1
|
Sun Y, Zhao G, Zhang Y, Lu Z, Kang Z, Sun J, Feng X, Guo J, Liao Y, Guo L, Yang Y, Zhang D, Bi W, Chen R, Yue W. Multitrait GWAS of non-suicidal self-injury and the polygenetic effects on child psychopathology and brain structures. Cell Rep Med 2025; 6:102119. [PMID: 40347941 DOI: 10.1016/j.xcrm.2025.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Non-suicidal self-injury (NSSI) is highly prevalent in recent years, but the genetic architecture remains unknown. We perform a multitrait analysis of genome-wide association study on NSSI, incorporating self-harm and suicide attempt. Common genetic variants account for 6.03% of NSSI variance. Three risk loci are associated with NSSI at 7q31.2 (rs62474683), DCC (rs4372758), and LCA5L/GET1/GET1-SH3BGR (rs2837022). Increased expression levels of GET1/SH3BGR in hippocampus relates to NSSI risk. Fine-mapping identifies seven likely causal variants, and colocalization with rs4281987 and rs2837022 evidences SH3BGR/GET1 expression in hippocampus to NSSI. In an independent sample, polygenic risk score for NSSI is associated with children's NSSI behavior, suicidal ideation, and suicide attempt (odds ratios [ORs]: 1.14-1.37). Reduction in right temporal pole volume mediates NSSI genetic liability for children's NSSI behavior. Walking for pleasure and exercises like swimming and bowling reduces NSSI risk, whereas smoking increases it. This study elucidates the NSSI genetic basis and its impact on children's emotions, behavior, and brain structure.
Collapse
Affiliation(s)
- Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guorui Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhewei Kang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Junyuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaoyang Feng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jing Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yundan Liao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liangkun Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China.
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
2
|
Jennrich J, Farkas Á, Urlaub H, Schwappach B, Bohnsack KE. The formation of chaperone-rich GET bodies depends on the tetratricopeptide repeat region of Sgt2 and is reversed by NADH. J Cell Sci 2025; 138:jcs263616. [PMID: 39976550 PMCID: PMC11959614 DOI: 10.1242/jcs.263616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/30/2025] [Indexed: 03/21/2025] Open
Abstract
The guided-entry of tail-anchored proteins (GET) pathway is a post-translational targeting route to the endoplasmic reticulum (ER). Upon glucose withdrawal, the soluble GET proteins re-localize to dynamic cytosolic foci, here termed GET bodies. Our data reveal that the pre-targeting complex components, Sgt2 and the Get4-Get5 heterodimer, and the Get3 ATPase play important roles in the assembly of these structures in Saccharomyces cerevisiae. More specifically, the TPR region of Sgt2 is required as a GET body scaffold. Systematic compositional analyses of GET bodies reveal their chaperone-rich nature and the presence of numerous proteins involved in metabolic processes. Temporal analyses of GET body assembly demonstrate the sequential recruitment of different chaperones, and we discover the requirement of Sis1 and Sti1 for maintaining the dynamic properties of these structures. In vivo, NADH derived from the oxidation of ethanol to acetaldehyde can induce GET body disassembly in a reaction depending on the alcohol dehydrogenase Adh2 and in vitro, addition of NADH resolves GET bodies. This suggests a mechanistic basis for their formation and disassembly in response to the metabolic shift caused by glucose withdrawal and re-addition.
Collapse
Affiliation(s)
- Jonas Jennrich
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ákos Farkas
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Faßberg 11, 37077 Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Centre Göttingen, Robert-Koch-Straße 40, 35075 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E. Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Liu Y, Wei Z, Pei Y, Yang L, Zou X, Pei Y, Zhang T, Miao P, Gan L, Liu J, Yang Z, Peng J, Li F, Wang Z. Membrane Interactions of GET1 and GET2 Facilitate Fiber Cell Initiation through the Guided Entry of the TA Protein Pathway in Cotton. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24283-24299. [PMID: 39467771 DOI: 10.1021/acs.jafc.4c06208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The guided entry of TA proteins (GET) pathway, which is responsible for the post-translational targeting and insertion of the tail-anchored (TA) protein into the endoplasmic reticulum (ER), plays an important role in physiological processes such as protein sorting, vesicle trafficking, cell apoptosis, and enzymatic reactions in which the GET1/2 complex is indispensable. However, a comprehensive study of the GET1 and GET2 genes and the GET pathway in cotton has not yet been carried out. Here, 12 GET1 and 21 GET2 genes were identified in nine representative plant species, and the phylogenetic relationships, gene structures, protein motifs, cis-regulatory elements (CREs), and temporal and spatial expression profiles were analyzed thoroughly. Our study indicated that GhGET1s and GhGET2s might be localized on ER membranes. According to expression profiling and CREs analysis, GhGET2-A02 was identified as a promising candidate for fiber cell development, interacting with two GhGET1s in the membrane, with a binding bias toward GhGET1-A06. Silencing of GhGET1-A06 or GhGET2-A02 reduced fiber initiation and elongation. In summary, our research provides important evidence for understanding the gene families and functions of GET1 and GET2 in cotton and provides clues for molecular breeding of high-quality cotton fiber varieties.
