1
|
Koenig JFE. T follicular helper and memory B cells in IgE recall responses. Allergol Int 2025; 74:4-12. [PMID: 39562254 DOI: 10.1016/j.alit.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
IgE antibodies raised against innocuous environmental antigens cause allergic diseases like allergic rhinitis, food allergy, and allergic asthma. While some allergies are often outgrown, others (peanut, shellfish, tree nut) are lifelong in the majority of individuals. Lifelong allergies are the result of persistent production of allergen-specific IgE. However, IgE antibodies and the plasma cells that secrete them tend to be short-lived. Persistent allergen-specific IgE titres are thought to be derived from the continued renewal of IgE plasma cells from memory B cells in response to allergen encounters. The initial generation of allergen-specific IgE is driven by B cell activation by IL-4 producing Tfh cells, but the cellular and molecular mechanisms of the long-term production of IgE are poorly characterized. This review investigates the mechanisms governing IgE production and Tfh activation in the primary and recall responses, towards the objective of identifying molecular targets for therapeutic intervention that durably inactivate the IgE recall response.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Schroeder Allergy and Immunology Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
3
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
4
|
Yada Y, Matsumoto M, Inoue T, Baba A, Higuchi R, Kawai C, Yanagisawa M, Kitamura D, Ohga S, Kurosaki T, Baba Y. STIM-mediated calcium influx regulates maintenance and selection of germinal center B cells. J Exp Med 2024; 221:e20222178. [PMID: 37902601 PMCID: PMC10615893 DOI: 10.1084/jem.20222178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/02/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Positive selection of high-affinity germinal center (GC) B cells is driven by antigen internalization through their B cell receptor (BCR) and presentation to follicular helper T cells. However, the requirements of BCR signaling in GC B cells remain poorly understood. Store-operated Ca2+ entry, mediated by stromal interacting molecule 1 (STIM1) and STIM2, is the main Ca2+ influx pathway triggered by BCR engagement. Here, we showed that STIM-deficient B cells have reduced B cell competitiveness compared with wild-type B cells during GC responses. B cell-specific deletion of STIM proteins decreased the number of high-affinity B cells in the late phase of GC formation. STIM deficiency did not affect GC B cell proliferation and antigen presentation but led to the enhancement of apoptosis due to the impaired upregulation of anti-apoptotic Bcl2a1. STIM-mediated activation of NFAT was required for the expression of Bcl2a1 after BCR stimulation. These findings suggest that STIM-mediated survival signals after antigen capture regulate the optimal selection and maintenance of GC B cells.
Collapse
Affiliation(s)
- Yutaro Yada
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Matsumoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Higuchi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Betzler AC, Brunner C. The Role of the Transcriptional Coactivator BOB.1/OBF.1 in Adaptive Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:53-77. [PMID: 39017839 DOI: 10.1007/978-3-031-62731-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany.
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany.
| |
Collapse
|
6
|
Podestà MA, Cavazzoni CB, Hanson BL, Bechu ED, Ralli G, Clement RL, Zhang H, Chandrakar P, Lee JM, Reyes-Robles T, Abdi R, Diallo A, Sen DR, Sage PT. Stepwise differentiation of follicular helper T cells reveals distinct developmental and functional states. Nat Commun 2023; 14:7712. [PMID: 38001088 PMCID: PMC10674016 DOI: 10.1038/s41467-023-43427-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Follicular helper T (Tfh) cells are essential for the formation of high affinity antibodies after vaccination or infection. Although the signals responsible for initiating Tfh differentiation from naïve T cells have been studied, the signals controlling sequential developmental stages culminating in optimal effector function are not well understood. Here we use fate mapping strategies for the cytokine IL-21 to uncover sequential developmental stages of Tfh differentiation including a progenitor-like stage, a fully developed effector stage and a post-effector Tfh stage that maintains transcriptional and epigenetic features without IL-21 production. We find that progression through these stages are controlled intrinsically by the transcription factor FoxP1 and extrinsically by follicular regulatory T cells. Through selective deletion of Tfh stages, we show that these cells control antibody dynamics during distinct stages of the germinal center reaction in response to a SARS-CoV-2 vaccine. Together, these studies demonstrate the sequential phases of Tfh development and how they promote humoral immunity.
Collapse
Affiliation(s)
- Manuel A Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Renal Division, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Cecilia B Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Hanson
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elsa D Bechu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Garyfallia Ralli
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel L Clement
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alos Diallo
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Debattama R Sen
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Zeng S, Crichton ES, Ford ML, Badell IR. Memory T follicular helper cells drive donor-specific antibodies independent of memory B cells and primary germinal center and alloantibody formation. Am J Transplant 2023; 23:1511-1525. [PMID: 37302575 PMCID: PMC11228286 DOI: 10.1016/j.ajt.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Human leukocyte antigen antibodies are important immunologic mediators of renal allograft loss and are difficult to control. The inability to permanently eliminate donor-specific antibodies (DSA) is partly due to an incomplete understanding of the cellular mechanisms driving alloantibody formation, recurrence, and maintenance. Memory T follicular helper (mTfh) cells rapidly interact with memory B cells upon antigen re-exposure for anamnestic humoral responses, but little is known about Tfh memory in transplantation. We hypothesized that alloreactive mTfh cells form after transplantation and play a critical role in DSA formation following alloantigen re-encounter. To test this hypothesis, we utilized murine skin allograft models to identify and characterize Tfh memory and interrogate its ability to mediate alloantibody responses. We identified alloreactive Tfh memory as a mediator of accelerated humoral alloresponses independent of memory B cells and primary germinal center, or DSA, formation. Furthermore, we demonstrate that mTfh-driven alloantibody formation is susceptible to CD28 costimulation blockade. These findings provide novel insight into a pathologic role for memory Tfh in alloantibody responses and strongly support shifting therapeutic focus from the singular targeting of B cell lineage cells and alloantibodies themselves to multimodal strategies that include inhibition of mTfh cells to treat DSA.
Collapse
Affiliation(s)
- Shan Zeng
- Emory Transplant Center, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II-peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout the body and not only protect the tissues from reinfection and cancer, but also participate in allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration and human immunodeficiency virus reservoirs as well as key technological advances that are facilitating the characterization of memory CD4+ T cell biology.
Collapse
Affiliation(s)
- Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Araujo IL, Piraine REA, Fischer G, Leite FPL. Recombinant BoHV-5 glycoprotein (rgD5) elicits long-lasting protective immunity in cattle. Virology 2023; 584:44-52. [PMID: 37244054 DOI: 10.1016/j.virol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
BoHV-5 is a worldwide distributed pathogen usually associated with a lethal neurological disease in dairy and beef cattle resulting in important economic losses due to the cattle industry. Using recombinant gD5, we evaluated the long-duration humoral immunity of the recombinant vaccines in a cattle model. Here we report that two doses of intramuscular immunization, particularly with the rgD5ISA vaccine, induce long-lasting antibody responses. Recombinant gD5 antigen elicited tightly mRNA transcription of the Bcl6 and the chemokine receptor CXCR5 which mediate memory B cells and long-lived plasma cells in germinal centers. In addition, using an in-house indirect ELISA we observed higher and earlier responses of rgD5-specific IgG antibody and the upregulation of mRNA transcription of IL2, IL4, IL10, IL15, and IFN-γ in rgD5 vaccinated cattle, indicating a mixed immune response. We further show that rgD5 immunization protects against both BoHV -1 and -5. Our findings indicate that the rgD5-based vaccine represents an effective vaccine strategy to induce an efficient control of herpesviruses.
Collapse
Affiliation(s)
- Itauá L Araujo
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Renan E A Piraine
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil.
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| | - Fábio P L Leite
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Laboratory of Virology and Immunology, Federal University of Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
10
|
Sugiyama Y, Fujiwara M, Sakamoto A, Tsushima H, Nishikimi A, Maruyama M. The immunosenescence-related factor DOCK11 is involved in secondary immune responses of B cells. Immun Ageing 2022; 19:2. [PMID: 34980182 PMCID: PMC8722084 DOI: 10.1186/s12979-021-00259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Memory B cells are an antigen-experienced B-cell population with the ability to rapidly differentiate into antibody-producing cells by recall responses. We recently found that dedicator of cytokinesis 11 (DOCK11) contributes to the expansion of antigen-specific populations among germinal center B cells upon immunization. In comparison, limited information is available on the contribution of DOCK11 to secondary humoral immune responses.
