1
|
Chatzitheodoridou D, Bureik D, Padovani F, Nadimpalli KV, Schmoller KM. Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients. EMBO J 2024; 43:5141-5168. [PMID: 39271795 PMCID: PMC11535423 DOI: 10.1038/s44318-024-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
To maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry. Here we show that budding yeast achieves histone homeostasis in different nutrients through a decoupling of transcript and protein abundance. We find that cells downregulate histone transcripts in poor nutrients to avoid toxic histone overexpression, but produce constant amounts of histone proteins through nutrient-specific regulation of translation efficiency. Our findings suggest that this allows cells to balance the need for rapid histone production under fast growth conditions with the tight regulation required to avoid toxic overexpression in poor nutrients.
Collapse
Affiliation(s)
- Dimitra Chatzitheodoridou
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kalyan V Nadimpalli
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
2
|
Haase MAB, Steenwyk JL, Boeke JD. Gene loss and cis-regulatory novelty shaped core histone gene evolution in the apiculate yeast Hanseniaspora uvarum. Genetics 2024; 226:iyae008. [PMID: 38271560 PMCID: PMC10917516 DOI: 10.1093/genetics/iyae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Core histone genes display a remarkable diversity of cis-regulatory mechanisms despite their protein sequence conservation. However, the dynamics and significance of this regulatory turnover are not well understood. Here, we describe the evolutionary history of core histone gene regulation across 400 million years in budding yeasts. We find that canonical mode of core histone regulation-mediated by the trans-regulator Spt10-is ancient, likely emerging between 320 and 380 million years ago and is fixed in the majority of extant species. Unexpectedly, we uncovered the emergence of a novel core histone regulatory mode in the Hanseniaspora genus, from its fast-evolving lineage, which coincided with the loss of 1 copy of its paralogous core histone genes. We show that the ancestral Spt10 histone regulatory mode was replaced, via cis-regulatory changes in the histone control regions, by a derived Mcm1 histone regulatory mode and that this rewiring event occurred with no changes to the trans-regulator, Mcm1, itself. Finally, we studied the growth dynamics of the cell cycle and histone synthesis in genetically modified Hanseniaspora uvarum. We find that H. uvarum divides rapidly, with most cells completing a cell cycle within 60 minutes. Interestingly, we observed that the regulatory coupling between histone and DNA synthesis was lost in H. uvarum. Our results demonstrate that core histone gene regulation was fixed anciently in budding yeasts, however it has greatly diverged in the Hanseniaspora fast-evolving lineage.
Collapse
Affiliation(s)
- Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 435 E 30th St, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 435 E 30th St, New York, NY 10016, USA
| |
Collapse
|
3
|
Ramos-Alonso L, Chymkowitch P. Maintaining transcriptional homeostasis during cell cycle. Transcription 2024; 15:1-21. [PMID: 37655806 PMCID: PMC11093055 DOI: 10.1080/21541264.2023.2246868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Juárez-Reyes A, Avelar-Rivas JA, Hernandez-Valdes JA, Hua B, Campos SE, González J, González A, Springer M, Mancera E, DeLuna A. Systematic profiling of subtelomeric silencing factors in budding yeast. G3 (BETHESDA, MD.) 2023; 13:jkad153. [PMID: 37431950 PMCID: PMC10542202 DOI: 10.1093/g3journal/jkad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Subtelomeric gene silencing is the negative transcriptional regulation of genes located close to telomeres. This phenomenon occurs in a variety of eukaryotes with salient physiological implications, such as cell adherence, virulence, immune-system escape, and ageing. The process has been widely studied in the budding yeast Saccharomyces cerevisiae, where genes involved in this process have been identified mostly on a gene-by-gene basis. Here, we introduce a quantitative approach to study gene silencing, that couples the classical URA3 reporter with GFP monitoring, amenable to high-throughput flow cytometry analysis. This dual silencing reporter was integrated into several subtelomeric loci in the genome, where it showed a gradual range of silencing effects. By crossing strains with this dual reporter at the COS12 and YFR057W subtelomeric query loci with gene-deletion mutants, we carried out a large-scale forward screen for potential silencing factors. The approach was replicable and allowed accurate detection of expression changes. Results of our comprehensive screen suggest that the main players influencing subtelomeric silencing were previously known, but additional potential factors underlying chromatin conformation are involved. We validate and report the novel silencing factor LGE1, a protein with unknown molecular function required for histone H2B ubiquitination. Our strategy can be readily combined with other reporters and gene perturbation collections, making it a versatile tool to study gene silencing at a genome-wide scale.
