and Cyanothece sp. ATCC 51142 in heterologous cyanobacteria in the context of the organization of the nitrogenase genes and their regulation by the transcription factor CnfR via its highly conserved binding sites.
Collapse
Affiliation(s)
- Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121, USA
| |
Collapse
|
28
|
Labella JI, Llop A, Contreras A. The default cyanobacterial linked genome: an interactive platform based on cyanobacterial linkage networks to assist functional genomics. FEBS Lett 2020; 594:1661-1674. [PMID: 32233038 DOI: 10.1002/1873-3468.13775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 01/01/2023]
Abstract
A database of cyanobacterial linked genomes that can be accessed through an interactive platform (https://dfgm.ua.es/genetica/investigacion/cyanobacterial_genetics/Resources.html) was generated on the bases of conservation of gene neighborhood across 124 cyanobacterial species. It allows flexible generation of gene networks at different threshold values. The default cyanobacterial linked genome, whose global properties are analyzed here, connects most of the cyanobacterial core genes. The potential of the web tool is discussed in relation to other bioinformatics approaches based on guilty-by-association principles, with selected examples of networks illustrating its usefulness for genes found exclusively in cyanobacteria or in cyanobacteria and chloroplasts. We believe that this tool will provide useful predictions that are readily testable in Synechococcus elongatus PCC7942 and other model organisms performing oxygenic photosynthesis.
Collapse
Affiliation(s)
- Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Asuncion Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| |
Collapse
|
29
|
Muro-Pastor AM, Hess WR. Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194477. [PMID: 31884117 DOI: 10.1016/j.bbagrm.2019.194477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
30
|
Selim KA, Haffner M, Watzer B, Forchhammer K. Tuning the in vitro sensing and signaling properties of cyanobacterial PII protein by mutation of key residues. Sci Rep 2019; 9:18985. [PMID: 31831819 PMCID: PMC6908673 DOI: 10.1038/s41598-019-55495-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
PII proteins comprise an ancient superfamily of signal transduction proteins, widely distributed among all domains of life. In general, PII proteins measure and integrate the current carbon/nitrogen/energy status of the cell through interdependent binding of ATP, ADP and 2-oxogluterate. In response to effector molecule binding, PII proteins interact with various PII-receptors to tune central carbon- and nitrogen metabolism. In cyanobacteria, PII regulates, among others, the key enzyme for nitrogen-storage, N-acetyl-glutamate kinase (NAGK), and the co-activator of the global nitrogen-trascription factor NtcA, the PII-interacting protein-X (PipX). One of the remarkable PII variants from Synechococcus elongatus PCC 7942 that yielded mechanistic insights in PII-NAGK interaction, is the NAGK-superactivating variant I86N. Here we studied its interaction with PipX. Another critical residue is Lys58, forming a salt-bridge with 2-oxoglutarate in a PII-ATP-2-oxoglutarate complex. Here, we show that Lys58 of PII protein is a key residue for mediating PII interactions. The K58N mutation not only causes the loss of 2-oxogluterate binding but also strongly impairs binding of ADP, NAGK and PipX. Remarkably, the exchange of the nearby Leu56 to Lys in the K58N variant partially compensates for the loss of K58. This study demonstrates the potential of creating custom tailored PII variants to modulate metabolism.
Collapse
Affiliation(s)
- Khaled A Selim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Organismic Interactions, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| | - Michael Haffner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Organismic Interactions, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Björn Watzer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Organismic Interactions, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Organismic Interactions, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
31
|
Krynická V, Georg J, Jackson PJ, Dickman MJ, Hunter CN, Futschik ME, Hess WR, Komenda J. Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium Synechocystis sp strain PCC 6803. THE PLANT CELL 2019; 31:2912-2928. [PMID: 31615847 PMCID: PMC6925008 DOI: 10.1105/tpc.19.00411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/03/2019] [Accepted: 10/13/2019] [Indexed: 05/04/2023]
Abstract
The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.