Results
In this study, effects of the DOCK11 deficiency in B cells were examined on secondary immune responses to protein antigen. The lack of DOCK11 in B cells resulted in the impaired induction of antibody-producing cells upon secondary immunization with protein antigen. DOCK11 was dispensable for the recall responses of antigen-experienced B cells, as demonstrated by the comparable induction of antibody-producing cells in mice given transfer of antigen-experienced B cells with no DOCK11 expression. Instead, the lack of DOCK11 in B cells resulted in the impaired secondary immune responses in a B cell-extrinsic manner, which was recovered by the adoptive transfer of cognate T cells.
Conclusions
We addressed that intrinsic and extrinsic effects of DOCK11 expression in B cells may contribute to secondary humoral immune responses in manner of the induction of cognate T-cell help.
Collapse
|
11
|
Brown SL, Bauer JJ, Lee J, Ntirandekura E, Stumhofer JS. IgM + and IgM - memory B cells represent heterogeneous populations capable of producing class-switched antibodies and germinal center B cells upon rechallenge with P. yoelii. J Leukoc Biol 2022; 112:1115-1135. [PMID: 35657097 PMCID: PMC9613510 DOI: 10.1002/jlb.4a0921-523r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Memory B cells (MBCs) are essential for maintaining long-term humoral immunity to infectious organisms, including Plasmodium. MBCs are a heterogeneous population whose function can be dictated by isotype or expression of particular surface proteins. Here, aided by antigen-specific B-cell tetramers, MBC populations were evaluated to discern their phenotype and function in response to infection with a nonlethal strain of P. yoelii. Infection of mice with P. yoelii 17X resulted in 2 predominant MBC populations: somatically hypermutated isotype-switched (IgM- ) and IgM+ MBCs that coexpressed CD73 and CD80 that produced antigen-specific antibodies in response to secondary infection. Rechallenge experiments indicated that IgG-producing cells dominated the recall response over the induction of IgM-secreting cells, with both populations expanding with similar timing during the secondary response. Furthermore, using ZsGreen1 expression as a surrogate for activation-induced cytidine deaminase expression alongside CD73 and CD80 coexpression, ZsGreen1+ CD73+ CD80+ IgM+ , and IgM- MBCs gave rise to plasmablasts that secreted Ag-specific Abs after adoptive transfer and infection with P. yoelii. Moreover, ZsGreen1+ CD73+ CD80+ IgM+ and IgM- MBCs could differentiate into B cells with a germinal center phenotype after adoptive transfer. A third population of B cells (ZsGreen1- CD73- CD80- IgM- ) that is apparent after infection responded poorly to reactivation in vitro and in vivo, indicating that these cells do not represent a canonical population of MBCs. Together these data indicated that MBC function is not defined by immunoglobulin isotype, nor does coexpression of key surface markers limit the potential fate of MBCs after recall.
Collapse
Affiliation(s)
- Susie L Brown
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jonathan J Bauer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Juhyung Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Enatha Ntirandekura
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
12
|
Asashima H, Axisa PP, Pham THG, Longbrake EE, Ruff WE, Lele N, Cohen I, Raddassi K, Sumida TS, Hafler DA. Impaired TIGIT expression on B cells drives circulating follicular helper T cell expansion in multiple sclerosis. J Clin Invest 2022; 132:156254. [PMID: 36250467 PMCID: PMC9566906 DOI: 10.1172/jci156254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
B cell depletion in patients with relapsing-remitting multiple sclerosis (RRMS) markedly prevents new MRI-detected lesions and disease activity, suggesting the hypothesis that altered B cell function leads to the activation of T cells driving disease pathogenesis. Here, we performed comprehensive analyses of CD40 ligand- (CD40L-) and IL-21-stimulated memory B cells from patients with MS and healthy age-matched controls, modeling the help of follicular helper T cells (Tfh cells), and found a differential gene expression signature in multiple B cell pathways. Most striking was the impaired TIGIT expression on MS-derived B cells mediated by dysregulation of the transcription factor TCF4. Activated circulating Tfh cells (cTfh cells) expressed CD155, the ligand of TIGIT, and TIGIT on B cells revealed their capacity to suppress the proliferation of IL-17-producing cTfh cells via the TIGIT/CD155 axis. Finally, CCR6+ cTfh cells were significantly increased in patients with MS, and their frequency was inversely correlated with that of TIGIT+ B cells. Together, these data suggest that the dysregulation of negative feedback loops between TIGIT+ memory B cells and cTfh cells in MS drives the activated immune system in this disease.
Collapse
|
13
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
14
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
15
|
Zhang Y, Garcia-Ibanez L, Ulbricht C, Lok LSC, Pike JA, Mueller-Winkler J, Dennison TW, Ferdinand JR, Burnett CJM, Yam-Puc JC, Zhang L, Alfaro RM, Takahama Y, Ohigashi I, Brown G, Kurosaki T, Tybulewicz VLJ, Rot A, Hauser AE, Clatworthy MR, Toellner KM. Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift. Nat Commun 2022; 13:2460. [PMID: 35513371 PMCID: PMC9072412 DOI: 10.1038/s41467-022-29978-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura Garcia-Ibanez
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Laurence S C Lok
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Thomas W Dennison
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Ferdinand
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Cameron J M Burnett
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan C Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lingling Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- The Francis Crick Institute, London, UK
| | - Raul Maqueda Alfaro
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan
| | - Geoffrey Brown
- Department of Cell Biology, Center for Research and Advanced Studies, The National Polytechnic Institute, Cinvestav-IPN, Av. IPN 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | | | - Antal Rot
- Centre for Microvascular Research, The William Harvey Research Institute, Queen Mary University London, EC1M 6BQ, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, EC1M 6BQ, London, UK
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336, Munich, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Menna R Clatworthy
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
16
|
Anang DC, Ramwadhdoebe TH, Hähnlein JS, van Kuijk B, Smits N, van Lienden KP, Maas M, Gerlag DM, Tak PP, de Vries N, van Baarsen LGM. Increased Frequency of CD4+ Follicular Helper T and CD8+ Follicular T Cells in Human Lymph Node Biopsies during the Earliest Stages of Rheumatoid Arthritis. Cells 2022; 11:cells11071104. [PMID: 35406668 PMCID: PMC8997933 DOI: 10.3390/cells11071104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Follicular T helper cells (Tfh cells) provide key B-cell help and are essential in germinal center formation and (auto) antibody generation. To gain more insight into their role during the earliest phase of rheumatoid arthritis (RA), we analyzed their frequencies, phenotypes, and cytokine profiles in peripheral blood and lymph node biopsies of healthy controls (HCs), autoantibody-positive individuals at risk for developing RA (RA-risk individuals), and early RA patients. Subsequently, we confirmed their presence in lymph nodes and synovial tissue of RA patients using immunofluorescence microscopy. In the blood, the frequency of Tfh cells did not differ between study groups. In lymphoid and synovial tissues, Tfh cells were localized in B-cell areas, and their frequency correlated with the frequency of CD19+ B cells. Compared to lymphoid tissues of healthy controls, those of RA patients and RA-risk individuals showed more CD19+ B cells, CD4+CXCR5+ follicular helper T cells, and CD8+CXCR5+ follicular T cells. These Tfh cells produced less IL-21 upon ex vivo stimulation. These findings suggest that Tfh cells may present a novel rationale for therapeutic targeting during the preclinical stage of RA to prevent further disease progression.