Collapse
Affiliation(s)
- Alejandro Juárez-Reyes
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - J Abraham Avelar-Rivas
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Jhonatan A Hernandez-Valdes
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
- Nouryon Chemicals Research Centre, Expert Capability Center Deventer, 7418AJ Deventer, Netherlands
| | - Bo Hua
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sergio E Campos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - James González
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Alicia González
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenio Mancera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Mei Q, Yu Q, Li X, Chen J, Yu X. Regulation of telomere silencing by the core histones-autophagy-Sir2 axis. Life Sci Alliance 2023; 6:6/3/e202201614. [PMID: 36585257 PMCID: PMC9806677 DOI: 10.26508/lsa.202201614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Telomeres contain compacted heterochromatin, and genes adjacent to telomeres are subjected to transcription silencing. Maintaining telomere structure integrity and transcription silencing is important to prevent the occurrence of premature aging and aging-related diseases. How telomere silencing is regulated during aging is not well understood. Here, we find that the four core histones are reduced during yeast chronological aging, leading to compromised telomere silencing. Mechanistically, histone loss promotes the nuclear export of Sir2 and its degradation by autophagy. Meanwhile, reducing core histones enhances the autophagy pathway, which further accelerates autophagy-mediated Sir2 degradation. By screening the histone mutant library, we identify eight histone mutants and one histone modification (histone methyltransferase Set1-catalyzed H3K4 trimethylation) that regulate telomere silencing by modulating the core histones-autophagy-Sir2 axis. Overall, our findings reveal core histones and autophagy as causes of aging-coupled loss of telomere silencing and shed light on dynamic regulation of telomere structure during aging.
Collapse
Affiliation(s)
- Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Jianguo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Zhang L, Cervantes MD, Pan S, Lindsley J, Dabney A, Kapler GM. Transcriptome analysis of the binucleate ciliate Tetrahymena thermophila with asynchronous nuclear cell cycles. Mol Biol Cell 2023; 34:rs1. [PMID: 36475712 PMCID: PMC9930529 DOI: 10.1091/mbc.e22-08-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila harbors two functionally and physically distinct nuclei within a shared cytoplasm. During vegetative growth, the "cell cycles" of the diploid micronucleus and polyploid macronucleus are offset. Micronuclear S phase initiates just before cytokinesis and is completed in daughter cells before onset of macronuclear DNA replication. Mitotic micronuclear division occurs mid-cell cycle, while macronuclear amitosis is coupled to cell division. Here we report the first RNA-seq cell cycle analysis of a binucleated ciliated protozoan. RNA was isolated across 1.5 vegetative cell cycles, starting with a macronuclear G1 population synchronized by centrifugal elutriation. Using MetaCycle, 3244 of the 26,000+ predicted genes were shown to be cell cycle regulated. Proteins present in both nuclei exhibit a single mRNA peak that always precedes their macronuclear function. Nucleus-limited genes, including nucleoporins and importins, are expressed before their respective nucleus-specific role. Cyclin D and A/B gene family members exhibit different expression patterns that suggest nucleus-restricted roles. Periodically expressed genes cluster into seven cyclic patterns. Four clusters have known PANTHER gene ontology terms associated with G1/S and G2/M phase. We propose that these clusters encode known and novel factors that coordinate micro- and macronuclear-specific events such as mitosis, amitosis, DNA replication, and cell division.
Collapse
Affiliation(s)
- L. Zhang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - M. D. Cervantes
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - S. Pan
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,Department of Statistics, Texas A&M University, College Station, TX 77843
| | - J. Lindsley
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840
| | - A. Dabney
- Department of Statistics, Texas A&M University, College Station, TX 77843,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| | - G. M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, College Station, TX 77840,*Address correspondence to: Geoffrey Kapler (); A. Dabney ()
| |
Collapse
|
7
|
Epigenetic Changes in Saccharomyces cerevisiae Alters the Aromatic Profile in Alcoholic Fermentation. Appl Environ Microbiol 2022; 88:e0152822. [PMID: 36374027 PMCID: PMC9746323 DOI: 10.1128/aem.01528-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetic changes in genomics provide phenotypic modification without DNA sequence alteration. This study shows that benzoic acid, a common food additive and known histone deacetylase inhibitor (HDACi), has an epigenetic effect on Saccharomyces cerevisiae. Benzoic acid stimulated formation of epigenetic histone marks H3K4Me2, H3K27Me2, H3K18ac, and H3Ser10p in S. cerevisiae and altered their phenotypic behavior, resulting in increased production of phenylethyl alcohol and ester compounds during alcoholic fermentation using wine as a representative model system. Our study demonstrates the HDACi activity of certain dietary compounds such as sodium butyrate, curcumin and anacardic acid, suggests the potential use of these dietary compounds in altering S. cerevisiae phenotypes without altering host-cell DNA. This study highlights the potential to use common dietary compounds to exploit epigenetic modifications for various fermentation and biotechnology applications as an alternative to genetic modification. These findings indicate that benzoic acid and other food additives may have potential epigenetic effects on human gut microbiota, in which several yeast species are involved. IMPORTANCE The manuscript investigates and reports for the first time utilizing a non-GMO approach to alter the fermentation process of Pinot Noir wines. We have experimentally demonstrated that certain dietary compounds possess histone deacetylase (HDAC) inhibiting activity and can alter the wine characteristics by potentially altering yeast gene transcription, which was resulted from epigenetic effects. We have previously proposed the term "nutrifermentics" to represent this newly proposed field of research that provides insights on the effect of certain dietary compounds on microbial strains and their potential application in fermentation. This technological approach is a novel way to manipulate microorganisms for innovative food and beverage production with quality attributes catering for consumer's needs. Using a multidisciplinary approach with an emphasis on food fermentation and biotechnology, this study will be substantially useful and of broad interest to food microbiologists and biotechnologists who seek for innovative concepts with real-world application potential.
