1
|
Saitoh K, Tighe BP. Jamming transition and normal modes of polydispersed soft particle packing. SOFT MATTER 2025; 21:1263-1268. [PMID: 39790006 DOI: 10.1039/d4sm01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The jamming transition of soft particles characterized by narrow size distributions has been well studied by physicists. However, polydispersed systems are more relevant to engineering, and the influence of polydispersity on jamming phenomena is still unexplored. Here, we numerically investigate jamming transitions of polydispersed soft particles in two dimensions. We find that polydispersity strongly influences contact forces, local coordination, and the jamming transition density. In contrast, the critical scaling of pressure and elastic moduli is not affected by the particle size distribution. Consistent with this observation, we find that the vibrational density of states is also insensitive to the polydispersity. Our results suggest that, regardless of particle size distributions, both mechanical and vibrational properties of soft particle packings near jamming are governed by the distance to jamming.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
2
|
Deng Y, Pan D, Jin Y. Jamming is a first-order transition with quenched disorder in amorphous materials sheared by cyclic quasistatic deformations. Nat Commun 2024; 15:7072. [PMID: 39152106 PMCID: PMC11329727 DOI: 10.1038/s41467-024-51319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Jamming is an athermal transition between flowing and rigid states in amorphous systems such as granular matter, colloidal suspensions, complex fluids and cells. The jamming transition seems to display mixed aspects of a first-order transition, evidenced by a discontinuity in the coordination number, and a second-order transition, indicated by power-law scalings and diverging lengths. Here we demonstrate that jamming is a first-order transition with quenched disorder in cyclically sheared systems with quasistatic deformations, in two and three dimensions. Based on scaling analyses, we show that fluctuations of the jamming density in finite-sized systems have important consequences on the finite-size effects of various quantities, resulting in a square relationship between disconnected and connected susceptibilities, a key signature of the first-order transition with quenched disorder. This study puts the jamming transition into the category of a broad class of transitions in disordered systems where sample-to-sample fluctuations dominate over thermal fluctuations, suggesting that the nature and behavior of the jamming transition might be better understood within the developed theoretical framework of the athermally driven random-field Ising model.
Collapse
Affiliation(s)
- Yue Deng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deng Pan
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
3
|
Schirmacher W, Ruocco G. Vibrational excitations in disordered solids. ENCYCLOPEDIA OF CONDENSED MATTER PHYSICS 2024:298-317. [DOI: 10.1016/b978-0-323-90800-9.00166-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Chakraborty S, Krishnan VV, Ramola K, Karmakar S. Enhanced vibrational stability in glass droplets. PNAS NEXUS 2023; 2:pgad289. [PMID: 37746327 PMCID: PMC10516527 DOI: 10.1093/pnasnexus/pgad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
We show through simulations of amorphous solids prepared in open-boundary conditions that they possess significantly fewer low-frequency vibrational modes compared to their periodic boundary counterparts. Specifically, using measurements of the vibrational density of states, we find that the D ( ω ) ∼ ω 4 law changes to D ( ω ) ∼ ω δ with δ ≈ 5 in two dimensions and δ ≈ 4.5 in three dimensions. Crucially, this enhanced stability is achieved when utilizing slow annealing protocols to generate solid configurations. We perform an anharmonic analysis of the minima corresponding to the lowest frequency modes in such open-boundary systems and discuss their correlation with the density of states. A study of various system sizes further reveals that small systems display a higher degree of localization in vibrations. Lastly, we confine open-boundary solids in order to introduce macroscopic stresses in the system, which are absent in the unconfined system and find that the D ( ω ) ∼ ω 4 behavior is recovered.