Collapse
Affiliation(s)
- Vendula Krynická
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Jens Georg
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Matthias E Futschik
- School of Biomedical Sciences, Institute of Translational and Stratified Medicine (ITSMed), Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrße 19, D-79104 Freiburg, Germany
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
| |
Collapse
|
32
|
Arisaka S, Terahara N, Oikawa A, Osanai T. Increased polyhydroxybutyrate levels by ntcA overexpression in Synechocystis sp. PCC 6803. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Cantos R, Labella JI, Espinosa J, Contreras A. The nitrogen regulator PipX acts in cis to prevent operon polarity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:495-507. [PMID: 30126050 DOI: 10.1111/1758-2229.12688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to important environmental challenges, like those imposed by the succession of days and nights. Not surprisingly, certain regulatory proteins are found exclusively in this phylum. One of these unique factors, PipX, provides a mechanistic link between signals of carbon/nitrogen and of energy, transduced by the signalling protein PII, and the control of gene expression by the global nitrogen regulator NtcA. Here we report a new regulatory function of PipX: enhancement in cis of pipY expression, a gene encoding a universally conserved protein involved in amino/keto acid and Pyridoxal phosphate homeostasis. In Synechococcus elongatus and many other cyanobacteria these genes are expressed as a bicistronic pipXY operon. Despite being cis-acting, polarity suppression by PipX is nevertheless reminiscent of the function of NusG paralogues typified by RfaH, which are non-essential operon-specific bacterial factors acting in trans to upregulate horizontally-acquired genes. Furthermore, PipX and members of the NusG superfamily share a TLD/KOW structural domain, suggesting regulatory interactions of PipX with the translation machinery. Our results also suggest that the cis-acting function of PipX is a sophisticated regulatory strategy for maintaining appropriate PipX-PipY stoichiometry.
Collapse
Affiliation(s)
- Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
34
|
Klähn S, Bolay P, Wright PR, Atilho RM, Brewer KI, Hagemann M, Breaker RR, Hess WR. A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria. Nucleic Acids Res 2019; 46:10082-10094. [PMID: 30085248 PMCID: PMC6212724 DOI: 10.1093/nar/gky709] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
As the key enzyme of bacterial nitrogen assimilation, glutamine synthetase (GS) is tightly regulated. In cyanobacteria, GS activity is controlled by the interaction with inactivating protein factors IF7 and IF17 encoded by the genes gifA and gifB, respectively. We show that a glutamine-binding aptamer within the gifB 5′ UTR of Synechocystis sp. PCC 6803 is critical for the expression of IF17. Binding of glutamine induced structural re-arrangements in this RNA element leading to enhanced protein synthesis in vivo and characterizing it as a riboswitch. Mutagenesis showed the riboswitch mechanism to contribute at least as much to the control of gene expression as the promoter-mediated transcriptional regulation. We suggest this and a structurally related but distinct element, to be designated type 1 and type 2 glutamine riboswitches. Extended biocomputational searches revealed that glutamine riboswitches are exclusively but frequently found in cyanobacterial genomes, where they are primarily associated with gifB homologs. Hence, this RNA-based sensing mechanism is common in cyanobacteria and establishes a regulatory feedback loop that couples the IF17-mediated GS inactivation to the intracellular glutamine levels. Together with the previously described sRNA NsiR4, these results show that non-coding RNA is an indispensable component in the control of nitrogen assimilation in cyanobacteria.