Collapse
|
8
|
Reusswig KU, Bittmann J, Peritore M, Courtes M, Pardo B, Wierer M, Mann M, Pfander B. Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions. Nat Commun 2022; 13:7014. [PMID: 36400763 PMCID: PMC9674678 DOI: 10.1038/s41467-022-34379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
DNA replicates once per cell cycle. Interfering with the regulation of DNA replication initiation generates genome instability through over-replication and has been linked to early stages of cancer development. Here, we engineer genetic systems in budding yeast to induce unscheduled replication in a G1-like cell cycle state. Unscheduled G1 replication initiates at canonical S-phase origins. We quantifiy the composition of replisomes in G1- and S-phase and identified firing factors, polymerase α, and histone supply as factors that limit replication outside S-phase. G1 replication per se does not trigger cellular checkpoints. Subsequent replication during S-phase, however, results in over-replication and leads to chromosome breaks and chromosome-wide, strand-biased occurrence of RPA-bound single-stranded DNA, indicating head-to-tail replication collisions as a key mechanism generating genome instability upon G1 replication. Low-level, sporadic induction of G1 replication induces an identical response, indicating findings from synthetic systems are applicable to naturally occurring scenarios of unscheduled replication initiation.
Collapse
Affiliation(s)
- Karl-Uwe Reusswig
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.38142.3c000000041936754XPresent Address: Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Present Address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Julia Bittmann
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martina Peritore
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Mathilde Courtes
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Benjamin Pardo
- grid.433120.7Institut de Génétique Humaine (IGH), Université de Montpellier – Centre National de la Recherche Scientifique, 34396 Montpellier, France
| | - Michael Wierer
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.5254.60000 0001 0674 042XPresent Address: Proteomics Research Infrastructure, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Matthias Mann
- grid.418615.f0000 0004 0491 845XProteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Boris Pfander
- grid.418615.f0000 0004 0491 845XDNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany ,grid.7551.60000 0000 8983 7915Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany ,grid.6190.e0000 0000 8580 3777Present Address: Genome Maintenance Mechanisms in Health and Disease, Institute of Genome Stability in Ageing and Disease, CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
9
|
The Spt10 GNAT Superfamily Protein Modulates Development, Cell Cycle Progression and Virulence in the Fungal Insect Pathogen, Beauveria bassiana. J Fungi (Basel) 2021; 7:jof7110905. [PMID: 34829192 PMCID: PMC8619123 DOI: 10.3390/jof7110905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Chromatin remodeling is mediated in part by post-translational acetylation/deacetylation modifications of histones. Histone acetyltransferases (HATs), e.g., members of the GNAT/MYST superfamily, activate gene transcription via promotion of euchromatin formation. Here, we characterized a GNAT family HAT, Spt10 (BbSpt10), in the environmentally and economically important fungal insect pathogen, Beauveria bassiana. Targeted gene knockout of BbSpt10 resulted in impaired asexual development and morphogenesis; reduced abilities to utilize various carbon/nitrogen sources; reduced tolerance to heat, fungicides, and DNA damage stress; and attenuated virulence. The ΔBbSpt10 mutant showed disrupted cell cycle development and abnormal hyphal septation patterns. Transcriptome analyses of wild type and ΔBbSpt10 cells revealed the differential expression of 373 genes, including 153 downregulated and 220 upregulated genes. Bioinformatic analyses revealed downregulated genes to be enriched in pathways involved in amino acid metabolism, cellular transportation, cell type differentiation, and virulence, while upregulated genes were enriched in carbon/nitrogen metabolism, lipid metabolism, DNA process, and cell rescue, defense, and virulence. Downregulated virulence genes included hydrophobins, cellular transporters (ABC and MFS multidrug transporters) and cytochrome P450 detoxification genes. These data indicated broad effects of BbSpt10 on fungal development, multi-stress response, and virulence.