Collapse
Affiliation(s)
- Yang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Zhenzhen Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfei Pei
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Lu Yang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Xianyan Zou
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Yayue Pei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Tianen Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Pengfei Miao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Lei Gan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Ji Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| |
Collapse
|
4
|
Oh J, Kim DK, Ahn SH, Kim HM, Cho H. A dual role of the conserved PEX19 helix in safeguarding peroxisomal membrane proteins. iScience 2024; 27:109537. [PMID: 38585659 PMCID: PMC10995880 DOI: 10.1016/j.isci.2024.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Accurate localization of membrane proteins is essential for proper cellular functioning and the integrity of cellular membranes. Post-translational targeting of peroxisomal membrane proteins (PMPs) is mediated by the cytosolic chaperone PEX19 and its membrane receptor PEX3. However, the molecular mechanisms underlying PMP targeting are poorly understood. Here, using biochemical and mass spectrometry analysis, we find that a conserved PEX19 helix, αd, is critical to prevent improper exposure of the PEX26 transmembrane domain (TMD) to cytosolic chaperones. Furthermore, the αd helix of PEX19 interacts with the cytosolic domain of the PEX3 receptor, thereby triggering PEX26 release at the correct destination membrane. The peroxisome-deficient PEX3-G138E mutant completely abolishes this secondary interaction, leading to lack of PEX3-induced PEX26 release from PEX19. These findings elucidate a dual molecular mechanism that is essential to membrane protein protection and destination-specific release by a molecular chaperone.
Collapse
Affiliation(s)
- Jeonghyun Oh
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Do Kyung Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Seung Hae Ahn
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyunju Cho
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| |
Collapse
|
5
|
Cho H, Liu Y, Chung S, Chandrasekar S, Weiss S, Shan SO. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad. Nat Commun 2024; 15:134. [PMID: 38167697 PMCID: PMC10761869 DOI: 10.1038/s41467-023-44260-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Membrane protein biogenesis poses acute challenges to protein homeostasis, and how they are selectively escorted to the target membrane is not well understood. Here we address this question in the guided-entry-of-tail-anchored protein (GET) pathway, in which tail-anchored membrane proteins (TAs) are relayed through an Hsp70-Sgt2-Get3 chaperone triad for targeting to the endoplasmic reticulum. We show that the Hsp70 ATPase cycle and TA substrate drive dimeric Sgt2 from a wide-open conformation to a closed state, in which TAs are protected by both substrate binding domains of Sgt2. Get3 is privileged to receive TA from closed Sgt2, whereas off-pathway chaperones remove TAs from open Sgt2. Sgt2 closing is less favorable with suboptimal GET substrates, which are rejected during or after the Hsp70-to-Sgt2 handover. Our results demonstrate how fine-tuned conformational dynamics in Sgt2 enable hydrophobic TAs to be effectively funneled onto their dedicated targeting factor while also providing a mechanism for substrate selection.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, Sinning I. The GET insertase exhibits conformational plasticity and induces membrane thinning. Nat Commun 2023; 14:7355. [PMID: 37963916 PMCID: PMC10646013 DOI: 10.1038/s41467-023-42867-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The eukaryotic guided entry of tail-anchored proteins (GET) pathway mediates the biogenesis of tail-anchored (TA) membrane proteins at the endoplasmic reticulum. In the cytosol, the Get3 chaperone captures the TA protein substrate and delivers it to the Get1/Get2 membrane protein complex (GET insertase), which then inserts the substrate via a membrane-embedded hydrophilic groove. Here, we present structures, atomistic simulations and functional data of human and Chaetomium thermophilum Get1/Get2/Get3. The core fold of the GET insertase is conserved throughout eukaryotes, whilst thinning of the lipid bilayer occurs in the vicinity of the hydrophilic groove to presumably lower the energetic barrier of membrane insertion. We show that the gating interaction between Get2 helix α3' and Get3 drives conformational changes in both Get3 and the Get1/Get2 membrane heterotetramer. Thus, we provide a framework to understand the conformational plasticity of the GET insertase and how it remodels its membrane environment to promote substrate insertion.