Collapse
Affiliation(s)
| | - Vishnu V Krishnan
- Tata Institute of Fundamental Research, Hyderabad, 500046 Telangana, India
| | - Kabir Ramola
- Tata Institute of Fundamental Research, Hyderabad, 500046 Telangana, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, Hyderabad, 500046 Telangana, India
| |
Collapse
|
5
|
Hara Y, Mizuno H, Ikeda A. Microrheology near jamming. SOFT MATTER 2023; 19:6046-6056. [PMID: 37525927 DOI: 10.1039/d3sm00566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The jamming transition is a nonequilibrium critical phenomenon, which governs characteristic mechanical properties of jammed soft materials, such as pastes, emulsions, and granular matters. Both experiments and theory of jammed soft materials have revealed that the complex modulus measured by conventional macrorheology exhibits a characteristic frequency dependence. Microrheology is a new type of method to obtain the complex modulus, which transforms the microscopic motion of probes to the complex modulus through the generalized Stokes relation (GSR). Although microrheology has been applied to jammed soft materials, its theoretical understanding is limited. In particular, the validity of the GSR near the jamming transition is far from obvious since there is a diverging length scale lc, which characterizes the heterogeneous response of jammed particles. Here, we study the microrheology of jammed particles by theory and numerical simulation. First, we develop a linear response formalism to calculate the response function of the probe particle, which is transformed to the complex modulus via the GSR. Then, we apply our formalism to a numerical model of jammed particles and find that the storage and loss modulus follow characteristic scaling laws near the jamming transition. Importantly, the observed scaling law coincides with that in macrorheology, which indicates that the GSR holds even near the jamming transition. We rationalize this equivalence by asymptotic analysis of the obtained formalism and numerical analysis on the displacement field of jammed particles under a local perturbation.
Collapse
Affiliation(s)
- Yusuke Hara
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Ishima D, Saitoh K, Otsuki M, Hayakawa H. Theory of rigidity and numerical analysis of density of states of two-dimensional amorphous solids with dispersed frictional grains in the linear response regime. Phys Rev E 2023; 107:054902. [PMID: 37328994 DOI: 10.1103/physreve.107.054902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Using the Jacobian matrix, we obtain a theoretical expression of rigidity and the density of states of two-dimensional amorphous solids consisting of frictional grains in the linear response to an infinitesimal strain, in which we ignore the dynamical friction caused by the slip processes of contact points. The theoretical rigidity agrees with that obtained by molecular dynamics simulations. We confirm that the rigidity is smoothly connected to the value in the frictionless limit. We find that there are two modes in the density of states for sufficiently small k_{T}/k_{N}, which is the ratio of the tangential to normal stiffness. Rotational modes exist at low frequencies or small eigenvalues, whereas translational modes exist at high frequencies or large eigenvalues. The location of the rotational band shifts to the high-frequency region with an increase in k_{T}/k_{N} and becomes indistinguishable from the translational band for large k_{T}/k_{N}.
Collapse
Affiliation(s)
- Daisuke Ishima
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Michio Otsuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Ishima D, Saitoh K, Otsuki M, Hayakawa H. Eigenvalue analysis of stress-strain curve of two-dimensional amorphous solids of dispersed frictional grains with finite shear strain. Phys Rev E 2023; 107:034904. [PMID: 37073050 DOI: 10.1103/physreve.107.034904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/05/2023] [Indexed: 04/20/2023]
Abstract
The stress-strain curve of two-dimensional frictional dispersed grains interacting with a harmonic potential without considering the dynamical slip under a finite strain is determined by using eigenvalue analysis of the Hessian matrix. After the configuration of grains is obtained, the stress-strain curve based on the eigenvalue analysis is in almost perfect agreement with that obtained by the simulation, even if there are plastic deformations caused by stress avalanches. Unlike the naive expectation, the eigenvalues in our model do not indicate any precursors to the stress-drop events.