Collapse
|
10
|
Bhagwat M, Nagar S, Kaur P, Mehta R, Vancurova I, Vancura A. Replication stress inhibits synthesis of histone mRNAs in yeast by removing Spt10p and Spt21p from the histone promoters. J Biol Chem 2021; 297:101246. [PMID: 34582893 PMCID: PMC8551654 DOI: 10.1016/j.jbc.2021.101246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species. The aim of this study was to identify the histone mRNA decay pathway in the yeast Saccharomyces cerevisiae and determine the mechanism by which DNA replication stress represses histone mRNAs. Using reverse transcription-quantitative PCR and chromatin immunoprecipitation–quantitative PCR, we show here that histone mRNAs can be degraded by both 5′ → 3′ and 3′ → 5′ pathways; however, replication stress does not trigger decay of histone mRNA in yeast. Rather, replication stress inhibits transcription of histone genes by removing the histone gene–specific transcription factors Spt10p and Spt21p from histone promoters, leading to disassembly of the preinitiation complexes and eviction of RNA Pol II from histone genes by a mechanism facilitated by checkpoint kinase Rad53p and histone chaperone Asf1p. In contrast, replication stress does not remove SCB-binding factor transcription complex, another activator of histone genes, from the histone promoters, suggesting that Spt10p and Spt21p have unique roles in the transcriptional downregulation of histone genes during replication stress. Together, our data show that, unlike in mammalian cells, replication stress in yeast does not trigger decay of histone mRNAs but inhibits histone transcription.
Collapse
Affiliation(s)
- Madhura Bhagwat
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
11
|
Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, Zhang M, Lin Y, Zhang L, Yan GQ, An YP, Yao J, Zhang C, Lin PC, Yuan YY, Zhao JY, Xu W, Zhao SM. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat Metab 2021; 3:859-875. [PMID: 34140692 DOI: 10.1038/s42255-021-00405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Ting-Ting Fan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Yun-Zi Mao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Meng Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Lei Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Guo-Quan Yan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Yan-Peng An
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Jun Yao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Cheng Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China
| | - Yi-Yuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China.
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China.
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China.
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China.
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Bhagwat M, Nagar S, Kaur P, Jassar S, Vancurova I, Vancura A. Synthesis of nucleocytosolic acetyl-CoA regulates mitochondrial respiration and ATP synthesis in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119025. [PMID: 33862055 DOI: 10.1016/j.bbamcr.2021.119025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Madhura Bhagwat
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Shreya Nagar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Salony Jassar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
13
|
Yang H, Chen L, Sun Q, Yao F, Muhammad S, Sun C. The role of HDAC11 in obesity-related metabolic disorders: A critical review. J Cell Physiol 2021; 236:5582-5591. [PMID: 33481312 DOI: 10.1002/jcp.30286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
At present, metabolic diseases, such as obesity and diabetes, have become the world's top health threats. These diseases are closely related to the abnormal development and function of adipocytes and metabolic inflammation associated with obesity. Histone deacetylase 11 (HDAC11), with a relatively unique structure and function in the HDAC family, plays a vital role in regulating cell growth, migration, and cell death. Currently, research on new key regulatory functions of HDAC11 in metabolic homeostasis is receiving more and more attention, and HDAC11 has also become a potential therapeutic target in the treatment of obesity and obesity-related diseases. Here, we summarized the latest literature on the role of HDAC11 in regulating the progress of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangyao Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Saeed Muhammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Dowle EJ, Powell THQ, Doellman MM, Meyers PJ, Calvert MB, Walden KKO, Robertson HM, Berlocher SH, Feder JL, Hahn DA, Ragland GJ. Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc Natl Acad Sci U S A 2020; 117:23960-23969. [PMID: 32900926 PMCID: PMC7519392 DOI: 10.1073/pnas.2002357117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in Rhagoletis pomonella, a fly specialized to feed on fruits of seasonally limited host plants. Transcriptomes from the central nervous system across a time series during diapause show consistent and progressive changes in transcripts participating in diverse developmental processes, despite a lack of gross morphological change. Moreover, population genomic analyses suggested that many genes of small effect enriched in developmental functional categories underlie variation in dormancy timing and overlap with gene sets associated with development rate in Drosophila melanogaster Our transcriptional data also suggested that a recent evolutionary shift from a seasonally late to a seasonally early host plant drove more rapid development during diapause in the early fly population. Moreover, genetic variants that diverged during the evolutionary shift were also enriched in putative cis regulatory regions of genes differentially expressed during diapause development. Overall, our data suggest polygenic variation in the rate of developmental progression during diapause contributes to the evolution of seasonality in R. pomonella We further discuss patterns that suggest hourglass-like developmental divergence early and late in diapause development and an important role for hub genes in the evolution of transcriptional divergence.