Collapse
Affiliation(s)
- Melanie A McDowell
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438, Frankfurt am Main, Germany.
| | - Michael Heimes
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland
| | - Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Daniel Saar
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
McKenna MJ, Shao S. The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization. Cold Spring Harb Perspect Biol 2023; 15:a041249. [PMID: 36041782 PMCID: PMC9979852 DOI: 10.1101/cshperspect.a041249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
8
|
Heo P, Culver JA, Miao J, Pincet F, Mariappan M. The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER. Cell Rep 2023; 42:111921. [PMID: 36640319 PMCID: PMC9932932 DOI: 10.1016/j.celrep.2022.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Tail-anchored (TA) proteins contain a single C-terminal transmembrane domain (TMD) that is captured by the cytosolic Get3 in yeast (TRC40 in humans). Get3 delivers TA proteins to the Get1/2 complex for insertion into the endoplasmic reticulum (ER) membrane. How Get1/2 mediates insertion of TMDs of TA proteins into the membrane is poorly understood. Using bulk fluorescence and microfluidics assays, we show that Get1/2 forms an aqueous channel in reconstituted bilayers. We estimate the channel diameter to be ∼2.5 nm wide, corresponding to the circumference of two Get1/2 complexes. We find that the Get3 binding can seal the Get1/2 channel, which dynamically opens and closes. Our mutation analysis further shows that the Get1/2 channel activity is required to release TA proteins from Get3 for insertion into the membrane. Hence, we propose that the Get1/2 channel functions as an insertase for insertion of TMDs and as a translocase for translocation of C-terminal hydrophilic segments.
Collapse
Affiliation(s)
- Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| | - Jacob A. Culver
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Jennifer Miao
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France.
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
9
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Fry MY, Najdrová V, Maggiolo AO, Saladi SM, Doležal P, Clemons WM. Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3. Nat Struct Mol Biol 2022; 29:820-830. [DOI: 10.1038/s41594-022-00798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
|
11
|
Farkas Á, Urlaub H, Bohnsack KE, Schwappach B. Regulated targeting of the monotopic hairpin membrane protein Erg1 requires the GET pathway. J Biophys Biochem Cytol 2022; 221:213228. [PMID: 35587358 PMCID: PMC9123286 DOI: 10.1083/jcb.202201036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
The guided entry of tail-anchored proteins (GET) pathway targets C-terminally anchored transmembrane proteins and protects cells from lipotoxicity. Here, we reveal perturbed ergosterol production in ∆get3 cells and demonstrate the sensitivity of GET pathway mutants to the sterol synthesis inhibiting drug terbinafine. Our data uncover a key enzyme of sterol synthesis, the hairpin membrane protein squalene monooxygenase (Erg1), as a non-canonical GET pathway client, thus rationalizing the lipotoxicity phenotypes of GET pathway mutants. Get3 recognizes the hairpin targeting element of Erg1 via its classical client-binding pocket. Intriguingly, we find that the GET pathway is especially important for the acute upregulation of Erg1 induced by low sterol conditions. We further identify several other proteins anchored to the endoplasmic reticulum (ER) membrane exclusively via a hairpin as putative clients of the GET pathway. Our findings emphasize the necessity of dedicated targeting pathways for high-efficiency targeting of particular clients during dynamic cellular adaptation and highlight hairpin proteins as a potential novel class of GET clients.
Collapse
Affiliation(s)
- Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytic Mass Spectrometry, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Zhu D, Xiong H, Wu J, Zheng C, Lu D, Zhang L, Xu X. Protein Targeting Into the Thylakoid Membrane Through Different Pathways. Front Physiol 2022; 12:802057. [PMID: 35095563 PMCID: PMC8790069 DOI: 10.3389/fphys.2021.802057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023] Open
Abstract
In higher plants, chloroplasts are essential semi-autonomous organelles with complex compartments. As part of these sub-organellar compartments, the sheet-like thylakoid membranes contain abundant light-absorbing chlorophylls bound to the light-harvesting proteins and to some of the reaction center proteins. About half of the thylakoid membrane proteins are encoded by nuclear genes and synthesized in the cytosol as precursors before being imported into the chloroplast. After translocation across the chloroplast envelope by the Toc/Tic system, these proteins are subsequently inserted into or translocated across the thylakoid membranes through distinct pathways. The other half of thylakoid proteins are encoded by the chloroplast genome, synthesized in the stroma and integrated into the thylakoid through a cotranslational process. Much progress has been made in identification and functional characterization of new factors involved in protein targeting into the thylakoids, and new insights into this process have been gained. In this review, we introduce the distinct transport systems mediating the translocation of substrate proteins from chloroplast stroma to the thylakoid membrane, and present the recent advances in the identification of novel components mediating these pathways. Finally, we raise some unanswered questions involved in the targeting of chloroplast proteins into the thylakoid membrane, along with perspectives for future research.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Haibo Xiong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianghao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
15
|
Keszei AF, Yip MC, Hsieh TC, Shao S. Structural insights into metazoan pretargeting GET complexes. Nat Struct Mol Biol 2021; 28:1029-1037. [PMID: 34887561 PMCID: PMC9477564 DOI: 10.1038/s41594-021-00690-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.