Collapse
Affiliation(s)
- Dornatien Chuo Anang
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Tamara H. Ramwadhdoebe
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Janine S. Hähnlein
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Bo van Kuijk
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Noortje Smits
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Krijn P. van Lienden
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Mario Maas
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Daniëlle M. Gerlag
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- UCB Pharma, Slough SL1 3XE, UK
| | - Paul P. Tak
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Candel Therapeutics, Needham, MA 02494, USA
- Department of Internal Medicine, Cambridge University, Cambridge CB2 0QQ, UK
| | - Niek de Vries
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Lisa G. M. van Baarsen
- Amsterdam Rheumatology & Immunology Center (ARC), Department of Rheumatology & Clinical Immunology, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (T.H.R.); (J.S.H.); (B.v.K.); (N.S.); (D.M.G.); (P.P.T.); (N.d.V.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-56-64969; Fax: +31-20-69-19658
| |
Collapse
|
17
|
Lee MS, Inoue T, Ise W, Matsuo-Dapaah J, Wing JB, Temizoz B, Kobiyama K, Hayashi T, Patil A, Sakaguchi S, Simon AK, Bezbradica JS, Nagatoishi S, Tsumoto K, Inoue JI, Akira S, Kurosaki T, Ishii KJ, Coban C. B cell-intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice. J Exp Med 2022; 219:e20211336. [PMID: 34910106 PMCID: PMC8679780 DOI: 10.1084/jem.20211336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell-intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell-specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.
Collapse
Affiliation(s)
- Michelle S.J. Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - James B. Wing
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - A. Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jelena S. Bezbradica
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Satoru Nagatoishi
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Hart AP, Laufer TM. A review of signaling and transcriptional control in T follicular helper cell differentiation. J Leukoc Biol 2022; 111:173-195. [PMID: 33866600 DOI: 10.1002/jlb.1ri0121-066r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T follicular helper (Tfh) cells are a critical component of adaptive immunity and assist in optimal Ab-mediated defense. Multiple effector functions of Tfh support germinal center B cell survival, Ab class switching, and plasma cell maturation. In the past 2 decades, the phenotype and functional characteristics of GC Tfh have been clarified allowing for robust studies of the Th subset including activation signals and environmental cues controlling Tfh differentiation and migration during an immune response. A unique, 2-step differentiation process of Tfh has been proposed but the mechanisms underlying transition between unstable Tfh precursors and functional mature Tfh remain elusive. Likewise, newly identified transcriptional regulators of Tfh development have not yet been incorporated into our understanding of how these cells might function in disease. Here, we review the signals and downstream transcription factors that shape Tfh differentiation including what is known about the epigenetic processes that maintain Tfh identity. It is proposed that further evaluation of the stepwise differentiation pattern of Tfh will yield greater insights into how these cells become dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Vaccine-elicited CD4 T cells prevent the deletion of antiviral B cells in chronic infection. Proc Natl Acad Sci U S A 2021; 118:2108157118. [PMID: 34772811 DOI: 10.1073/pnas.2108157118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)-driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called "decimation," of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I-driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell-intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell-mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell-based vaccination against persistent viral diseases.
Collapse
|
20
|
Rao X, Jiang J, Liang Z, Zhang J, Zhuang Z, Qiu H, Luo H, Weng N, Wu X. Down-Regulated CLDN10 Predicts Favorable Prognosis and Correlates With Immune Infiltration in Gastric Cancer. Front Genet 2021; 12:747581. [PMID: 34721537 PMCID: PMC8548647 DOI: 10.3389/fgene.2021.747581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: CLDN10, an important component of the tight junctions of epithelial cells, plays a crucial role in a variety of tumors. The effect of CLDN10 expression in gastric cancer, however, has yet to be elucidated. Methods: Differential expression of CLDN10 at the mRNA and protein levels was evaluated using Oncomine, ULCAN, HPA and TIMER2.0 databases. Real-time polymerase chain reaction (RT-PCR) was utilized to further verify the expression of CLDN10 in vitro. Correlations between CLDN10 expression and clinical outcomes of gastric cancer were explored by Kaplan-Meier Plotter. Gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) were performed via LinkedOmics and GeneMANIA. The correlations between CLDN10 expression and immune cell infiltration and somatic copy number alternations (SCNA) in gastric cancer were explored by TIMER2.0 and GEPIA2.0. Results: CLDN10 expression was lower in gastric cancer compared to adjacent normal tissues, and associated with better prognosis. CLDN10 also showed significant differences at different T stages, Lauren classification, treatments and HER2 status. PPI and GSEA analysis showed that CLDN10 might be involved in signal transmission, transmembrane transport and metabolism. In some major immune cells, low expression of CLDN10 was associated with increased levels of immune cell infiltration. In addition, it was found that different SCNA status in CLDN10 might affect the level of immune cell infiltration. Furthermore, the expression of CLDN10 was significantly associated with the expression of several immune cell markers, especially B cell markers, follicular helper T cell (Tfh) markers and T cell exhaustion markers. Conclusion: Down-regulated CLDN10 was associated with better overall survival (OS) in gastric cancer. And CLDN10 may serve as a potential prognostic biomarker and correlate to immune infiltration levels in gastric cancer.
Collapse
Affiliation(s)
- XiongHui Rao
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - JianLong Jiang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - ZhiHao Liang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - JianBao Zhang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - ZheHong Zhuang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - HuaiYu Qiu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Huixing Luo
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Nuoqing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
21
|
van den Biggelaar RHGA, Hoefnagel MHN, Vandebriel RJ, Sloots A, Hendriksen CFM, van Eden W, Rutten VPMG, Jansen CA. Overcoming scientific barriers in the transition from in vivo to non-animal batch testing of human and veterinary vaccines. Expert Rev Vaccines 2021; 20:1221-1233. [PMID: 34550041 DOI: 10.1080/14760584.2021.1977628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Before release, vaccine batches are assessed for quality to evaluate whether they meet the product specifications. Vaccine batch tests, in particular of inactivated and toxoid vaccines, still largely rely on in vivo methods. Improved vaccine production processes, ethical concerns, and suboptimal performance of some in vivo tests have led to the development of in vitro alternatives. AREAS COVERED This review describes the scientific constraints that need to be overcome for replacement of in vivo batch tests, as well as potential solutions. Topics include the critical quality attributes of vaccines that require testing, the use of cell-based assays to mimic aspects of in vivo vaccine-induced immune responses, how difficulties with testing adjuvanted vaccines in vitro can be overcome, the use of altered batches to validate new in vitro test methods, and how cooperation between different stakeholders is key to moving the transition forward. EXPERT OPINION For safety testing, many in vitro alternatives are already available or at an advanced level of development. For potency testing, in vitro alternatives largely comprise immunochemical methods that assess several, but not all critical vaccine properties. One-to-one replacement by in vitro alternatives is not always possible and a combination of methods may be required.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arjen Sloots
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | | | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
22
|
Ise W, Kurosaki T. Plasma cell generation during T cell-dependent immune responses. Int Immunol 2021; 33:797-801. [PMID: 34536284 DOI: 10.1093/intimm/dxab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Plasma cells are terminally differentiated from activated B cells and are specialized for secreting antibodies, which are essential effector molecules in humoral immunity to neutralize invading pathogens. Upon challenge with T cell-dependent antigens, plasma cells can be generated during the primary extrafollicular response, the germinal center (GC) response or the secondary memory response. Recent studies have revealed that plasma cell generation is regulated not only by several key transcription factors, but also by epigenetic modifications. In addition, the differentiation of GC B cells toward a plasma cell fate is associated with affinity for antigens and is determined by the strength of contact with T follicular helper cells.