Collapse
Affiliation(s)
- Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Anatomy, University of Otago, 9016 Dunedin, New Zealand
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University-State University of New York, Binghamton, NY 13902
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - McCall B Calvert
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556
| | - Daniel A Hahn
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Entomology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
15
|
Bruhn C, Ajazi A, Ferrari E, Lanz MC, Batrin R, Choudhary R, Walvekar A, Laxman S, Longhese MP, Fabre E, Smolka MB, Foiani M. The Rad53 CHK1/CHK2-Spt21 NPAT and Tel1 ATM axes couple glucose tolerance to histone dosage and subtelomeric silencing. Nat Commun 2020; 11:4154. [PMID: 32814778 PMCID: PMC7438486 DOI: 10.1038/s41467-020-17961-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53CHK1/CHK2 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21NPAT on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1ATM and Rpd3HDAC activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.
Collapse
Affiliation(s)
- Christopher Bruhn
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy.
| | - Arta Ajazi
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy
| | - Elisa Ferrari
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy
| | - Michael Charles Lanz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Renaud Batrin
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Centre de Recherche St Louis, F-75010, Paris, France
| | - Ramveer Choudhary
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy
| | - Adhish Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Edificio U3, Piazza della Scienza 2, 20126, Milan, Italy
| | - Emmanuelle Fabre
- Université de Paris, Laboratoire Génomes, Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Centre de Recherche St Louis, F-75010, Paris, France
| | - Marcus Bustamente Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Marco Foiani
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139, Milan, Italy.
- Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
16
|
Muellner J, Schmidt KH. Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family. Genes (Basel) 2020; 11:genes11020224. [PMID: 32093266 PMCID: PMC7073672 DOI: 10.3390/genes11020224] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
The two PIF1 family helicases in Saccharomyces cerevisiae, Rrm3, and ScPif1, associate with thousands of sites throughout the genome where they perform overlapping and distinct roles in telomere length maintenance, replication through non-histone proteins and G4 structures, lagging strand replication, replication fork convergence, the repair of DNA double-strand break ends, and transposable element mobility. ScPif1 and its fission yeast homolog Pfh1 also localize to mitochondria where they protect mitochondrial genome integrity. In addition to yeast serving as a model system for the rapid functional evaluation of human Pif1 variants, yeast cells lacking Rrm3 have proven useful for elucidating the cellular response to replication fork pausing at endogenous sites. Here, we review the increasingly important cellular functions of the yeast PIF1 helicases in maintaining genome integrity, and highlight recent advances in our understanding of their roles in facilitating fork progression through replisome barriers, their functional interactions with DNA repair, and replication stress response pathways.
Collapse
Affiliation(s)
- Julius Muellner
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
17
|
Rendsvig JKH, Workman CT, Hoof JB. Bidirectional histone-gene promoters in Aspergillus: characterization and application for multi-gene expression. Fungal Biol Biotechnol 2019; 6:24. [PMID: 31867115 PMCID: PMC6900853 DOI: 10.1186/s40694-019-0088-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/23/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Filamentous fungi are important producers of enzymes and bioactive secondary metabolites and are exploited for industrial purposes. Expression and characterization of biosynthetic pathways requires stable expression of multiple genes in the production host. Fungal promoters are indispensable for the accomplishment of this task, and libraries of promoters that show functionality across diverse fungal species facilitate synthetic biology approaches, pathway expression, and cell-factory construction. RESULTS In this study, we characterized the intergenic region between the genes encoding histones H4.1 and H3, from five phylogenetically diverse species of Aspergillus, as bidirectional promoters (Ph4h3). By expression of the genes encoding fluorescent proteins mRFP1 and mCitrine, we show at the translational and transcriptional level that this region from diverse species is applicable as strong and constitutive bidirectional promoters in Aspergillus nidulans. Bioinformatic analysis showed that the divergent gene orientation of h4.1 and h3 appears maintained among fungi, and that the Ph4h3 display conserved DNA motifs among the investigated 85 Aspergilli. Two of the heterologous Ph4h3s were utilized for single-locus expression of four genes from the putative malformin producing pathway from Aspergillus brasiliensis in A. nidulans. Strikingly, heterologous expression of mlfA encoding the non-ribosomal peptide synthetase is sufficient for biosynthesis of malformins in A. nidulans, which indicates an iterative use of one adenylation domain in the enzyme. However, this resulted in highly stressed colonies, which was reverted to a healthy phenotype by co-expressing the residual four genes from the putative biosynthetic gene cluster. CONCLUSIONS Our study has documented that Ph4h3 is a strong constitutive bidirectional promoter and a valuable new addition to the genetic toolbox of at least the genus Aspergillus.