Collapse
Affiliation(s)
- Stephan Klähn
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Department of Solar Materials, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Paul Bolay
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patrick R Wright
- Bioinformatics, Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Ruben M Atilho
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kenneth I Brewer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ronald R Breaker
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Germany
| |
Collapse
|
35
|
Watzer B, Spät P, Neumann N, Koch M, Sobotka R, Macek B, Hennrich O, Forchhammer K. The Signal Transduction Protein P II Controls Ammonium, Nitrate and Urea Uptake in Cyanobacteria. Front Microbiol 2019; 10:1428. [PMID: 31293555 PMCID: PMC6603209 DOI: 10.3389/fmicb.2019.01428] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 11/22/2022] Open
Abstract
PII signal transduction proteins are widely spread among all domains of life where they regulate a multitude of carbon and nitrogen metabolism related processes. Non-diazotrophic cyanobacteria can utilize a high variety of organic and inorganic nitrogen sources. In recent years, several physiological studies indicated an involvement of the cyanobacterial PII protein in regulation of ammonium, nitrate/nitrite, and cyanate uptake. However, direct interaction of PII has not been demonstrated so far. In this study, we used biochemical, molecular genetic and physiological approaches to demonstrate that PII regulates all relevant nitrogen uptake systems in Synechocystis sp. strain PCC 6803: PII controls ammonium uptake by interacting with the Amt1 ammonium permease, probably similar to the known regulation of E. coli ammonium permease AmtB by the PII homolog GlnK. We could further clarify that PII mediates the ammonium- and dark-induced inhibition of nitrate uptake by interacting with the NrtC and NrtD subunits of the nitrate/nitrite transporter NrtABCD. We further identified the ABC-type urea transporter UrtABCDE as novel PII target. PII interacts with the UrtE subunit without involving the standard interaction surface of PII interactions. The deregulation of urea uptake in a PII deletion mutant causes ammonium excretion when urea is provided as nitrogen source. Furthermore, the urea hydrolyzing urease enzyme complex appears to be coupled to urea uptake. Overall, this study underlines the great importance of the PII signal transduction protein in the regulation of nitrogen utilization in cyanobacteria.
Collapse
Affiliation(s)
- Björn Watzer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Philipp Spät
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany.,Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czechia
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Oliver Hennrich
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Carbon Fate and Flux in Prochlorococcus under Nitrogen Limitation. mSystems 2019; 4:mSystems00254-18. [PMID: 30834330 PMCID: PMC6392094 DOI: 10.1128/msystems.00254-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 11/20/2022] Open
Abstract
Primary production by Prochlorococcus, the smallest known free-living photosynthetic organism in terms of both physical and genomic size, is thought to have a significant role in global carbon cycles. Despite its small size and low growth rate, Prochlorococcus numerically dominates the phytoplankton community in the nutrient-poor oligotrophic ocean, the largest biome of the Earth's surface. How nutrient limitation, and nitrogen limitation in particular, affects the fate and flux of carbon fixed by Prochlorococcus is currently unknown. To address this gap in knowledge, we compared the bulk rates of photosynthesis and organic carbon release, the concentrations of intracellular metabolites, and the rates of assimilated carbon into the metabolite pools between replete and N-limited chemostat cultures. Total photosynthesis of our N-limited cultures was less than half of those observed in replete cultures, and nitrogen limitation also appears to cause a larger proportion of total fixed carbon to be released to the environment. Our data suggest this occurs in concert with the maintenance of large slow-moving pools of metabolites, including nitrogen-rich molecules such as glutamate. Additionally, we report field data suggesting metabolisms of Prochlorococcus are comparable to results we observe in our laboratory studies. Accounting for these observations, potential metabolic mechanisms utilized by Prochlorococcus are discussed as we build upon our understanding of nutrient-limited photosynthesis and carbon metabolism. IMPORTANCE Photosynthetic microbes are the predominant sources of organic carbon in the sunlit regions of the ocean. During photosynthesis, nitrogen and carbon metabolism are coordinated to synthesize nitrogen-containing organics such as amino acids and nucleic acids. In large regions of the ocean, nitrogen is thought to limit the growth of phytoplankton. The impact of nitrogen limitation on the synthesis of organic carbon is not well understood, especially for the most abundant photosynthetic organism in the nitrogen-limited regions of the ocean, Prochlorococcus. This study compares the carbon metabolism of nitrogen-replete and nitrogen-limited Prochlorococcus spp. to determine how nitrogen availability influences inorganic carbon assimilation into an organic form. Metabolomics and physiological data revealed that cells under nitrogen limitation have reduced metabolic flux and total carbon fixation rates while maintaining elevated metabolite pool levels and releasing a larger proportion of total fixed carbon to the environment.