Collapse
Affiliation(s)
- Daisuke Ishima
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Michio Otsuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Artiaco C, Díaz Hernández Rojas R, Parisi G, Ricci-Tersenghi F. Hard-sphere jamming through the lens of linear optimization. Phys Rev E 2022; 106:055310. [PMID: 36559351 DOI: 10.1103/physreve.106.055310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/21/2022] [Indexed: 06/17/2023]
Abstract
The jamming transition is ubiquitous. It is present in granular matter, foams, colloids, structural glasses, and many other systems. Yet, it defines a critical point whose properties still need to be fully understood. Recently, a major breakthrough came about when the replica formalism was extended to build a mean-field theory that provides an exact description of the jamming transition of spherical particles in the infinite-dimensional limit. While such theory explains the jamming critical behavior of both soft and hard spheres, investigating the transition in finite-dimensional systems poses very difficult and different problems, in particular from the numerical point of view. Soft particles are modeled by continuous potentials; thus, their jamming point can be reached through efficient energy minimization algorithms. In contrast, the latter methods are inapplicable to hard-sphere (HS) systems since the interaction energy among the particles is always zero by construction. To overcome these difficulties, here we recast the jamming of hard spheres as a constrained optimization problem and introduce the CALiPPSO algorithm, capable of readily producing jammed HS packings without including any effective potential. This algorithm brings a HS configuration of arbitrary dimensions to its jamming point by solving a chain of linear optimization problems. We show that there is a strict correspondence between the force balance conditions of jammed packings and the properties of the optimal solutions of CALiPPSO, whence we prove analytically that our packings are always isostatic and in mechanical equilibrium. Furthermore, using extensive numerical simulations, we show that our algorithm is able to probe the complex structure of the free-energy landscape, finding qualitative agreement with mean-field predictions. We also characterize the algorithmic complexity of CALiPPSO and provide an open-source implementation of it.
Collapse
Affiliation(s)
- Claudia Artiaco
- Department of Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | | | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federico Ricci-Tersenghi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Experimental observations of marginal criticality in granular materials. Proc Natl Acad Sci U S A 2022; 119:e2204879119. [PMID: 35609194 DOI: 10.1073/pnas.2204879119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAmorphous materials, such as grains, foams, colloids, and glasses, are ubiquitous in nature and our daily life. They can undergo glass transitions or jamming transitions to obtain rigidity either by fast quench or compression, but show subtle changes in the structures compared to the liquid states or liquid-like states. Recent progress on the first-principle replica theory unifies the glass transition and the jamming transition and points out the marginal phase with fractal free-energy landscape within the stable glass phase. Independently, marginal stability analysis predicts the relations between the exponents of the marginal phase. Here, we perform experiments with photoelastic disks and provide direct evidence of these theories in real-world amorphous materials.
Collapse
|
10
|
Babu V, Sastry S. Criticality and marginal stability of the shear jamming transition of frictionless soft spheres. Phys Rev E 2022; 105:L042901. [PMID: 35590631 DOI: 10.1103/physreve.105.l042901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
We study numerically the critical behavior and marginal stability of the shear jamming transition for frictionless soft spheres, observed to occur over a finite range of densities, associated with isotropic jamming for densities above the minimum jamming (J-point) density. Several quantities are shown to scale near the shear jamming point in the same way as the isotropic jamming point. We compute the exponents associated with the small force distribution and the interparticle gap distribution and show that the corresponding exponents are consistent with the marginal stability condition observed for isotropic jamming and with predictions of the mean-field theory of jamming in hard spheres.
Collapse
Affiliation(s)
- Varghese Babu
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Srikanth Sastry
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
11
|
Peshkov A, Teitel S. Universality of stress-anisotropic and stress-isotropic jamming of frictionless spheres in three dimensions: Uniaxial versus isotropic compression. Phys Rev E 2022; 105:024902. [PMID: 35291159 DOI: 10.1103/physreve.105.024902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
We numerically study a three-dimensional system of athermal, overdamped, frictionless spheres, using a simplified model for a non-Brownian suspension. We compute the bulk viscosity under both uniaxial and isotropic compression as a means to address the question of whether stress-anisotropic and stress-isotropic jamming are in the same critical universality class. Carrying out a critical scaling analysis of the system pressure p, shear stress σ, and macroscopic friction μ=σ/p, as functions of particle packing fraction ϕ and compression rate ε[over ̇], we find good agreement for all critical parameters comparing the isotropic and anisotropic cases. In particular, we determine that the bulk viscosity diverges as p/ε[over ̇]∼(ϕ_{J}-ϕ)^{-β}, with β=3.36±0.09, as jamming is approached from below. We further demonstrate that the average contact number per particle Z can also be written in a scaling form as a function of ϕ and ε[over ̇]. Once again, we find good agreement between the uniaxial and isotropic cases. We compare our results to prior simulations and theoretical predictions.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