Collapse
Affiliation(s)
- Jakob K. H. Rendsvig
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob B. Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Crane MM, Russell AE, Schafer BJ, Blue BW, Whalen R, Almazan J, Hong MG, Nguyen B, Goings JE, Chen KL, Kelly R, Kaeberlein M. DNA damage checkpoint activation impairs chromatin homeostasis and promotes mitotic catastrophe during aging. eLife 2019; 8:e50778. [PMID: 31714209 PMCID: PMC6850777 DOI: 10.7554/elife.50778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
Genome instability is a hallmark of aging and contributes to age-related disorders such as cancer and Alzheimer's disease. The accumulation of DNA damage during aging has been linked to altered cell cycle dynamics and the failure of cell cycle checkpoints. Here, we use single cell imaging to study the consequences of increased genomic instability during aging in budding yeast and identify striking age-associated genome missegregation events. This breakdown in mitotic fidelity results from the age-related activation of the DNA damage checkpoint and the resulting degradation of histone proteins. Disrupting the ability of cells to degrade histones in response to DNA damage increases replicative lifespan and reduces genomic missegregations. We present several lines of evidence supporting a model of antagonistic pleiotropy in the DNA damage response where histone degradation, and limited histone transcription are beneficial to respond rapidly to damage but reduce lifespan and genomic stability in the long term.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Adam E Russell
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Brent J Schafer
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Ben W Blue
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Riley Whalen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Jared Almazan
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Mung Gi Hong
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Bao Nguyen
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Joslyn E Goings
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Kenneth L Chen
- Department of PathologyUniversity of WashingtonSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Medical Scientist Training ProgramUniversity of WashingtonSeattleUnited States
| | - Ryan Kelly
- Department of PathologyUniversity of WashingtonSeattleUnited States
| | - Matt Kaeberlein
- Department of PathologyUniversity of WashingtonSeattleUnited States
| |
Collapse
|
19
|
Mei Q, Xu C, Gogol M, Tang J, Chen W, Yu X, Workman JL, Li S. Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Res 2019; 47:3434-3449. [PMID: 30759223 PMCID: PMC6468302 DOI: 10.1093/nar/gkz101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023] Open
Abstract
Aging is the main risk factor for many prevalent diseases. However, the molecular mechanisms regulating aging at the cellular level are largely unknown. Using single cell yeast as a model organism, we found that reducing yeast histone proteins accelerates chronological aging and increasing histone supply extends chronological life span. We sought to identify pathways that regulate chronological life span by controlling intracellular histone levels. Thus, we screened the histone H3/H4 mutant library to uncover histone residues and posttranslational modifications that regulate histone gene expression. We discovered 15 substitution mutations with reduced histone proteins and 5 mutations with increased histone proteins. Among these mutations, we found Set1 complex-catalyzed H3K4me3 promotes histone gene transcription and maintains normal chronological life span. Unlike the canonical functions of H3K4me3 in gene expression, H3K4me3 facilitates histone gene transcription by acting as a boundary to restrict the spread of the repressive HIR/Asf1/Rtt106 complex from histone gene promoters. Collectively, our study identified a novel mechanism by which H3K4me3 antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and extend chronological life span.
Collapse
Affiliation(s)
- Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chen Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jie Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
20
|
Gruber JJ, Geller B, Lipchik AM, Chen J, Salahudeen AA, Ram AN, Ford JM, Kuo CJ, Snyder MP. HAT1 Coordinates Histone Production and Acetylation via H4 Promoter Binding. Mol Cell 2019; 75:711-724.e5. [PMID: 31278053 DOI: 10.1016/j.molcel.2019.05.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/08/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
The energetic costs of duplicating chromatin are large and therefore likely depend on nutrient sensing checkpoints and metabolic inputs. By studying chromatin modifiers regulated by epithelial growth factor, we identified histone acetyltransferase 1 (HAT1) as an induced gene that enhances proliferation through coordinating histone production, acetylation, and glucose metabolism. In addition to its canonical role as a cytoplasmic histone H4 acetyltransferase, we isolated a HAT1-containing complex bound specifically at promoters of H4 genes. HAT1-dependent transcription of H4 genes required an acetate-sensitive promoter element. HAT1 expression was critical for S-phase progression and maintenance of H3 lysine 9 acetylation at proliferation-associated genes, including histone genes. Therefore, these data describe a feedforward circuit whereby HAT1 captures acetyl groups on nascent histones and drives H4 production by chromatin binding to support chromatin replication and acetylation. These findings have important implications for human disease, since high HAT1 levels associate with poor outcomes across multiple cancer types.