Collapse
|
37
|
Lambrecht SJ, Wahlig JML, Steglich C. The GntR family transcriptional regulator PMM1637 regulates the highly conserved cyanobacterial sRNA Yfr2 in marine picocyanobacteria. DNA Res 2019; 25:489-497. [PMID: 29901694 PMCID: PMC6191309 DOI: 10.1093/dnares/dsy019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Prochlorococcus is a marine picocyanobacterium with a streamlined genome that is adapted to different ecological niches in the oligotrophic oceans. There are currently >20 regulatory small RNAs (sRNAs) that have been identified in the model strain Prochlorococcus MED4. While most of these sRNAs are ecotype-specific, sRNA homologs of Yfr1 and of the Yfr2 family are widely found throughout the cyanobacterial phylum. Although they were identified 13 yrs ago, the functions of Yfr1 and Yfr2 have remained unknown. We observed a strong induction of two Yfr2 sRNA homologs of Prochlorococcus MED4 during high light stress and nitrogen starvation. Several Prochlorococcus and marine Synechococcus yfr2 promoter regions contain a conserved motif we named CGRE1 (cyanobacterial GntR family transcriptional regulator responsive element 1). Using the conserved promoter region as bait in a DNA affinity pull-down assay we identified the GntR family transcriptional regulator PMM1637 as a binding partner. Similar to Yfr2, homologs of PMM1637 are universally and exclusively found in cyanobacteria. We suggest that PMM1637 governs the induction of gene expression of Yfr2 homologs containing CGRE1 in their promoters under nitrogen-depleted and high-light stress conditions.
Collapse
Affiliation(s)
- S Joke Lambrecht
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - J Mascha L Wahlig
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. TRENDS IN PLANT SCIENCE 2018; 23:1116-1130. [PMID: 30292707 DOI: 10.1016/j.tplants.2018.09.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Carbon and nitrogen are the two most abundant nutrient elements for all living organisms, and their metabolism is tightly coupled. What are the signaling mechanisms that cells use to sense and control the carbon/nitrogen (C/N) metabolic balance following environmental changes? Based on studies in cyanobacteria, it was found that 2-phosphoglycolate derived from the oxygenase activity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and 2-oxoglutarate from the Krebs cycle act as the carbon- and nitrogen-starvation signals, respectively, and their concentration ratio likely reflects the status of the C/N metabolic balance. We will present and discuss the regulatory principles underlying the signaling mechanisms, which are likely to be conserved in other photosynthetic organisms. These concepts may also contribute to developments in the field of biofuel engineering or improvements in crop productivity.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Aix-Marseille Université, CNRS, LCB, France.
| | - Cong-Zhao Zhou
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisée Ligue Contre le Cancer, CINaM UMR 7325, 13288 Marseille, France
| |
Collapse
|
39
|
Forchhammer K, Schwarz R. Nitrogen chlorosis in unicellular cyanobacteria – a developmental program for surviving nitrogen deprivation. Environ Microbiol 2018; 21:1173-1184. [DOI: 10.1111/1462-2920.14447] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University Tübingen Auf der Morgenstelle 28, 72076 Tübingen Germany
| | - Rakefet Schwarz
- The Mina & Everard Goodman Faculty of Life SciencesBar‐Ilan University Ramat‐Gan 5290002 Israel
| |
Collapse
|
40
|
Forcada-Nadal A, Llácer JL, Contreras A, Marco-Marín C, Rubio V. The P II-NAGK-PipX-NtcA Regulatory Axis of Cyanobacteria: A Tale of Changing Partners, Allosteric Effectors and Non-covalent Interactions. Front Mol Biosci 2018; 5:91. [PMID: 30483512 PMCID: PMC6243067 DOI: 10.3389/fmolb.2018.00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
PII, a homotrimeric very ancient and highly widespread (bacteria, archaea, plants) key sensor-transducer protein, conveys signals of abundance or poorness of carbon, energy and usable nitrogen, converting these signals into changes in the activities of channels, enzymes, or of gene expression. PII sensing is mediated by the PII allosteric effectors ATP, ADP (and, in some organisms, AMP), 2-oxoglutarate (2OG; it reflects carbon abundance and nitrogen scarcity) and, in many plants, L-glutamine. Cyanobacteria have been crucial for clarification of the structural bases of PII function and regulation. They are the subject of this review because the information gathered on them provides an overall structure-based view of a PII regulatory network. Studies on these organisms yielded a first structure of a PII complex with an enzyme, (N-acetyl-Lglutamate kinase, NAGK), deciphering how PII can cause enzyme activation, and how it promotes nitrogen stockpiling as arginine in cyanobacteria and plants. They have also