12
|
Lerner E, Bouchbinder E. Low-energy quasilocalized excitations in structural glasses. J Chem Phys 2021; 155:200901. [PMID: 34852497 DOI: 10.1063/5.0069477] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glassy solids exhibit a wide variety of generic thermomechanical properties, ranging from universal anomalous specific heat at cryogenic temperatures to nonlinear plastic yielding and failure under external driving forces, which qualitatively differ from their crystalline counterparts. For a long time, it has been believed that many of these properties are intimately related to nonphononic, low-energy quasilocalized excitations (QLEs) in glasses. Indeed, recent computer simulations have conclusively revealed that the self-organization of glasses during vitrification upon cooling from a melt leads to the emergence of such QLEs. In this Perspective, we review developments over the past three decades toward understanding the emergence of QLEs in structural glasses and the degree of universality in their statistical and structural properties. We discuss the challenges and difficulties that hindered progress in achieving these goals and review the frameworks put forward to overcome them. We conclude with an outlook on future research directions and open questions.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Ikeda H. Testing mean-field theory for jamming of non-spherical particles: contact number, gap distribution, and vibrational density of states. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:120. [PMID: 34580779 DOI: 10.1140/epje/s10189-021-00116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We perform numerical simulations of the jamming transition of non-spherical particles in two dimensions. In particular, we systematically investigate how the physical quantities at the jamming transition point behave when the shapes of the particle deviate slightly from the perfect disks. For efficient numerical simulation, we first derive an analytical expression of the gap function, using the perturbation theory around the reference disks. Starting from disks, we observe the effects of the deformation of the shapes of particles by the n-th-order term of the Fourier series [Formula: see text]. We show that the several physical quantities, such as the number of contacts, gap distribution, and characteristic frequencies of the vibrational density of states, show the power-law behaviors with respect to the linear deviation from the reference disks. The power-law behaviors do not depend on n and are fully consistent with the mean-field theory of the jamming of non-spherical particles. This result suggests that the mean-field theory holds very generally for nearly spherical particles.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
14
|
Charbonneau P, Corwin EI, Dennis RC, Díaz Hernández Rojas R, Ikeda H, Parisi G, Ricci-Tersenghi F. Finite-size effects in the microscopic critical properties of jammed configurations: A comprehensive study of the effects of different types of disorder. Phys Rev E 2021; 104:014102. [PMID: 34412313 DOI: 10.1103/physreve.104.014102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Jamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces (f) and gaps (h) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, d→∞ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, d=2 and 3. These exponents are further connected through a pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of f and h for various particle-based models for jamming. Both dimension and the direction of approach to the jamming point are also considered. We show that, in all models, finite-size effects are much more pronounced in the distribution of h than in that of f. We thus conclude that gaps are correlated over considerably longer scales than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class. We furthermore uncover a secondary linear regime in the distribution tails of both f and h. This surprisingly robust feature is understood to follow from the (near) isostaticity of our configurations.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Eric I Corwin
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, 153-8902, Japan
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| | - Federico Ricci-Tersenghi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| |
Collapse
|
15
|
Moriel A. Internally Stressed and Positionally Disordered Minimal Complexes Yield Glasslike Nonphononic Excitations. PHYSICAL REVIEW LETTERS 2021; 126:088004. [PMID: 33709765 DOI: 10.1103/physrevlett.126.088004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Glasses, unlike their crystalline counterparts, exhibit low-frequency nonphononic excitations whose frequencies ω follow a universal D(ω)∼ω^{4} density of states. The process of glass formation generates positional disorder intertwined with mechanical frustration, posing fundamental challenges in understanding the origins of glassy nonphononic excitations. Here we suggest that minimal complexes-mechanically frustrated and positionally disordered local structures-embody the minimal physical ingredients needed to generate glasslike excitations. We investigate the individual effects of mechanical frustration and positional disorder on the vibrational spectrum of isolated minimal complexes, and demonstrate that ensembles of marginally stable minimal complexes yield D(ω)∼ω^{4}. Furthermore, glasslike excitations emerge by embedding a single minimal complex within a perfect lattice. Consequently, minimal complexes offer a conceptual framework to understand glasslike excitations from first principles, as well as a practical computational method for introducing them into solids.