Collapse
Affiliation(s)
- Wataru Ise
- Regulation of host defense team, Division of microbiology and Immunology, Center for infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of microbiology and Immunology, Center for infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| |
Collapse
|
23
|
Inoue T, Shinnakasu R, Kawai C, Ise W, Kawakami E, Sax N, Oki T, Kitamura T, Yamashita K, Fukuyama H, Kurosaki T. Exit from germinal center to become quiescent memory B cells depends on metabolic reprograming and provision of a survival signal. J Exp Med 2021; 218:211457. [PMID: 33045065 PMCID: PMC7555411 DOI: 10.1084/jem.20200866] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
A still unanswered question is what drives the small fraction of activated germinal center (GC) B cells to become long-lived quiescent memory B cells. We found here that a small population of GC-derived CD38intBcl6hi/intEfnb1+ cells with lower mTORC1 activity favored the memory B cell fate. Constitutively high mTORC1 activity led to defects in formation of the CD38intBcl6hi/intEfnb1+ cells; conversely, decreasing mTORC1 activity resulted in relative enrichment of this memory-prone population over the recycling-prone one. Furthermore, the CD38intBcl6hi/intEfnb1+ cells had higher levels of Bcl2 and surface BCR that, in turn, contributed to their survival and development. We also found that downregulation of Bcl6 resulted in increased expression of both Bcl2 and BCR. Given the positive correlation between the strength of T cell help and mTORC1 activity, our data suggest a model in which weak help from T cells together with provision of an increased survival signal are key for GC B cells to adopt a memory B cell fate.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Kanagawa, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Toshihiko Oki
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regeneration Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regeneration Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
24
|
Chakhtoura M, Fang M, Cubas R, O’Connor MH, Nichols CN, Richardson B, Talla A, Moir S, Cameron MJ, Tardif V, Haddad EK. Germinal Center T follicular helper (GC-Tfh) cell impairment in chronic HIV infection involves c-Maf signaling. PLoS Pathog 2021; 17:e1009732. [PMID: 34280251 PMCID: PMC8289045 DOI: 10.1371/journal.ppat.1009732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that the function of T follicular helper (Tfh) cells from lymph nodes (LN) of HIV-infected individuals is impaired. We found that these cells were unable to provide proper help to germinal center (GC)-B cells, as observed by altered and inefficient anti-HIV antibody response and premature death of memory B cells. The underlying molecular mechanisms of this dysfunction remain poorly defined. Herein, we have used a unique transcriptional approach to identify these molecular defects. We consequently determined the transcriptional profiles of LN GC-Tfh cells following their interactions with LN GC-B cells from HIV-infected and HIV-uninfected individuals, rather than analyzing resting ex-vivo GC-Tfh cells. We observed that proliferating GC-Tfh cells from HIV-infected subjects were transcriptionally different than their HIV-uninfected counterparts, and displayed a significant downregulation of immune- and GC-Tfh-associated pathways and genes. Our results strongly demonstrated that MAF (coding for the transcription factor c-Maf) and its upstream signaling pathway mediators (IL6R and STAT3) were significantly downregulated in HIV-infected subjects, which could contribute to the impaired GC-Tfh and GC-B cell functions reported during infection. We further showed that c-Maf function was associated with the adenosine pathway and that the signaling upstream c-Maf could be partially restored by adenosine deaminase -1 (ADA-1) supplementation. Overall, we identified a novel mechanism that contributes to GC-Tfh cell impairment during HIV infection. Understanding how GC-Tfh cell function is altered in HIV is crucial and could provide critical information about the mechanisms leading to the development and maintenance of effective anti-HIV antibodies. Human immunodeficiency virus (HIV) remains a worldwide burden despite available treatments. The virus induces dysregulations in major immune cells and organs including lymph nodes. Germinal center T follicular helper (GC-Tfh) cells are immune cells which induce specific anti-HIV antibodies by helping GC-B cells. In chronic HIV, the interaction between these two cell types is defective, leading to modified and inefficient anti-HIV antibody responses. In this study, we examined the underlying mechanisms of this dysfunction. We observed that proliferating GC-Tfh cells from HIV-infected individuals, displayed distinctive gene expression than those from -uninfected subjects, following GC-B cell interaction. Furthermore, GC-Tfh cells from HIV patients showed a reduction in important immune-related pathway and gene expression. A number of essential GC-Tfh cell genes, such as MAF and its associated genes (IL6R and STAT3), were particularly attenuated in HIV, contributing to the impaired cells function. Moreover, we found an association between MAF function and the key enzyme adenosine deaminase-1 (ADA-1), where supplementation with ADA-1 partially restored the dysfunctional signaling in GC-Tfh cells during chronic infection. Understanding how GC-Tfh cells are altered in HIV is critical to elucidate the mechanisms leading to effective anti-HIV antibodies.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mike Fang
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rafael Cubas
- Iovance Biotherapeutics, San Carlos, California, United States of America
| | - Margaret H. O’Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen N. Nichols
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aarthi Talla
- Allen Institute for Immunology, Seattle, Washington, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sorbonne University, INSERM, Center of Reasearch in Myology (Association Institut de Myologie) UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, Paris, France
- * E-mail: (VT); (EKH)
| | - Elias K. Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (VT); (EKH)
| |
Collapse
|
25
|
DiSano KD, Gilli F, Pachner AR. Memory B Cells in Multiple Sclerosis: Emerging Players in Disease Pathogenesis. Front Immunol 2021; 12:676686. [PMID: 34168647 PMCID: PMC8217754 DOI: 10.3389/fimmu.2021.676686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Once thought to be primarily driven by T cells, B cells are emerging as central players in MS immunopathogenesis. Interest in multiple B cell phenotypes in MS expanded following the efficacy of B cell-depleting agents targeting CD20 in relapsing-remitting MS and inflammatory primary progressive MS patients. Interestingly, these therapies primarily target non-antibody secreting cells. Emerging studies seek to explore B cell functions beyond antibody-mediated roles, including cytokine production, antigen presentation, and ectopic follicle-like aggregate formation. Importantly, memory B cells (Bmem) are rising as a key B cell phenotype to investigate in MS due to their antigen-experience, increased lifespan, and rapid response to stimulation. Bmem display diverse effector functions including cytokine production, antigen presentation, and serving as antigen-experienced precursors to antibody-secreting cells. In this review, we explore the cellular and molecular processes involved in Bmem development, Bmem phenotypes, and effector functions. We then examine how these concepts may be applied to the potential role(s) of Bmem in MS pathogenesis. We investigate Bmem both within the periphery and inside the CNS compartment, focusing on Bmem phenotypes and proposed functions in MS and its animal models. Finally, we review how current immunomodulatory therapies, including B cell-directed therapies and other immunomodulatory therapies, modify Bmem and how this knowledge may be harnessed to direct therapeutic strategies in MS.
Collapse
Affiliation(s)
- Krista D. DiSano
- Department of Neurology, Geisel School of Medicine & Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | | | | |
Collapse
|
26
|
Potent priming by inactivated whole influenza virus particle vaccines is linked to viral RNA uptake into antigen presenting cells. Vaccine 2021; 39:3940-3951. [PMID: 34090697 DOI: 10.1016/j.vaccine.2021.05.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Current detergent or ether-disrupted split vaccines (SVs) for influenza do not always induce adequate immune responses, especially in young children. This contrasts with the whole virus particle vaccines (WPVs) originally used against influenza that were immunogenic in both adults and children but were replaced by SV in the 1970s due to concerns with reactogenicity. In this study, we re-evaluated the immunogenicity of WPV and SV, prepared from the same batch of purified influenza virus, in cynomolgus macaques and confirmed that WPV is superior to SV in priming potency. In addition, we compared the ability of WPV and SV to induce innate immune responses, including the maturation of dendritic cells (DCs) in vitro. WPV stimulated greater production of inflammatory cytokines and type-I interferon in immune cells from mice and macaques compared to SV. Since these innate responses are likely triggered by the activation of pattern recognition receptors (PRRs) by viral RNA, the quantity and quality of viral RNA in each vaccine were assessed. Although the quantity of viral RNA was similar in the two vaccines, the amount of viral RNA of a length that can be recognized by PRRs was over 100-fold greater in WPV than in SV. More importantly, 1000-fold more viral RNA was delivered to DCs by WPV than by SV when exposed to preparations containing the same amount of HA protein. Furthermore, WPV induced up-regulation of the DC maturation marker CD86 on murine DCs, while SV did not. The present results suggest that the activation of antigen-presenting DCs, by PRR-recognizable viral RNA contained in WPV is responsible for the effective priming potency of WPV observed in naïve mice and macaques. WPV is thus recommended as an alternative option for seasonal influenza vaccines, especially for children.