revealed the first clear-cut mechanism by which PII can control gene expression. A small adaptor protein, PipX, is sequestered by PII when nitrogen is abundant and is released when is scarce, swapping partner by binding to the 2OG-activated transcriptional regulator NtcA, co-activating it. The structures of PII-NAGK, PII-PipX, PipX alone, of NtcA in inactive and 2OG-activated forms and as NtcA-2OG-PipX complex, explain structurally PII regulatory functions and reveal the changing shapes and interactions of the T-loops of PII depending on the partner and on the allosteric effectors bound to PII. Cyanobacterial studies have also revealed that in the PII-PipX complex PipX binds an additional transcriptional factor, PlmA, thus possibly expanding PipX roles beyond NtcA-dependency. Further exploration of these roles has revealed a functional interaction of PipX with PipY, a pyridoxal-phosphate (PLP) protein involved in PLP homeostasis whose mutations in the human ortholog cause epilepsy. Knowledge of cellular levels of the different components of this PII-PipX regulatory network and of KD values for some of the complexes provides the basic background for gross modeling of the system at high and low nitrogen abundance. The cyanobacterial network can guide searches for analogous components in other organisms, particularly of PipX functional analogs.
Collapse
Affiliation(s)
- Alicia Forcada-Nadal
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - José Luis Llácer
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos III, Valencia, Spain
| |
Collapse
|
41
|
Bolay P, Muro-Pastor MI, Florencio FJ, Klähn S. The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life (Basel) 2018; 8:E52. [PMID: 30373240 PMCID: PMC6316151 DOI: 10.3390/life8040052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
42
|
Cyanophycin Synthesis Optimizes Nitrogen Utilization in the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2018; 84:AEM.01298-18. [PMID: 30120117 DOI: 10.1128/aem.01298-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
Cyanophycin is a carbon/nitrogen storage polymer widely distributed in most cyanobacterial strains and in a few heterotrophic bacteria. It is a nonribosomal polypeptide consisting of equimolar amounts of aspartate and arginine. Here, we focused on the physiological function and cell biology of cyanophycin in the unicellular nondiazotrophic cyanobacterium Synechocystis sp. strain PCC 6803. To study the cellular localization of the cyanophycin-synthesizing enzyme CphA during cyanophycin synthesis and degradation, we fused it to green fluorescent protein. When CphA was inactive, it localized diffusely in the cytoplasm. When cyanophycin synthesis was triggered, CphA first aggregated into foci and later localized on the surface of cyanophycin granules. In the corresponding cell extracts, localization of CphA on the cyanophycin granule surface required Mg2+ During cyanophycin degradation, CphA dissociated from the granule surface and returned to its inactive form in the cytoplasm. To investigate the physiological role of cyanophycin, we compared wild-type cells with a CphA-deficient mutant. Under standard laboratory conditions, the ability to synthesize cyanophycin did not confer a growth advantage. To mimic the situation in natural habitats, cells were cultured with a fluctuating and limiting nitrogen supplementation and/or day/night cycles. Under all of these conditions, cyanophycin provided a fitness advantage to the wild type over the mutant lacking cyanophycin. During resuscitation from nitrogen starvation, wild-type cells accumulated cyanophycin during the night and used it as an internal nitrogen source during the day. This demonstrates that cyanophycin can be used as a temporary nitrogen storage to uncouple nitrogen assimilation from photosynthesis.IMPORTANCE We clarified the elusive biological function of cyanophycin in the nondiazotrophic cyanobacterium Synechocystis sp. PCC 6803. Cyanophycin is a dynamic carbon/nitrogen storage polymer (multi-arginyl-l-polyaspartate) that is conditionally present in most cyanobacteria and a few heterotrophic bacteria as cellular inclusion granules. Here, we show that the cyanophycin-synthesizing enzyme CphA in the nonactive state localizes diffusely in the cytoplasm. When cyanophycin synthesis is triggered, active CphA first aggregates into foci and then covers the surface of mature cyanophycin granules, which in vitro requires Mg2+ as a cofactor. Cyanophycin accumulation enables Synechocystis sp. to optimize nitrogen assimilation under nitrogen-poor conditions, in particular when the nitrogen supply fluctuates and during day/night cycles, by allowing continuous nitrogen assimilation and storage. Therefore, cyanophycin provides the wild-type cyanobacterium with a clear fitness advantage over non-cyanophycin-producing cells in natural environments with fluctuating nitrogen supply.