Collapse
Affiliation(s)
- Avraham Moriel
- Chemical & Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Díaz Hernández Rojas R, Parisi G, Ricci-Tersenghi F. Inferring the particle-wise dynamics of amorphous solids from the local structure at the jamming point. SOFT MATTER 2021; 17:1056-1083. [PMID: 33326511 DOI: 10.1039/c9sm02283j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Jamming is a phenomenon shared by a wide variety of systems, such as granular materials, foams, and glasses in their high density regime. This has motivated the development of a theoretical framework capable of explaining many of their static critical properties with a unified approach. However, the dynamics occurring in the vicinity of the jamming point has received little attention and the problem of finding a connection with the local structure of the configuration remains unexplored. Here we address this issue by constructing physically well defined structural variables using the information contained in the network of contacts of jammed configurations, and then showing that such variables yield a resilient statistical description of the particle-wise dynamics near this critical point. Our results are based on extensive numerical simulations of systems of spherical particles that allow us to statistically characterize the trajectories of individual particles in terms of their first two moments. We first demonstrate that, besides displaying a broad distribution of mobilities, particles may also have preferential directions of motion. Next, we associate each of these features with a structural variable computed uniquely in terms of the contact vectors at jamming, obtaining considerably high statistical correlations. The robustness of our approach is confirmed by testing two types of dynamical protocols, namely molecular dynamics and Monte Carlo, with different types of interaction. We also provide evidence that the dynamical regime we study here is dominated by anharmonic effects and therefore it cannot be described properly in terms of vibrational modes. Finally, we show that correlations decay slowly and in an interaction-independent fashion, suggesting a universal rate of information loss.
Collapse
|
17
|
Shimada M, Mizuno H, Ikeda A. Novel elastic instability of amorphous solids in finite spatial dimensions. SOFT MATTER 2021; 17:346-364. [PMID: 33164008 DOI: 10.1039/d0sm01583k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, progress has been made in the understanding of anomalous vibrational excitations in amorphous solids. In the lowest-frequency region, the vibrational spectrum follows a non-Debye quartic law, which persists up to zero frequency without any frequency gap. This gapless vibrational density of states (vDOS) suggests that glasses are on the verge of instability. This feature of marginal stability is now highlighted as a key concept in the theories of glasses. In particular, the elasticity theory based on marginal stability predicts the gapless vDOS. However, this theory yields a quadratic law and not the quartic law. To address this inconsistency, we presented a new type of instability, which is different from the conventional one, and proposed that amorphous solids are marginally stable considering the new instability in the preceding study [M. Shimada, H. Mizuno and A. Ikeda, Soft Matter, 2020, 16, 7279]. In this study, we further extend and detail the results for these instabilities. By analyzing various examples of disorder, we demonstrate that real glasses in finite spatial dimensions can be marginally stable by the proposed novel instability.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan. and Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
18
|
Shimada M, Mizuno H, Ikeda A. Vibrational spectrum derived from local mechanical response in disordered solids. SOFT MATTER 2020; 16:7279-7288. [PMID: 32696792 DOI: 10.1039/d0sm00376j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The low-frequency vibrations of glasses are markedly different from those of crystals. These vibrations have recently been categorized into two types: spatially extended vibrations, whose vibrational density of states (vDOS) follows a non-Debye quadratic law, and quasilocalized vibrations (QLVs), whose vDOS follows a quartic law. The former are explained by elasticity theory with quenched disorder and microscopic replica theory as being a consequence of elastic instability, but the origin of the latter is still debated. Here, we show that the latter can also be directly derived from elasticity theory with quenched disorder. We find another elastic instability that the theory encompasses but that has been overlooked so far, namely, the instability of the system against a local dipolar force. This instability gives rise to an additional contribution to the vDOS, and the spatial structure and energetics of the mode originating from this instability are consistent with those of the QLVs. Finally, we construct a model in which the additional contribution to the vDOS follows a quartic law.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | | | | |
Collapse
|
19
|
Richard D, González-López K, Kapteijns G, Pater R, Vaknin T, Bouchbinder E, Lerner E. Universality of the Nonphononic Vibrational Spectrum across Different Classes of Computer Glasses. PHYSICAL REVIEW LETTERS 2020; 125:085502. [PMID: 32909789 DOI: 10.1103/physrevlett.125.085502] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
It has been recently established that the low-frequency spectrum of simple computer glass models is populated by soft, quasilocalized nonphononic vibrational modes whose frequencies ω follow a gapless, universal distribution D(ω)∼ω^{4}. While this universal nonphononic spectrum has been shown to be robust to varying the glass history and spatial dimension, it has so far only been observed in simple computer glasses featuring radially symmetric, pairwise interaction potentials. Consequently, the relevance of the universality of nonphononic spectra seen in simple computer glasses to realistic laboratory glasses remains unclear. Here, we demonstrate the emergence of the universal ω^{4} nonphononic spectrum in a broad variety of realistic computer glass models, ranging from tetrahedral network glasses with three-body interactions, through molecular glasses and glassy polymers, to bulk metallic glasses. Taken together with previous observations, our results indicate that the low-frequency nonphononic vibrational spectrum of any glassy solid quenched from a melt features the universal ω^{4} law, independently of the nature of its microscopic interactions.