Collapse
Affiliation(s)
- Alexander F.A. Keszei
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115
| | - Matthew C.J. Yip
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115
| | - Ta-Chien Hsieh
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115,Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave., Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA.
| |
Collapse
|
16
|
Chio US, Liu Y, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion. J Cell Biol 2021; 220:212681. [PMID: 34614151 PMCID: PMC8530227 DOI: 10.1083/jcb.202103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
The guided entry of tail-anchored protein (GET) pathway, in which the Get3 ATPase delivers an essential class of tail-anchored membrane proteins (TAs) to the Get1/2 receptor at the endoplasmic reticulum, provides a conserved mechanism for TA biogenesis in eukaryotic cells. The membrane-associated events of this pathway remain poorly understood. Here we show that complex assembly between the cytosolic domains (CDs) of Get1 and Get2 strongly enhances the affinity of the individual subunits for Get3•TA, thus enabling efficient capture of the targeting complex. In addition to the known role of Get1CD in remodeling Get3 conformation, two molecular recognition features (MoRFs) in Get2CD induce Get3 opening, and both subunits are required for optimal TA release from Get3. Mutation of the MoRFs attenuates TA insertion into the ER in vivo. Our results demonstrate extensive cooperation between the Get1/2 receptor subunits in the capture and remodeling of the targeting complex, and emphasize the role of MoRFs in receptor function during membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Woo Jun Shim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA.,Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
17
|
Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. Nat Struct Mol Biol 2021; 28:234-239. [PMID: 33664512 DOI: 10.1038/s41594-021-00567-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Members of the Oxa1 superfamily perform membrane protein insertion in bacteria, the eukaryotic endoplasmic reticulum (ER), and endosymbiotic organelles. Here, we review recent structures of the three ER-resident insertases and discuss the extent to which structure and function are conserved with their bacterial counterpart YidC.
Collapse
|
18
|
Lin KF, Fry MY, Saladi SM, Clemons WM. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J Biol Chem 2021; 296:100441. [PMID: 33610544 PMCID: PMC8010706 DOI: 10.1016/j.jbc.2021.100441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
The targeting and insertion of tail-anchored (TA) integral membrane proteins (IMPs) into the correct membrane is critical for cellular homeostasis. The fungal protein Sgt2, and its human homolog SGTA, is the entry point for clients to the guided entry of tail-anchored protein (GET) pathway, which targets endoplasmic reticulum-bound TA IMPs. Consisting of three structurally independent domains, the C terminus of Sgt2 binds to the hydrophobic transmembrane domain (TMD) of clients. However, the exact binding interface within Sgt2 and molecular details that underlie its binding mechanism and client preference are not known. Here, we reveal the mechanism of Sgt2 binding to hydrophobic clients, including TA IMPs. Through sequence analysis, biophysical characterization, and a series of capture assays, we establish that the Sgt2 C-terminal domain is flexible but conserved and sufficient for client binding. A molecular model for this domain reveals a helical hand forming a hydrophobic groove approximately 15 Å long that is consistent with our observed higher affinity for client TMDs with a hydrophobic face and a minimal length of 11 residues. This work places Sgt2 into a broader family of TPR-containing cochaperone proteins, demonstrating structural and sequence-based similarities to the DP domains in the yeast Hsp90 and Hsp70 coordinating protein, Sti1.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michelle Y Fry
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
19
|
Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Mol Cell 2020; 80:72-86.e7. [DOI: 10.1016/j.molcel.2020.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
|
20
|
A Chaperone Lid Ensures Efficient and Privileged Client Transfer during Tail-Anchored Protein Targeting. Cell Rep 2020; 26:37-44.e7. [PMID: 30605684 DOI: 10.1016/j.celrep.2018.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
Molecular chaperones play key roles in maintaining cellular proteostasis. In addition to preventing client aggregation, chaperones often relay substrates within a network while preventing off-pathway chaperones from accessing the substrate. Here we show that a conserved lid motif lining the substrate-binding groove of the Get3 ATPase enables these important functions during the targeted delivery of tail-anchored membrane proteins (TAs) to the endoplasmic reticulum. The lid prevents promiscuous TA handoff to off-pathway chaperones, and more importantly, it cooperates with the Get4/5 scaffolding complex to enable rapid and privileged TA transfer from the upstream co-chaperone Sgt2 to Get3. These findings provide a molecular mechanism by which chaperones maintain the pathway specificity of client proteins in the crowded cytosolic environment.