Collapse
|
27
|
Olatunde AC, Hale JS, Lamb TJ. Cytokine-skewed Tfh cells: functional consequences for B cell help. Trends Immunol 2021; 42:536-550. [PMID: 33972167 PMCID: PMC9107098 DOI: 10.1016/j.it.2021.04.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
CD4+ follicular helper T (Tfh) cells play a vital role in providing help for B cells undergoing selection and differentiation into activated antibody-secreting cells in mammalian germinal centers (GCs). Increasing evidence suggests that Tfh cells are a heterogeneous population that generates cytokine-skewed immune responses - a reflection of the microenvironment during differentiation. This has important ramifications for Tfh-mediated B cell help. Because Tfh subsets can have opposing effects on GC B cell responses, we discuss current findings regarding the differentiation and functions of cytokine-skewed Tfh cells in modulating GC B cell differentiation. Antibodies are important weapons against infectious diseases but can also be pathogenic mediators in some autoimmune conditions. Since cytokine-skewed Tfh cells can influence the magnitude and quality of the humoral response, we address the roles of cytokine-skewed Tfh cells in disease.
Collapse
Affiliation(s)
- Adesola C Olatunde
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - J Scott Hale
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - Tracey J Lamb
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
28
|
Baumjohann D, Fazilleau N. Antigen-dependent multistep differentiation of T follicular helper cells and its role in SARS-CoV-2 infection and vaccination. Eur J Immunol 2021; 51:1325-1333. [PMID: 33788271 PMCID: PMC8250352 DOI: 10.1002/eji.202049148] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/20/2023]
Abstract
T follicular helper (Tfh) cells play an essential role in regulating the GC reaction and, consequently, the generation of high‐affinity antibodies and memory B cells. Therefore, Tfh cells are critical for potent humoral immune responses against various pathogens and their dysregulation has been linked to autoimmunity and cancer. Tfh cell differentiation is a multistep process, in which cognate interactions with different APC types, costimulatory and coinhibitory pathways, as well as cytokines are involved. However, it is still not fully understood how a subset of activated CD4+ T cells begins to express the Tfh cell‐defining chemokine receptor CXCR5 during the early stage of the immune response, how some CXCR5+ pre‐Tfh cells enter the B‐cell follicles and mature further into GC Tfh cells, and how Tfh cells are maintained in the memory compartment. In this review, we discuss recent advances on how antigen and cognate interactions are important for Tfh cell differentiation and long‐term persistence of Tfh cell memory, and how this is relevant to the current understanding of COVID‐19 pathogenesis and the development of potent SARS‐CoV‐2 vaccines.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Inserm, Toulouse, U1291, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, France
| |
Collapse
|
29
|
Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines (Basel) 2021; 9:174. [PMID: 33669597 PMCID: PMC7922266 DOI: 10.3390/vaccines9020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunological memory is divided into many levels to counteract the provocations of diverse and ever-changing infections. Fast functions of effector memory and the superposition of both quantitatively and qualitatively plastic anticipatory memory responses together form the walls of protection against pathogens. Here we provide an overview of the role of different B and T cell subsets and their interplay, the parallel and independent functions of the B1, marginal zone B cells, T-independent- and T-dependent B cell responses, as well as functions of central and effector memory T cells, tissue-resident and follicular helper T cells in the memory responses. Age-related limitations in the immunological memory of these cell types in neonates and the elderly are also discussed. We review how certain aspects of immunological memory and the interactions of components can affect the efficacy of vaccines, in order to link our knowledge of immunological memory with the practical application of vaccination.
Collapse
Affiliation(s)
- Zsófia Bugya
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - József Prechl
- R&D Laboratory, Diagnosticum Zrt, H-1047 Budapest, Hungary;
| | - Tibor Szénási
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Éva Nemes
- Clinical Center, Department of Pediatrics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| |
Collapse
|
30
|
Swarnalekha N, Schreiner D, Litzler LC, Iftikhar S, Kirchmeier D, Künzli M, Son YM, Sun J, Moreira EA, King CG. T resident helper cells promote humoral responses in the lung. Sci Immunol 2021; 6:6/55/eabb6808. [PMID: 33419790 DOI: 10.1126/sciimmunol.abb6808] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Influenza is a deadly and costly infectious disease, even during flu seasons when an effective vaccine has been developed. To improve vaccines against respiratory viruses, a better understanding of the immune response at the site of infection is crucial. After influenza infection, clonally expanded T cells take up permanent residence in the lung, poised to rapidly respond to subsequent infection. Here, we characterized the dynamics and transcriptional regulation of lung-resident CD4+ T cells during influenza infection and identified a long-lived, Bcl6-dependent population that we have termed T resident helper (TRH) cells. TRH cells arise in the lung independently of lymph node T follicular helper cells but are dependent on B cells, with which they tightly colocalize in inducible bronchus-associated lymphoid tissue (iBALT). Deletion of Bcl6 in CD4+ T cells before heterotypic challenge infection resulted in redistribution of CD4+ T cells outside of iBALT areas and impaired local antibody production. These results highlight iBALT as a homeostatic niche for TRH cells and advocate for vaccination strategies that induce TRH cells in the lung.
Collapse
Affiliation(s)
- Nivedya Swarnalekha
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - David Schreiner
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Ludivine C Litzler
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Saadia Iftikhar
- Personalised Health Basel- Oncology Cluster Basel, University of Basel, Basel, Switzerland
| | - Daniel Kirchmeier
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Marco Künzli
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Young Min Son
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Carolyn G King
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.
| |
Collapse
|
31
|
Dong L, He Y, Cao Y, Wang Y, Jia A, Wang Y, Yang Q, Li W, Bi Y, Liu G. Functional differentiation and regulation of follicular T helper cells in inflammation and autoimmunity. Immunology 2020; 163:19-32. [PMID: 33128768 DOI: 10.1111/imm.13282] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Follicular T helper (TFH ) cells are specialized T cells that support B cells, which are essential for humoral immunity. TFH cells express the transcription factor B-cell lymphoma 6 (Bcl-6), chemokine (C-X-C motif) receptor (CXCR) 5, the surface receptors programmed cell death protein 1 (PD-1) and inducible T-cell costimulator (ICOS), the cytokine IL-21 and other molecules. The activation, proliferation and differentiation of TFH cells are closely related to dynamic changes in cellular metabolism. In this review, we summarize the progress made in understanding the development and functional differentiation of TFH cells. Specifically, we focus on the regulatory mechanisms of TFH cell functional differentiation, including regulatory signalling pathways and the metabolic regulatory mechanisms of TFH cells. In addition, TFH cells are closely related to immune-associated diseases, including infections, autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuexin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
32
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
33
|
Alterauge D, Bagnoli JW, Dahlström F, Bradford BM, Mabbott NA, Buch T, Enard W, Baumjohann D. Continued Bcl6 Expression Prevents the Transdifferentiation of Established Tfh Cells into Th1 Cells during Acute Viral Infection. Cell Rep 2020; 33:108232. [PMID: 33027650 DOI: 10.1016/j.celrep.2020.108232] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022] Open
Abstract
T follicular helper (Tfh) cells are crucial for the establishment of germinal centers (GCs) and potent antibody responses. Nevertheless, the T cell-intrinsic factors that are required for the maintenance of already-established Tfh cells and GCs remain largely unknown. Here, we use temporally guided gene ablation in CD4+ T cells to dissect the contributions of the Tfh-associated chemokine receptor CXCR5 and the transcription factor Bcl6. Induced ablation of Cxcr5 has minor effects on the function of established Tfh cells, and Cxcr5-ablated cells still exhibit most of the features of CXCR5+ Tfh cells. In contrast, continued Bcl6 expression is critical to maintain the GC Tfh cell phenotype and also the GC reaction. Importantly, Bcl6 ablation during acute viral infection results in the transdifferentiation of established Tfh into Th1 cells, thus highlighting the plasticity of Tfh cells. These findings have implications for strategies that boost or restrain Tfh cells and GCs in health and disease.