Collapse
Affiliation(s)
- Joshua J Gruber
- Department of Medicine, Oncology Division, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Benjamin Geller
- Department of Genetics, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Andrew M Lipchik
- Department of Genetics, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Justin Chen
- Department of Genetics, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ameen A Salahudeen
- Department of Medicine, Hematology Division, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ashwin N Ram
- Department of Genetics, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - James M Ford
- Department of Medicine, Oncology Division, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Calvin J Kuo
- Department of Medicine, Hematology Division, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
21
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
22
|
Viral proteins as a potential driver of histone depletion in dinoflagellates. Nat Commun 2018; 9:1535. [PMID: 29670105 PMCID: PMC5906630 DOI: 10.1038/s41467-018-03993-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Within canonical eukaryotic nuclei, DNA is packaged with highly conserved histone proteins into nucleosomes, which facilitate DNA condensation and contribute to genomic regulation. Yet the dinoflagellates, a group of unicellular algae, are a striking exception to this otherwise universal feature as they have largely abandoned histones and acquired apparently viral-derived substitutes termed DVNPs (dinoflagellate-viral-nucleoproteins). Despite the magnitude of this transition, its evolutionary drivers remain unknown. Here, using Saccharomyces cerevisiae as a model, we show that DVNP impairs growth and antagonizes chromatin by localizing to histone binding sites, displacing nucleosomes, and impairing transcription. Furthermore, DVNP toxicity can be relieved through histone depletion and cells diminish their histones in response to DVNP expression suggesting that histone reduction could have been an adaptive response to these viral proteins. These findings provide insights into eukaryotic chromatin evolution and highlight the potential for horizontal gene transfer to drive the divergence of cellular systems.
Collapse
|
23
|
Xie C, Shen H, Zhang H, Yan J, Liu Y, Yao F, Wang X, Cheng Z, Tang TS, Guo C. Quantitative proteomics analysis reveals alterations of lysine acetylation in mouse testis in response to heat shock and X-ray exposure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:464-472. [DOI: 10.1016/j.bbapap.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
24
|
Wu WS, Tu HP, Chu YH, Nordling TEM, Tseng YY, Liaw HJ. YHMI: a web tool to identify histone modifications and histone/chromatin regulators from a gene list in yeast. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5145122. [PMID: 30371756 PMCID: PMC6204766 DOI: 10.1093/database/bay116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
Post-translational modifications of histones (e.g. acetylation, methylation, phosphorylation and ubiquitination) play crucial roles in regulating gene expression by altering chromatin structures and creating docking sites for histone/chromatin regulators. However, the combination patterns of histone modifications, regulatory proteins and their corresponding target genes remain incompletely understood. Therefore, it is advantageous to have a tool for the enrichment/depletion analysis of histone modifications and histone/chromatin regulators from a gene list. Many ChIP-chip/ChIP-seq datasets of histone modifications and histone/chromatin regulators in yeast can be found in the literature. Knowing the needs and having the data motivate us to develop a web tool, called Yeast Histone Modifications Identifier (YHMI), which can identify the enriched/depleted histone modifications and the enriched histone/chromatin regulators from a list of yeast genes. Both tables and figures are provided to visualize the identification results. Finally, the high-quality and biological insight of the identification results are demonstrated by two case studies. We believe that YHMI is a valuable tool for yeast biologists to do epigenetics research.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ping Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Han Chu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Hung-Jiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Mei Q, Huang J, Chen W, Tang J, Xu C, Yu Q, Cheng Y, Ma L, Yu X, Li S. Regulation of DNA replication-coupled histone gene expression. Oncotarget 2017; 8:95005-95022. [PMID: 29212286 PMCID: PMC5706932 DOI: 10.18632/oncotarget.21887] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
The expression of core histone genes is cell cycle regulated. Large amounts of histones are required to restore duplicated chromatin during S phase when DNA replication occurs. Over-expression and excess accumulation of histones outside S phase are toxic to cells and therefore cells need to restrict histone expression to S phase. Misregulation of histone gene expression leads to defects in cell cycle progression, genome stability, DNA damage response and transcriptional regulation. Here, we discussed the factors involved in histone gene regulation as well as the underlying mechanism. Understanding the histone regulation mechanism will shed lights on elucidating the side effects of certain cancer chemotherapeutic drugs and developing potential biomarkers for tumor cells.