Collapse
|
21
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
22
|
Shan SO. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J Biol Chem 2019; 294:16577-16586. [PMID: 31575659 PMCID: PMC6851334 DOI: 10.1074/jbc.rev119.006197] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Newly synthesized integral membrane proteins must traverse the aqueous cytosolic environment before arrival at their membrane destination and are prone to aggregation, misfolding, and mislocalization during this process. The biogenesis of integral membrane proteins therefore poses acute challenges to protein homeostasis within a cell and requires the action of effective molecular chaperones. Chaperones that mediate membrane protein targeting not only need to protect the nascent transmembrane domains from improper exposure in the cytosol, but also need to accurately select client proteins and actively guide their clients to the appropriate target membrane. The mechanisms by which cellular chaperones work together to coordinate this complex process are only beginning to be delineated. Here, we summarize recent advances in studies of the tail-anchored membrane protein targeting pathway, which revealed a network of chaperones, cochaperones, and targeting factors that together drive and regulate this essential process. This pathway is emerging as an excellent model system to decipher the mechanism by which molecular chaperones overcome the multiple challenges during post-translational membrane protein biogenesis and to gain insights into the functional organization of multicomponent chaperone networks.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
23
|
Lin TW, Chen CC, Wu SM, Chang YC, Li YC, Su YW, Hsiao CD, Chang HY. Structural analysis of chloroplast tail-anchored membrane protein recognition by ArsA1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:128-143. [PMID: 30891827 DOI: 10.1111/tpj.14316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
In mammals and yeast, tail-anchored (TA) membrane proteins destined for the post-translational pathway are safely delivered to the endoplasmic reticulum (ER) membrane by a well-known targeting factor, TRC40/Get3. In contrast, the underlying mechanism for translocation of TA proteins in plants remains obscure. How this unique eukaryotic membrane-trafficking system correctly distinguishes different subsets of TA proteins destined for various organelles, including mitochondria, chloroplasts and the ER, is a key question of long standing. Here, we present crystal structures of algal ArsA1 (the Get3 homolog) in a distinct nucleotide-free open state and bound to adenylyl-imidodiphosphate. This approximately 80-kDa protein possesses a monomeric architecture, with two ATPase domains in a single polypeptide chain. It is capable of binding chloroplast (TOC34 and TOC159) and mitochondrial (TOM7) TA proteins based on features of its transmembrane domain as well as the regions immediately before and after the transmembrane domain. Several helices located above the TA-binding groove comprise the interlocking hook-like motif implicated by mutational analyses in TA substrate recognition. Our data provide insights into the molecular basis of the highly specific selectivity of interactions of algal ArsA1 with the correct sets of TA substrates before membrane targeting in plant cells.
Collapse
Affiliation(s)
- Tai-Wen Lin
- Molecular and Cell Biology, International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Shu-Mei Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Ching Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yi-Chuan Li
- Molecular and Cell Biology, International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wang Su
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chwan-Deng Hsiao
- Molecular and Cell Biology, International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan
| |
Collapse
|
24
|
Cho H, Chio US, Shan SO. In vitro Assays for Targeting and Insertion of Tail-Anchored Proteins Into the ER Membrane. ACTA ACUST UNITED AC 2018; 81:e63. [PMID: 30253068 DOI: 10.1002/cpcb.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Membrane proteins mediate numerous essential cellular functions. Due to the aggregation propensity of hydrophobic transmembrane domains in aqueous environments, the targeting and insertion of membrane proteins pose major challenges to cells. In the Guided Entry of Tail-anchored protein (GET) pathway, an essential class of newly synthesized tail-anchored proteins (TAs) are chaperoned and guided by multiple targeting factors to the endoplasmic reticulum (ER) membrane. Deciphering the molecular mechanism of this cellular process has benefitted from successful in vitro reconstitution of individual molecular events in the GET pathway with purified components. Here we describe recently developed protocols for in vitro reconstitution of functional complexes of TA substrates with their targeting factors, for monitoring the transfer of TAs between targeting factors, and for the insertion of TA into the microsomal membrane. These procedures are generally applicable to the interrogation of other post-translational membrane protein targeting pathways. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