Collapse
Affiliation(s)
- Dominik Alterauge
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Johannes W Bagnoli
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Frank Dahlström
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Barry M Bradford
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and the Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Wagistr. 12, 8952 Schlieren, Switzerland
| | - Wolfgang Enard
- Anthropology & Human Genomics, Department of Biology II, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany; Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
34
|
Olson WJ, Jakic B, Labi V, Schoeler K, Kind M, Klepsch V, Baier G, Hermann-Kleiter N. Orphan Nuclear Receptor NR2F6 Suppresses T Follicular Helper Cell Accumulation through Regulation of IL-21. Cell Rep 2020; 28:2878-2891.e5. [PMID: 31509749 PMCID: PMC6791812 DOI: 10.1016/j.celrep.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
CD4 T follicular helper (Tfh) cells are specialized in helping B cells during the germinal center (GC) reaction and ultimately promote long-term humoral immunity. Here we report that loss of the nuclear orphan receptor NR2F6 causes enhanced survival and accumulation of Tfh cells, GC B cells, and plasma cells (PCs) following T cell-dependent immunization. Nr2f6-deficient CD4 T cell dysfunction is the primary cause of cell accumulation. Cytokine expression in Nr2f6-deficient Tfh cells is dysregulated, and Il21 expression is enhanced. Mechanistically, NR2F6 binds directly to the interleukin 21 (IL-21) promoter and a conserved noncoding sequence (CNS) near the Il21 gene in resting CD4+ T cells. During Tfh cell differentiation, this direct NR2F6 DNA interaction is abolished. Enhanced Tfh cell accumulation in Nr2f6-deficient mice can be reverted by blocking IL-21R signaling. Thus, NR2F6 is a critical negative regulator of IL-21 cytokine production in Tfh cells and prevents excessive Tfh cell accumulation. Loss of NR2F6 results in accumulation of Tfh, GC B, and plasma cells after immunization Increased GC populations depend on Nr2f6 loss within the CD4 compartment NR2F6 directly binds to several sites within the Il21 promoter and CNS −36 NR2F6 restrains Il21 expression in CD4 cells; IL-21R blockade reduces Tfh accumulation
Collapse
Affiliation(s)
- William J Olson
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Michaela Kind
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Victoria Klepsch
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Peter Mayr Str. 1a, 6020 Innsbruck, Austria.
| |
Collapse
|
35
|
Fujii K, Tanaka S, Hasegawa T, Narazaki M, Kumanogoh A, Koseki H, Kurosaki T, Ise W. Tet DNA demethylase is required for plasma cell differentiation by controlling expression levels of IRF4. Int Immunol 2020; 32:683-690. [DOI: 10.1093/intimm/dxaa042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract
Antibodies produced by plasma cells are critical for protection from infection. It has been demonstrated that global epigenetic modification, such as changes in DNA methylation, occurs during differentiation of plasma cells from B cells. However, the precise mechanisms by which DNA methylation controls plasma cell differentiation are not fully understood. We examined the effect of deficiency of DNA demethylases, Tet2 and Tet3, on B-cell activation and plasma cell differentiation, by generating conditional Tet2/3 double-KO (Tet dKO) B cells. We found that Tet dKO B cells failed to differentiate into plasma cells upon immunization with antigens. Tet dKO B cells proliferated normally and were capable of generating cells with IRF4int, but not with IRF4hi, the majority of which were CD138+ plasma cells. IRF4 overexpression rescued the defect of Tet dKO B cells in plasma cell differentiation, suggesting that Tet2/3-dependent high IRF4 expression is required for plasma cell differentiation. We identified CpG sites in the Irf4 locus that were demethylated specifically in plasma cells and in a Tet2/3-dependent manner. Our results suggest that Tet2/3-dependent demethylation of these CpG sites is dispensable for initial IRF4 expression but is essential for high IRF4 expression which is prerequisite for plasma cell differentiation.
Collapse
Affiliation(s)
- Kentaro Fujii
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinya Tanaka
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka, Japan
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takanori Hasegawa
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
- Advanced Research Department, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
36
|
Liu Q, Su H, Bian X, Wang S, Kong Q. Live attenuated Salmonella Typhimurium with monophosphoryl lipid A retains ability to induce T-cell and humoral immune responses against heterologous polysaccharide of Shigella flexneri 2a. Int J Med Microbiol 2020; 310:151427. [PMID: 32654768 DOI: 10.1016/j.ijmm.2020.151427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Shigella flexneri 2a (Sf2a) is one of the most frequently isolated Shigella strains that causes the endemic shigellosis in developing countries. In this study, we used recombinant attenuated Salmonella vaccine (RASV) strains to deliver Sf2a O-antigen and characterized the immune responses induced by the vectored O-antigen. First, we identified genes sufficient for biosynthesis of Sf2a O-antigen. A plasmid containing the identified genes was then introduced into the RASV strains, which were manipulated to produce only the heterologous O-antigen and modified lipid A. After oral immunization of mice, we demonstrated that RASV strains could induce potent humoral immune responses as well as robust CD4+ T-cell responses against Sf2a Lipopolysaccharide (LPS) and protect mice against virulent Sf2a challenge. The induced serum antibodies mediated high levels of Shigella-specific serum bactericidal activity and C3 deposition. Moreover, the IgG+ B220low/int BM cell and T follicular helper (Tfh) cell responses could also be triggered effectively. The live attenuated Salmonella with the modified lipid A delivering Sf2a O-antigen polysaccharide showed the same ability to induce immune responses against Sf2a LPS as the strain with the original lipid A. These findings underscore the potential of RASV delivered Sf2a O-antigen for induction of robust CD4+ T-cell and IgG responses and warrant further studies toward the development of Shigella vaccine candidates with RASV strains.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Huali Su
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Xiaoping Bian
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China; Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
37
|
Duan X, Sun P, Lan Y, Shen C, Zhang X, Hou S, Chen J, Ma B, Xia Y, Su C. 1IFN-α Modulates Memory Tfh Cells and Memory B Cells in Mice, Following Recombinant FMDV Adenoviral Challenge. Front Immunol 2020; 11:701. [PMID: 32411135 PMCID: PMC7200983 DOI: 10.3389/fimmu.2020.00701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Follicular helper T (Tfh) cells regulate high-affinity antibody production. Some findings have indicated that Tfh cells could be differentiated into memory cells. Here we have investigated the effects of IFN-α, as an adjuvant, on the generation of memory Tfh cell and memory B cell responses. The data showed that adenoviral vectors expressing: (i) foot-and-mouth disease virus (FMDV) VP1 proteins and porcine IFN-α, or (ii) porcine IFN-α alone, potently enhanced the generation of memory Tfh cells, especially the CCR7 l o memory Tfh subset. Upon rechallenge with FMD recombinant adenoviral vaccines, IFN-α enhances Tfh cells activity, rapidly upregulating their signature Bcl-6, CXCR5, and IL-21 markers. The results suggest that IFN-α enhances the levels of the transcription factor Bcl-6 within Tfh cells, potentially by regulating STAT1. Additionally, IFN-α substantially increased the number of IgG1+ and CD86+ memory B cells, which are responsible for inducing the rapid effector functions of memory Tfh cells after vaccine reactivation, establishing the close relationship between memory B cell and memory Tfh cell subsets. In brief, IFN-α enhances the potency of FMD recombinant adenoviral vaccines to induce memory Tfh and memory B cell responses, thus elevating serum antibody titers. IFN-α administration therefore represents an attractive strategy for enhancing responses to vaccination.
Collapse
Affiliation(s)
- Xiangguo Duan
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yaru Lan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chunxiu Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaozhang Hou
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | | | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Yuhan Xia
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunxia Su
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
38
|
Latham LE, Wikenheiser DJ, Stumhofer JS. ICOS signaling promotes a secondary humoral response after re-challenge with Plasmodium chabaudi chabaudi AS. PLoS Pathog 2020; 16:e1008527. [PMID: 32348365 PMCID: PMC7213745 DOI: 10.1371/journal.ppat.1008527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/11/2020] [Accepted: 04/08/2020] [Indexed: 02/03/2023] Open
Abstract
The co-stimulatory molecule ICOS is associated with the induction and regulation of T helper cell responses, including the differentiation of follicular helper T (Tfh) cells and the formation and maintenance of memory T cells. However, the role of ICOS signaling in secondary immune responses is largely unexplored. Here we show that memory T cell formation and maintenance are influenced by persistent infection with P. chabaudi chabaudi AS infection, as memory T cell numbers decline in wild-type and Icos-/- mice after drug-clearance. Following drug-clearance Icos-/- mice display a relapsing parasitemia that occurs more frequently and with higher peaks compared to wild-type mice after re-challenge. The secondary immune response in Icos-/- mice is characterized by significant impairment in the expansion of effector cells with a Tfh-like phenotype, which is associated with a diminished and delayed parasite-specific Ab response and the absence of germinal centers. Similarly, the administration of an anti-ICOSL antagonizing antibody to wild-type mice before and after reinfection with P. c. chabaudi AS leads to an early defect in Tfh cell expansion and parasite-specific antibody production, confirming a need for ICOS-ICOSL interactions to promote memory B cell responses. Furthermore, adoptive transfer of central memory T (TCM) cells from wild-type and Icos-/- mice into tcrb-/- mice to directly evaluate the ability of TCM cells to give rise to Tfh cells revealed that TCM cells from wild-type mice acquire a mixed Th1- and Tfh-like phenotype after P. c. chabaudi AS infection. While TCM cells from Icos-/- mice expand and display markers of activation to a similar degree as their WT counterparts, they displayed a reduced capacity to upregulate markers indicative of a Tfh cell phenotype, resulting in a diminished humoral response. Together these findings verify that ICOS signaling in memory T cells plays an integral role in promoting T cell effector responses during secondary infection with P. c. chabaudi AS.