Collapse
|
43
|
Sun T, Li S, Song X, Diao J, Chen L, Zhang W. Toolboxes for cyanobacteria: Recent advances and future direction. Biotechnol Adv 2018; 36:1293-1307. [DOI: 10.1016/j.biotechadv.2018.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/09/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
|
44
|
Espinosa J, Labella JI, Cantos R, Contreras A. Energy drives the dynamic localization of cyanobacterial nitrogen regulators during diurnal cycles. Environ Microbiol 2018; 20:1240-1252. [PMID: 29441670 DOI: 10.1111/1462-2920.14071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to the challenges imposed by the succession of days and nights. Two conserved cyanobacterial proteins, PII and PipX, function as hubs of the nitrogen interaction network, forming complexes with a variety of diverse targets. While PII proteins are found in all three domains of life as integrators of signals of the nitrogen and carbon balance, PipX proteins are unique to cyanobacteria, where they provide a mechanistic link between PII signalling and the control of gene expression by the global nitrogen regulator NtcA. Here we demonstrate that PII and PipX display distinct localization patterns during diurnal cycles, co-localizing into the same foci at the periphery and poles of the cells during dark periods, a circadian-independent process requiring a low ATP/ADP ratio. Genetic, cellular biology and biochemical approaches used here provide new insights into the nitrogen regulatory network, calling attention to the roles of PII as energy sensors and its interactions with PipX in the context of essential signalling pathways. This study expands the contribution of the nitrogen regulators PII and PipX to integrate and transduce key environmental signals that allow cyanobacteria to thrive in our planet.
Collapse
Affiliation(s)
- Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - José I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
45
|
Esteves-Ferreira AA, Inaba M, Fort A, Araújo WL, Sulpice R. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit Rev Microbiol 2018. [DOI: 10.1080/1040841x.2018.1446902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alberto A. Esteves-Ferreira
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Masami Inaba
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Antoine Fort
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Wagner L. Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ronan Sulpice
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| |
Collapse
|
46
|
Adhikarla H, Wunder EA, Mechaly AE, Mehta S, Wang Z, Santos L, Bisht V, Diggle P, Murray G, Adler B, Lopez F, Townsend JP, Groisman E, Picardeau M, Buschiazzo A, Ko AI. Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira. Front Cell Infect Microbiol 2018; 8:45. [PMID: 29600195 PMCID: PMC5863495 DOI: 10.3389/fcimb.2018.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 11/17/2022] Open
Abstract
Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira. In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one (lvrB) or both genes (lvrA/B) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium.