25
|
Mateja A, Keenan RJ. A structural perspective on tail-anchored protein biogenesis by the GET pathway. Curr Opin Struct Biol 2018; 51:195-202. [PMID: 30173121 DOI: 10.1016/j.sbi.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
Many tail-anchored (TA) membrane proteins are targeted to and inserted into the endoplasmic reticulum (ER) by the `guided entry of tail-anchored proteins' (GET) pathway. This post-translational pathway uses transmembrane-domain selective cytosolic chaperones for targeting, and a dedicated membrane protein complex for insertion. The past decade has seen rapid progress towards defining the molecular basis of TA protein biogenesis by the GET pathway. Here we review the mechanisms underlying each step of the pathway, emphasizing recent structural work and highlighting key questions that await future studies.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Abstract
Proper localization of membrane proteins is essential for the function of biological membranes and for the establishment of organelle identity within a cell. Molecular machineries that mediate membrane protein biogenesis need to not only achieve a high degree of efficiency and accuracy, but also prevent off-pathway aggregation events that can be detrimental to cells. The posttranslational targeting of tail-anchored proteins (TAs) provides tractable model systems to probe these fundamental issues. Recent advances in understanding TA-targeting pathways reveal sophisticated molecular machineries that drive and regulate these processes. These findings also suggest how an interconnected network of targeting factors, cochaperones, and quality control machineries together ensures robust membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| |
Collapse
|
27
|
Zalisko BE, Chan C, Denic V, Rock RS, Keenan RJ. Tail-Anchored Protein Insertion by a Single Get1/2 Heterodimer. Cell Rep 2018; 20:2287-2293. [PMID: 28877464 DOI: 10.1016/j.celrep.2017.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/27/2017] [Accepted: 08/07/2017] [Indexed: 01/19/2023] Open
Abstract
The Get1/2 transmembrane complex drives the insertion of tail-anchored (TA) proteins from the cytosolic chaperone Get3 into the endoplasmic reticulum membrane. Mechanistic insight into how Get1/2 coordinates this process is confounded by a lack of understanding of the basic architecture of the complex. Here, we define the oligomeric state of full-length Get1/2 in reconstituted lipid bilayers by combining single-molecule and bulk fluorescence measurements with quantitative in vitro insertion analysis. We show that a single Get1/2 heterodimer is sufficient for insertion and demonstrate that the conserved cytosolic regions of Get1 and Get2 bind asymmetrically to opposing subunits of the Get3 homodimer. Altogether, our results define a simplified model for how Get1/2 and Get3 coordinate TA protein insertion.
Collapse
Affiliation(s)
- Benjamin E Zalisko
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Charlene Chan
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA.
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Structural basis for regulation of the nucleo-cytoplasmic distribution of Bag6 by TRC35. Proc Natl Acad Sci U S A 2017; 114:11679-11684. [PMID: 29042515 DOI: 10.1073/pnas.1702940114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The metazoan protein BCL2-associated athanogene cochaperone 6 (Bag6) forms a hetero-trimeric complex with ubiquitin-like 4A and transmembrane domain recognition complex 35 (TRC35). This Bag6 complex is involved in tail-anchored protein targeting and various protein quality-control pathways in the cytosol as well as regulating transcription and histone methylation in the nucleus. Here we present a crystal structure of Bag6 and its cytoplasmic retention factor TRC35, revealing that TRC35 is remarkably conserved throughout the opisthokont lineage except at the C-terminal Bag6-binding groove, which evolved to accommodate Bag6, a unique metazoan factor. While TRC35 and its fungal homolog, guided entry of tail-anchored protein 4 (Get4), utilize a conserved hydrophobic patch to bind their respective partners, Bag6 wraps around TRC35 on the opposite face relative to the Get4-5 interface. We further demonstrate that TRC35 binding is critical not only for occluding the Bag6 nuclear localization sequence from karyopherin α to retain Bag6 in the cytosol but also for preventing TRC35 from succumbing to RNF126-mediated ubiquitylation and degradation. The results provide a mechanism for regulation of Bag6 nuclear localization and the functional integrity of the Bag6 complex in the cytosol.