Collapse
Affiliation(s)
- Leah E. Latham
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| | - Daniel J. Wikenheiser
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| | - Jason S. Stumhofer
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| |
Collapse
|
39
|
Moriyama S, Adachi Y, Tonouchi K, Takahashi Y. Memory B Cells in Local and Systemic Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1254:55-62. [PMID: 32323269 DOI: 10.1007/978-981-15-3532-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Memory B cells are a key cellular component of the protective humoral responses to infectious pathogens. Most of our knowledge of memory B-cell responses comes from studies using mono-epitopic model antigens that elicit systemic humoral responses dominated by canonical B-cell antigen receptors. This approach successfully dissected the systemic responses of memory B cells and greatly advanced our understanding of memory B-cell formation, maintenance, and reactivation to re-invading antigens in the secondary lymphoid organs. However, the canonical memory B-cell responses fail to fully recapitulate the heterogeneity of the protective memory responses. Indeed, accumulating studies using "natural" antigens and live pathogens have uncovered new aspects of memory B-cell responses, which are achieved by memory B cells with different phenotypes, tissue residence, and responsiveness to antigen stimulation. Such non-canonical memory B-cell responses are frequently observed in local sites where live pathogens initially infect and replicate. Importantly, the local memory B-cell responses often serve as the first line of defense against re-infecting pathogens, thereby playing an essential role in controlling the pathogens. Here, we provide a comprehensive overview of the systemic and local memory B-cell responses in the humoral protective immunity against pathogens.
Collapse
Affiliation(s)
- Saya Moriyama
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Keisuke Tonouchi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo, 162-8480, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| |
Collapse
|
40
|
Shlomchik MJ, Luo W, Weisel F. Linking signaling and selection in the germinal center. Immunol Rev 2019; 288:49-63. [PMID: 30874353 DOI: 10.1111/imr.12744] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
Germinal centers (GC) are sites of rapid B-cell proliferation in response to certain types of immunization. They arise in about 1 week and can persist for several months. In GCs, B cells differentiate in a unique way and begin to undergo somatic mutation of the Ig V regions at a high rate. GC B cells (GCBC) thus undergo clonal diversification that can affect the affinity of the newly mutant B-cell receptor (BCR) for its driving antigen. Through processes that are still poorly understood, GCBC with higher affinity are selectively expanded while those with mutations that inactivate the BCR are lost. In addition, at various times during the extended GC reaction, some GCBC undergo differentiation into either long-lived memory B cells (MBC) or plasma cells. The cellular and molecular signals that govern these fate decisions are not well-understood, but are an active area of research in multiple laboratories. In this review, we cover both the history of this field and focus on recent work that has helped to elucidate the signals and molecules, such as key transcription factors, that coordinate both positive selection as well as differentiation of GCBC.
Collapse
Affiliation(s)
- Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Aloulou M, Fazilleau N. Regulation of B cell responses by distinct populations of CD4 T cells. Biomed J 2019; 42:243-251. [PMID: 31627866 PMCID: PMC6818157 DOI: 10.1016/j.bj.2019.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/28/2023] Open
Abstract
Maturation of B cells in Germinal Centers (GC) is a hallmark in adaptive immunity and the basis of successful vaccines that protect us against lethal infections. Nonetheless, vaccination efficacy is very much reduced in aged population and against highly mutagenic viruses. Therefore, it is key to understand how B cell selection takes place in GC in order to develop new and fully protective vaccines. The cellular mechanisms that control selection of GC B cells are performed by different T cell populations. On one side, cognate entanglement of B cells with T follicular helper (Tfh) cells through cytokines and co-stimulatory signals promotes survival, proliferation, mutagenesis and terminal differentiation of GC B cells. On the other hand, regulatory T cells have also been reported within GC and interfere with T cell help for antibody production. These cells have been classified as a distinct T cell sub-population called T Follicular regulatory cells (Tfr). In this review, we investigate the phenotype, function and differentiation of these two cell populations. In addition, based on the different functions of these cell subsets, we highlight the open questions surrounding their heterogeneity.
Collapse
Affiliation(s)
- Meryem Aloulou
- Center for Pathophysiology of Toulouse Purpan, Toulouse, France; INSERM U1043, Toulouse, France; CNRS UMR5282, Toulouse, France; University of Toulouse III, Toulouse, France
| | - Nicolas Fazilleau
- Center for Pathophysiology of Toulouse Purpan, Toulouse, France; INSERM U1043, Toulouse, France; CNRS UMR5282, Toulouse, France; University of Toulouse III, Toulouse, France.
| |
Collapse
|
42
|
T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol 2019; 15:475-490. [DOI: 10.1038/s41584-019-0254-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
|
43
|
Su H, Liu Q, Wang S, Curtiss R, Kong Q. Regulated Delayed Shigella flexneri 2a O-antigen Synthesis in Live Recombinant Salmonella enterica Serovar Typhimurium Induces Comparable Levels of Protective Immune Responses with Constitutive Antigen Synthesis System. Am J Cancer Res 2019; 9:3565-3579. [PMID: 31281498 PMCID: PMC6587160 DOI: 10.7150/thno.33046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/21/2019] [Indexed: 12/02/2022] Open
Abstract
Shigella flexneri (S. flexneri), a leading cause of bacillary dysentery, is a major public health concern particularly affecting children in developing nations. We have constructed a novel attenuated Salmonella vaccine system based on the regulated delayed antigen synthesis (RDAS) and regulated delayed expression of attenuating phenotype (RDEAP) systems for delivering the S. flexneri 2a (Sf2a) O-antigen. Methods: The new Salmonella vaccine platform was constructed through chromosomal integration of the araC PBAD lacI and araC PBAD wbaP cassettes, resulting in a gradual depletion of WbaP enzyme. An expression vector, encoding Sf2a O-antigen biosynthesis under the control of the LacI-repressible Ptrc promoter, was maintained in the Salmonella vaccine strain through antibiotic-independent selection. Mice immunized with the vaccine candidates were evaluated for cell-mediate and humoral immune responses. Results: In the presence of exogenous arabinose, the Salmonella vaccine strain synthesized native Salmonella LPS as a consequence of WbaP expression. Moreover, arabinose supported LacI expression, thereby repressing Sf2a O-antigen production. In the absence of arabinose in vivo, native Salmonella LPS synthesis is repressed whilst the synthesis of the Sf2a O-antigen is induced. Murine immunization with the Salmonella vaccine strain elicited robust Sf2a-specific protective immune responses together with long term immunity. Conclusion: These findings demonstrate the protective efficacy of recombinant Sf2a O-antigen delivered by a Salmonella vaccine platform.