Collapse
Affiliation(s)
- Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Ariel E Mechaly
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sameet Mehta
- Yale Centre for Genome Analysis, West Haven, CT, United States
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Luciane Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Vimla Bisht
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Peter Diggle
- Lancaster Medical School, Lancaster, United Kingdom
| | - Gerald Murray
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ben Adler
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, VIC, Australia
| | - Francesc Lopez
- Yale Centre for Genome Analysis, West Haven, CT, United States
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Eduardo Groisman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | | | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Microbiology, Institut Pasteur, Paris, France
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States.,Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Brazil
| |
Collapse
|
47
|
Domínguez-Martín MA, López-Lozano A, Clavería-Gimeno R, Velázquez-Campoy A, Seidel G, Burkovski A, Díez J, García-Fernández JM. Differential NtcA Responsiveness to 2-Oxoglutarate Underlies the Diversity of C/N Balance Regulation in Prochlorococcus. Front Microbiol 2018; 8:2641. [PMID: 29375510 PMCID: PMC5767323 DOI: 10.3389/fmicb.2017.02641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022] Open
Abstract
Previous studies showed differences in the regulatory response to C/N balance in Prochlorococcus with respect to other cyanobacteria, but no information was available about its causes, or the ecological advantages conferred to thrive in oligotrophic environments. We addressed the changes in key enzymes (glutamine synthetase, isocitrate dehydrogenase) and the ntcA gene (the global nitrogen regulator) involved in C/N metabolism and its regulation, in three model Prochlorococcus strains: MED4, SS120, and MIT9313. We observed a remarkable level of diversity in their response to azaserine, a glutamate synthase inhibitor which increases the concentration of the key metabolite 2-oxoglutarate, used to sense the C/N balance by cyanobacteria. Besides, we studied the binding between the global nitrogen regulator (NtcA) and the promoter of the glnA gene in the same Prochlorococcus strains, and its dependence on the 2-oxoglutarate concentration, by using isothermal titration calorimetry, surface plasmon resonance, and electrophoretic mobility shift. Our results show a reduction in the responsiveness of NtcA to 2-oxoglutarate in Prochlorococcus, especially in the MED4 and SS120 strains. This suggests a trend to streamline the regulation of C/N metabolism in late-branching Prochlorococcus strains (MED4 and SS120), in adaptation to the rather stable conditions found in the oligotrophic ocean gyres where this microorganism is most abundant.
Collapse
Affiliation(s)
- María A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Clavería-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units BIFI-IQFR-CSIC and GBsC-BIFI-CSIC, Universidad de Zaragoza, Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units BIFI-IQFR-CSIC and GBsC-BIFI-CSIC, Universidad de Zaragoza, Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.,Fundación ARAID, Gobierno de Aragón, Zaragoza, Spain
| | - Gerald Seidel
- Professur für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Burkovski
- Professur für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
48
|
Production of Bioplastic Compounds by Genetically Manipulated and Metabolic Engineered Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:155-169. [DOI: 10.1007/978-981-13-0854-3_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Banerjee S, Subramanian A, Chattopadhyay J, Sarkar RR. Exploring the role of GS-GOGAT cycle in microcystin synthesis and regulation - a model based analysis. MOLECULAR BIOSYSTEMS 2017; 13:2603-2614. [PMID: 29034927 DOI: 10.1039/c7mb00342k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toxic cyanobacteria blooms populate water bodies by consuming external nutrients and releasing cyanotoxins that are detrimental for other aquatic species, producing a significant impact on the plankton ecosystem and food web. To exercise population-level control of toxin production, understanding the biochemical mechanisms that explain cyanotoxin regulation within a bacterial cell is of utmost importance. In this study, we explore the mechanistic events to investigate the dependence of toxin microcystin on external nitrogen, a known regulator of the toxin, and for the first time, propose a kinetic model that analyzes the intracellular conditions required to ensure nitrogen dependence on microcystin. We hypothesize that the GS-GOGAT cycle is manipulated by variable influx of different intracellular metabolites that can either disturb or promote the balance between the enzyme microcystin synthetase and substrate glutamate to produce variable microcystin levels. As opposed to the popular notion that nitrogen starvation increases microcystin synthesis, our analyses suggest that under certain intracellular metabolite regimes, this relationship can either be completely lost or reversed. External nitrogen can only complement the conditions fixed by intracellular glutamate, glutamine and 2-oxoglutarate. This mechanistic understanding can provide an experimentally testable hypothesis for exploring the less-known biology of microcystin synthesis and designing specific interventions.
Collapse
Affiliation(s)
- Swarnendu Banerjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| | | | | | | |
Collapse
|
50
|
Xiao Y, Jiang W, Zhang F. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin. ACS Synth Biol 2017; 6:1807-1815. [PMID: 28683543 DOI: 10.1021/acssynbio.7b00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Energy, Environmental and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wen Jiang
- Department of Energy, Environmental and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|