Collapse
|
29
|
A protean clamp guides membrane targeting of tail-anchored proteins. Proc Natl Acad Sci U S A 2017; 114:E8585-E8594. [PMID: 28973888 DOI: 10.1073/pnas.1708731114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proper localization of proteins to target membranes is a fundamental cellular process. How the nature and dynamics of the targeting complex help guide substrate proteins to the target membrane is not understood for most pathways. Here, we address this question for the conserved ATPase guided entry of tail-anchored protein 3 (Get3), which targets the essential class of tail-anchored proteins (TAs) to the endoplasmic reticulum (ER). Single-molecule fluorescence spectroscopy showed that, contrary to previous models of a static closed Get3•TA complex, Get3 samples open conformations on the submillisecond timescale upon TA binding, generating a fluctuating "protean clamp" that stably traps the substrate. Point mutations at the ATPase site bias Get3 toward closed conformations, uncouple TA binding from induced Get3•Get4/5 disassembly, and inhibit the ER targeting of the Get3•TA complex. These results demonstrate an essential role of substrate-induced Get3 dynamics in driving TA targeting to the membrane, and reveal a tightly coupled channel of communication between the TA-binding site, ATPase site, and effector interaction surfaces of Get3. Our results provide a precedent for large-scale dynamics in a substrate-bound chaperone, which provides an effective mechanism to retain substrate proteins with high affinity while also generating functional switches to drive vectorial cellular processes.
Collapse
|
30
|
Rao M, Okreglak V, Chio US, Cho H, Walter P, Shan SO. Multiple selection filters ensure accurate tail-anchored membrane protein targeting. eLife 2016; 5. [PMID: 27925580 PMCID: PMC5214336 DOI: 10.7554/elife.21301] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/06/2016] [Indexed: 11/13/2022] Open
Abstract
Accurate protein localization is crucial to generate and maintain organization in all cells. Achieving accuracy is challenging, as the molecular signals that dictate a protein's cellular destination are often promiscuous. A salient example is the targeting of an essential class of tail-anchored (TA) proteins, whose sole defining feature is a transmembrane domain near their C-terminus. Here we show that the Guided Entry of Tail-anchored protein (GET) pathway selects TA proteins destined to the endoplasmic reticulum (ER) utilizing distinct molecular steps, including differential binding by the co-chaperone Sgt2 and kinetic proofreading after ATP hydrolysis by the targeting factor Get3. Further, the different steps select for distinct physicochemical features of the TA substrate. The use of multiple selection filters may be general to protein biogenesis pathways that must distinguish correct and incorrect substrates based on minor differences.
Collapse
Affiliation(s)
- Meera Rao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Voytek Okreglak
- Howard Hughes Medical Institute, University of California, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
31
|
ATPase and GTPase Tangos Drive Intracellular Protein Transport. Trends Biochem Sci 2016; 41:1050-1060. [PMID: 27658684 DOI: 10.1016/j.tibs.2016.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The GTPase superfamily of proteins provides molecular switches to regulate numerous cellular processes. The 'GTPase switch' paradigm, in which external regulatory factors control the switch of a GTPase between 'on' and 'off' states, has been used to interpret the regulatory mechanism of many GTPases. However, recent work unveiled a class of nucleotide hydrolases that do not adhere to this classical paradigm. Instead, they use nucleotide-dependent dimerization cycles to regulate key cellular processes. In this review article, recent studies of dimeric GTPases and ATPases involved in intracellular protein targeting are summarized. It is suggested that these proteins can use the conformational plasticity at their dimer interface to generate multiple points of regulation, thereby providing the driving force and spatiotemporal coordination of complex cellular pathways.
Collapse
|
32
|
Cotranslational Intersection between the SRP and GET Targeting Pathways to the Endoplasmic Reticulum of Saccharomyces cerevisiae. Mol Cell Biol 2016; 36:2374-83. [PMID: 27354063 DOI: 10.1128/mcb.00131-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 01/21/2023] Open
Abstract
Targeting of transmembrane proteins to the endoplasmic reticulum (ER) proceeds via either the signal recognition particle (SRP) or the guided entry of tail-anchored proteins (GET) pathway, consisting of Get1 to -5 and Sgt2. While SRP cotranslationally targets membrane proteins containing one or multiple transmembrane domains, the GET pathway posttranslationally targets proteins containing a single C-terminal transmembrane domain termed the tail anchor. Here, we dissect the roles of the SRP and GET pathways in the sorting of homologous, two-membrane-spanning K(+) channel proteins termed Kcv, Kesv, and Kesv-VV. We show that Kcv is targeted to the ER cotranslationally via its N-terminal transmembrane domain, while Kesv-VV is targeted posttranslationally via its C-terminal transmembrane domain, which recruits Get4-5/Sgt2 and Get3. Unexpectedly, nascent Kcv recruited not only SRP but also the Get4-5 module of the GET pathway to ribosomes. Ribosome binding of Get4-5 was independent of Sgt2 and was strongly outcompeted by SRP. The combined data indicate a previously unrecognized cotranslational interplay between the SRP and GET pathways.