Collapse
|
44
|
Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 2019; 50:1132-1148. [PMID: 31117010 PMCID: PMC6532429 DOI: 10.1016/j.immuni.2019.04.011] [Citation(s) in RCA: 1038] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/16/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023]
Abstract
Helping B cells and antibody responses is a major function of CD4+ T cells. It has been 10 years since the publication of Bcl6 as the lineage-defining transcription factor for T follicular helper (Tfh) differentiation and the requirement of Tfh cells as the specialized subset of CD4+ T cells needed for germinal centers (the microanatomical sites of B cell mutation and antibody affinity maturation) and related B cell responses. A great deal has been learned about Tfh cells in the past 10 years, particularly regarding their roles in a surprising range of diseases. Advances in the understanding of Tfh cell differentiation and function are discussed, as are the understanding of Tfh cells in infectious diseases, vaccines, autoimmune diseases, allergies, atherosclerosis, organ transplants, and cancer. This includes discussion of Tfh cells in the human immune system. Based on the discoveries to date, the next decade of Tfh research surely holds many more surprises. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), Scripps Research, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Yap XZ, Hustin LSP, Sauerwein RW. T H1-Polarized T FH Cells Delay Naturally-Acquired Immunity to Malaria. Front Immunol 2019; 10:1096. [PMID: 31156642 PMCID: PMC6533880 DOI: 10.3389/fimmu.2019.01096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 11/15/2022] Open
Abstract
Humoral immunity is a critical effector arm for protection against malaria but develops only slowly after repeated infections. T cell-mediated regulatory dynamics affect the development of antibody responses to Plasmodium parasites. Here, we hypothesize that T follicular helper cell (TFH) polarization generated by repeated Plasmodium asexual blood-stage infections delays the onset of protective humoral responses. IFN-γ production promotes polarization toward TFH1 and increased generation of regulatory follicular helper cells (TFR). Delineating the mechanisms that drive TH1 polarization will provide clues for appropriate induction of lasting, protective immunity against malaria.
Collapse
Affiliation(s)
- Xi Zen Yap
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| | - Lucie S P Hustin
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands.,Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Robert W Sauerwein
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| |
Collapse
|
46
|
Schmiel SE, Kalekar LA, Zhang N, Blankespoor TW, Robinson LJ, Mueller DL. Adenosine 2a Receptor Signal Blockade of Murine Autoimmune Arthritis via Inhibition of Pathogenic Germinal Center-Follicular Helper T Cells. Arthritis Rheumatol 2019; 71:773-783. [PMID: 30516351 DOI: 10.1002/art.40796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE CD4 germinal center (GC)-follicular helper T (Tfh) cells are important in the pathogenesis of autoimmune arthritis. Previous studies have shown that adenosine 2a receptor (A2aR; Adora2a) signaling can divert CD4 T cells away from the GC-Tfh cell lineage during the primary response to foreign antigens. This study was undertaken to examine the effects of A2aR signaling on CD4 T cells during the recognition of self antigen in a murine model of autoimmune arthritis. METHODS Wild-type and Adora2a-deficient mouse KRN T cell receptor-transgenic CD4 T cells specific for glucose-6-phosphate isomerase (GPI)/I-Ag7 were transferred into immunodeficient Tcra-/- I-Ag7 -expressing mice to induce arthritis. Recipients were then treated with either the selective A2aR agonist CGS-21680 (CGS) or phosphate buffered saline alone. Severity of disease, autoantibody titers, KRN T cell numbers and phenotype, and GPI-specific isotype class-switched plasmablasts were tracked. RESULTS CGS treatment inhibited the development of arthritis and differentiation of KRN GC-Tfh cells, blocked the appearance of high-affinity GPI-specific and IgG1 isotype class-switched polyclonal plasmablasts, and led to a reduction in serum titers of anti-GPI IgG1. In addition, therapeutic administration of CGS after the onset of arthritis blocked further disease progression in association with reductions in the number of KRN GC-Tfh cells and anti-GPI IgG1 serum titers. CONCLUSION Strong A2aR signaling diverts autoreactive CD4 T cell differentiation away from the GC-Tfh cell lineage, thus reducing help for the differentiation of dangerous autoreactive B cells that promote arthritis. These data in a mouse model of autoimmune arthritis suggest that A2aR and its downstream signaling pathways in CD4 T cells may be promising therapeutic targets for interfering with potentially dangerous autoreactive GC-Tfh cell differentiation.
Collapse
Affiliation(s)
| | | | - Na Zhang
- University of Minnesota Medical School, Minneapolis
| | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Following solid organ transplantation (SOT), populations of donor lymphocytes are frequently found in the recipient circulation. Their impact on host alloimmunity has long been debated but remains unclear, and it has been suggested that transferred donor lymphocytes may either promote tolerance to the graft or hasten its rejection. We discuss possible mechanisms by which the interaction of donor passenger lymphocytes with recipient immune cells may either augment the host alloimmune response or inhibit it. RECENT FINDINGS Recent work has highlighted that donor T lymphocytes are the most numerous of the donor leukocyte populations within a SOT and that these may be transferred to the recipient after transplantation. Surprisingly, graft-versus-host recognition of major histocompatibility complex class II on host B cells by transferred donor CD4 T cells can result in marked augmentation of host humoral alloimmunity and lead to early graft failure. Killing of donor CD4 T cells by host natural killer cells is critical in preventing this augmentation. SUMMARY The ability of passenger donor CD4 T cells to effect long-term augmentation of the host humoral alloimmune response raises the possibility that ex-vivo treatment or modification of the donor organ prior to implantation may improve long-term transplant outcomes.
Collapse
|
48
|
Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T. Generation of memory B cells and their reactivation. Immunol Rev 2019; 283:138-149. [PMID: 29664566 DOI: 10.1111/imr.12640] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Imogen Moran
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tri Giang Phan
- Intravital Microscopy Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Darlinghurst, NSW, Australia
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
49
|
Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E, Wang CJ, Walker LSK. T Cell/B Cell Collaboration and Autoimmunity: An Intimate Relationship. Front Immunol 2018; 9:1941. [PMID: 30210496 PMCID: PMC6119692 DOI: 10.3389/fimmu.2018.01941] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Co-ordinated interaction between distinct cell types is a hallmark of successful immune function. A striking example of this is the carefully orchestrated cooperation between helper T cells and B cells that occurs during the initiation and fine-tuning of T-cell dependent antibody responses. While these processes have evolved to permit rapid immune defense against infection, it is becoming increasingly clear that such interactions can also underpin the development of autoimmunity. Here we discuss a selection of cellular and molecular pathways that mediate T cell/B cell collaboration and highlight how in vivo models and genome wide association studies link them with autoimmune disease. In particular, we emphasize how CTLA-4-mediated regulation of CD28 signaling controls the engagement of secondary costimulatory pathways such as ICOS and OX40, and profoundly influences the capacity of T cells to provide B cell help. While our molecular understanding of the co-operation between T cells and B cells derives from analysis of secondary lymphoid tissues, emerging evidence suggests that subtly different rules may govern the interaction of T and B cells at ectopic sites during autoimmune inflammation. Accordingly, the phenotype of the T cells providing help at these sites includes notable distinctions, despite sharing core features with T cells imparting help in secondary lymphoid tissues. Finally, we highlight the interdependence of T cell and B cell responses and suggest that a significant beneficial impact of B cell depletion in autoimmune settings may be its detrimental effect on T cells engaged in molecular conversation with B cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
50
|
Takatsuka S, Yamada H, Haniuda K, Saruwatari H, Ichihashi M, Renauld JC, Kitamura D. IL-9 receptor signaling in memory B cells regulates humoral recall responses. Nat Immunol 2018; 19:1025-1034. [PMID: 30082831 DOI: 10.1038/s41590-018-0177-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
Memory B cells (Bmem cells) are the basis of long-lasting humoral immunity. They respond to re-encountered antigens by rapidly producing specific antibodies and forming germinal centers (GCs), a recall response that has been known for decades but remains poorly understood. We found that the receptor for the cytokine IL-9 (IL-9R) was induced selectively on Bmem cells after primary immunization and that IL-9R-deficient mice exhibited a normal primary antibody response but impaired recall antibody responses, with attenuated population expansion and plasma-cell differentiation of Bmem cells. In contrast, there was augmented GC formation, possibly due to defective downregulation of the ligand for the co-stimulatory receptor ICOS on Bmem cells. A fraction of Bmem cells produced IL-9. These findings indicate that IL-9R signaling in Bmem cells regulates humoral recall responses.
Collapse
Affiliation(s)
- Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.,Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamada
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Kei Haniuda
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Hiroshi Saruwatari
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Marina Ichihashi
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Universite catholique de Louvain, Brussels, Belgium
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.
| |
Collapse
|