1
|
Habib S, Ahmad SA, Wan Johari WL, Abd Shukor MY, Alias SA, Smykla J, Saruni NH, Abdul Razak NS, Yasid NA. Production of Lipopeptide Biosurfactant by a Hydrocarbon-Degrading Antarctic Rhodococcus. Int J Mol Sci 2020; 21:ijms21176138. [PMID: 32858859 PMCID: PMC7504157 DOI: 10.3390/ijms21176138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022] Open
Abstract
Rhodococci are renowned for their great metabolic repertoire partly because of their numerous putative pathways for large number of specialized metabolites such as biosurfactant. Screening and genome-based assessment for the capacity to produce surface-active molecules was conducted on Rhodococcus sp. ADL36, a diesel-degrading Antarctic bacterium. The strain showed a positive bacterial adhesion to hydrocarbon (BATH) assay, drop collapse test, oil displacement activity, microplate assay, maximal emulsification index at 45% and ability to reduce water surface tension to < 30 mN/m. The evaluation of the cell-free supernatant demonstrated its high stability across the temperature, pH and salinity gradient although no correlation was found between the surface and emulsification activity. Based on the positive relationship between the assessment of macromolecules content and infrared analysis, the extracted biosurfactant synthesized was classified as a lipopeptide. Prediction of the secondary metabolites in the non-ribosomal peptide synthetase (NRPS) clusters suggested the likelihood of the surface-active lipopeptide production in the strain’s genomic data. This is the third report of surface-active lipopeptide producers from this phylotype and the first from the polar region. The lipopeptide synthesized by ADL36 has the prospect to be an Antarctic remediation tool while furnishing a distinctive natural product for biotechnological application and research.
Collapse
Affiliation(s)
- Syahir Habib
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.H.); (S.A.A.); (M.Y.A.S.); (N.H.S.); (N.S.A.R.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.H.); (S.A.A.); (M.Y.A.S.); (N.H.S.); (N.S.A.R.)
| | - Wan Lutfi Wan Johari
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.H.); (S.A.A.); (M.Y.A.S.); (N.H.S.); (N.S.A.R.)
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308 Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Jerzy Smykla
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland;
| | - Nurul Hani Saruni
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.H.); (S.A.A.); (M.Y.A.S.); (N.H.S.); (N.S.A.R.)
| | - Nur Syafiqah Abdul Razak
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.H.); (S.A.A.); (M.Y.A.S.); (N.H.S.); (N.S.A.R.)
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; (S.H.); (S.A.A.); (M.Y.A.S.); (N.H.S.); (N.S.A.R.)
- Correspondence: ; Tel.: +603-9769-8297
| |
Collapse
|
2
|
Walsh CT. Are highly morphed peptide frameworks lurking silently in microbial genomes valuable as next generation antibiotic scaffolds? Nat Prod Rep 2017; 34:687-693. [PMID: 28513710 DOI: 10.1039/c7np00011a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotics are a therapeutic class that, once deployed, select for resistant bacterial pathogens and so shorten their useful life cycles. As a consequence new versions of antibiotics are constantly needed. Among the antibiotic natural products, morphed peptide scaffolds, converting conformationally mobile, short-lived linear peptides into compact, rigidified small molecule frameworks, act on a wide range of bacterial targets. Advances in bacterial genome mining, biosynthetic gene cluster prediction and expression, and mass spectroscopic structure analysis suggests many more peptides, modified both in side chains and peptide backbones, await discovery. Such molecules may turn up new bacterial targets and be starting points for combinatorial or semisynthetic manipulations to optimize activity and pharmacology parameters.
Collapse
|