Collapse
|
33
|
Gristick HB, Rome ME, Chartron JW, Rao M, Hess S, Shan SO, Clemons WM. Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting. J Biol Chem 2015; 290:30006-17. [PMID: 26451041 PMCID: PMC4705998 DOI: 10.1074/jbc.m115.677328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/02/2015] [Indexed: 11/06/2022] Open
Abstract
Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C terminus, are post-translationally targeted to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. In yeast, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 complex (Get4/5), which tethers the co-chaperone Sgt2 to the targeting factor, the Get3 ATPase. Binding of Get4/5 to Get3 is critical for efficient TA targeting; however, questions remain about the formation of the Get3·Get4/5 complex. Here we report crystal structures of a Get3·Get4/5 complex from Saccharomyces cerevisiae at 2.8 and 6.0 Å that reveal a novel interface between Get3 and Get4 dominated by electrostatic interactions. Kinetic and mutational analyses strongly suggest that these structures represent an on-pathway intermediate that rapidly assembles and then rearranges to the final Get3·Get4/5 complex. Furthermore, we provide evidence that the Get3·Get4/5 complex is dominated by a single Get4/5 heterotetramer bound to one monomer of a Get3 dimer, uncovering an intriguing asymmetry in the Get4/5 heterotetramer upon Get3 binding. Ultrafast diffusion-limited electrostatically driven Get3·Get4/5 association enables Get4/5 to rapidly sample and capture Get3 at different stages of the GET pathway.
Collapse
Affiliation(s)
| | - Michael E Rome
- From the Division of Chemistry and Chemical Engineering and
| | | | - Meera Rao
- From the Division of Chemistry and Chemical Engineering and
| | - Sonja Hess
- The Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Shu-ou Shan
- From the Division of Chemistry and Chemical Engineering and
| | | |
Collapse
|
34
|
Shao S, Hegde RS. Target Selection during Protein Quality Control. Trends Biochem Sci 2015; 41:124-137. [PMID: 26628391 DOI: 10.1016/j.tibs.2015.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022]
Abstract
Protein quality control (QC) pathways survey the cellular proteome to selectively recognize and degrade faulty proteins whose accumulation can lead to various diseases. Recognition of the occasional aberrant protein among an abundant sea of similar normal counterparts poses a considerable challenge to the cell. Solving this problem requires protein QC machinery to assay multiple molecular criteria within a spatial and temporal context. Although each QC pathway has unique criteria and mechanisms for distinguishing right from wrong, they appear to share several general concepts. We discuss principles of high-fidelity target recognition, the decisive event of all protein QC pathways, to guide future work in this area.
Collapse
Affiliation(s)
- Sichen Shao
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
35
|
Yamamoto Y, Sakisaka T. The emerging role of calcium-modulating cyclophilin ligand in posttranslational insertion of tail-anchored proteins into the endoplasmic reticulum membrane. J Biochem 2015; 157:419-29. [PMID: 25869254 DOI: 10.1093/jb/mvv035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023] Open
Abstract
Tail-anchored (TA) proteins, a class of membrane proteins having an N-terminal cytoplasmic region anchored to the membrane by a single C-terminal transmembrane domain, are posttranslationally inserted into the endoplasmic reticulum (ER) membrane. In yeasts, the posttranslational membrane insertion is mediated by the Guided Entry of TA Proteins (GET) complex. Get3, a cytosolic ATPase, targets newly synthesized TA proteins to the ER membrane, where Get2 and Get3 constitute the Get3 receptor driving the membrane insertion. While mammalian cells employ TRC40 and WRB, mammalian homologs of Get3 and Get1, respectively, they lack the gene homologous to Get2. We recently identified calcium-modulating cyclophilin ligand (CAML) as a TRC40 receptor, indicating that CAML was equivalent to Get2 in the context of the membrane insertion. On the other hand, CAML has been well characterized as a signaling molecule that regulates various biological processes, raising the question of how the two distinct actions of CAML, the membrane insertion and the signal transduction, are assembled. In this review, we summarize recent progress of the molecular mechanism of the membrane insertion of TA proteins and discuss the possibility that CAML could sense the various signals at the ER membrane, thereby controlling TA protein biogenesis.
Collapse
Affiliation(s)
- Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
36
|
Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA, Hegde RS, Keenan RJ. Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 2015; 347:1152-5. [PMID: 25745174 PMCID: PMC4413028 DOI: 10.1126/science.1261671] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. We reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans the Get3 homodimer. Our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marcin Paduch
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Hsin-Yang Chang
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Anna Szydlowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|