Collapse
Affiliation(s)
- Qianyun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Junhua Huang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chen Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ying Cheng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xilan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
26
|
Teng C, Zheng H. Low expression of microRNA-1908 predicts a poor prognosis for patients with ovarian cancer. Oncol Lett 2017; 14:4277-4281. [PMID: 28943939 DOI: 10.3892/ol.2017.6714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/23/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) serve important roles in cancer genesis and progression. The expression of miR-1908 has been reported in a number of types of cancer; however, the clinical significance of miR-1908 in human ovarian cancer (OC) remains unclear. A total of 491 patients with OC from The Cancer Genome Atlas project cohort were selected and divided into two groups according to the median expression level of miR-1908. Univariate and multivariate analyses, using the Kaplan-Meier method and Cox regression, were performed to identify the characteristics that predict OC prognosis. Bioinformatics tools were used to identify potential targets of miR-1908. It was identified that the low expression of miR-1908 is associated with a poor prognosis for OC (P<0.05). The potential target genes of miR-1908 included podocan-like 1, JunB AP-1 transcription factor subunit, homeobox B8, SET binding factor 1 and sirtuin 2; high expression of these five genes additionally predicted a poor prognosis. These results suggest that miR-1908 may be a suitable target for the development of novel approaches in OC diagnosis and therapy in the future.
Collapse
Affiliation(s)
- Changcai Teng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
27
|
Pfannmüller A, Leufken J, Studt L, Michielse CB, Sieber CMK, Güldener U, Hawat S, Hippler M, Fufezan C, Tudzynski B. Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLoS One 2017; 12:e0176194. [PMID: 28441411 PMCID: PMC5404775 DOI: 10.1371/journal.pone.0176194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/06/2017] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of multiple secondary metabolites in the phytopathogenic ascomycete Fusarium fujikuroi is strongly affected by nitrogen availability. Here, we present the first genome-wide transcriptome and proteome analysis that compared the wild type and deletion mutants of the two major nitrogen regulators AreA and AreB. We show that AreB acts not simply as an antagonist of AreA counteracting the expression of AreA target genes as suggested based on the yeast model. Both GATA transcription factors affect a large and diverse set of common as well as specific target genes and proteins, acting as activators and repressors. We demonstrate that AreA and AreB are not only involved in fungal nitrogen metabolism, but also in the control of several complex cellular processes like carbon metabolism, transport and secondary metabolism. We show that both GATA transcription factors can be considered as master regulators of secondary metabolism as they affect the expression of more than half of the 47 putative secondary metabolite clusters identified in the genome of F. fujikuroi. While AreA acts as a positive regulator of many clusters under nitrogen-limiting conditions, AreB is able to activate and repress gene clusters (e.g. bikaverin) under nitrogen limitation and sufficiency. In addition, ChIP analyses revealed that loss of AreA or AreB causes histone modifications at some of the regulated gene clusters.
Collapse
Affiliation(s)
- Andreas Pfannmüller
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Johannes Leufken
- Institute of Biology and Biotechnology of Plants, Computational Biology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Lena Studt
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
- Division of Microbial Genetics and Pathogen Interaction, Department of Applied Genetics and Cell Biology, Campus-Tulln, BOKU-University of Natural Resources and Life Science, Vienna, Austria
| | - Caroline B. Michielse
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian M. K. Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Department of Genome-oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Susan Hawat
- Institute of Biology and Biotechnology of Plants, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael Hippler
- Institute of Biology and Biotechnology of Plants, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian Fufezan
- Institute of Biology and Biotechnology of Plants, Computational Biology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-University Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
28
|
Takayama Y, Shirai M, Masuda F. Characterisation of functional domains in fission yeast Ams2 that are required for core histone gene transcription. Sci Rep 2016; 6:38111. [PMID: 27901072 PMCID: PMC5128866 DOI: 10.1038/srep38111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/03/2016] [Indexed: 12/04/2022] Open
Abstract
Histone gene expression is regulated in a cell cycle-dependent manner, with a peak at S phase, which is crucial for cell division and genome integrity. However, the detailed mechanisms by which expression of histone genes are tightly regulated remain largely unknown. Fission yeast Ams2, a GATA-type zinc finger motif-containing factor, is required for activation of S phase-specific core histone gene transcription. Here we report the molecular characterisation of Ams2. We show that the zinc finger motif in Ams2 is necessary to bind the histone gene promoter region and to activate histone gene transcription. An N-terminal region of Ams2 acts as a self-interaction domain. Intriguingly, N-terminally truncated Ams2 binds to the histone gene promoters, but does not fully activate histone gene transcription. These observations imply that Ams2 self-interactions are required for efficient core histone gene transcription. Moreover, we show that Ams2 interacts with Teb1, which itself binds to the core histone gene promoters. We discuss the relationships between Ams2 domains and efficient transcription of the core histone genes in fission yeast.
Collapse
Affiliation(s)
- Yuko Takayama
- Department of Biosciences, School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan.,Division of Integrated Science and Engineering, Teikyo University Graduate School of Science and Engineering, Utsunomiya, Tochigi, 320-8551, Japan
| | - Masaki Shirai
- Division of Integrated Science and Engineering, Teikyo University Graduate School of Science and Engineering, Utsunomiya, Tochigi, 320-8551, Japan
| | - Fumie Masuda
- Division of Cell Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, 839-0864, Japan
| |
Collapse
|