Collapse
Affiliation(s)
- David Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Karina González-López
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert Pater
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Talya Vaknin
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
20
|
Ikeda H, Brito C, Wyart M, Zamponi F. Jamming with Tunable Roughness. PHYSICAL REVIEW LETTERS 2020; 124:208001. [PMID: 32501092 DOI: 10.1103/physrevlett.124.208001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
We introduce a new model to study the effect of surface roughness on the jamming transition. By performing numerical simulations, we show that for a smooth surface, the jamming transition density and the contact number at the transition point both increase upon increasing asphericity, as for ellipsoids and spherocylinders. Conversely, for a rough surface, both quantities decrease, in quantitative agreement with the behavior of frictional particles. Furthermore, in the limit corresponding to the Coulomb friction law, the model satisfies a generalized isostaticity criterion proposed in previous studies. We introduce a counting argument that justifies this criterion and interprets it geometrically. Finally, we propose a simple theory to predict the contact number at finite friction from the knowledge of the force distribution in the infinite friction limit.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo Tokyo 153-8902, Japan
| | - Carolina Brito
- Instituto de Física, UFRGS, 91501-970, Porto Alegre, Brazil
| | - Matthieu Wyart
- Institute of Physics, EPFL, CH-1015 Lausanne, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'École Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| |
Collapse
|
21
|
Shimada M, Mizuno H, Berthier L, Ikeda A. Low-frequency vibrations of jammed packings in large spatial dimensions. Phys Rev E 2020; 101:052906. [PMID: 32575185 DOI: 10.1103/physreve.101.052906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Amorphous packings prepared in the vicinity of the jamming transition play a central role in theoretical studies of the vibrational spectrum of glasses. Two mean-field theories predict that the vibrational density of states g(ω) obeys a characteristic power law, g(ω)∼ω^{2}, called the non-Debye scaling in the low-frequency region. Numerical studies have, however, reported that this scaling breaks down at low frequencies, due to finite-dimensional effects. In this study, we prepare amorphous packings of up to 128000 particles in spatial dimensions from d=3 to d=9 to characterize the range of validity of the non-Debye scaling. Our numerical results suggest that the non-Debye scaling is obeyed down to a frequency that gradually decreases as d increases, and possibly vanishes for large d, in agreement with mean-field predictions. We also show that the prestress is an efficient control parameter to quantitatively compare packings across different spatial dimensions.
Collapse
Affiliation(s)
- Masanari Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
22
|
Rens R, Lerner E. Rigidity and auxeticity transitions in networks with strong bond-bending interactions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:114. [PMID: 31486002 DOI: 10.1140/epje/i2019-11888-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
A widely studied model for gels or biopolymeric fibrous materials are networks with central force interactions, such as Hookean springs. Less commonly studied are materials whose mechanics are dominated by non-central force interactions such as bond-bending potentials. Inspired by recent experimental advancements in designing colloidal gels with tunable interactions, we study the micro- and macroscopic elasticity of two-dimensional planar graphs with strong bond-bending potentials, in addition to weak central forces. We introduce a theoretical framework that allows us to directly investigate the limit in which the ratio of characteristic central-force to bending stiffnesses vanishes. In this limit we show that a generic isostatic point exists at [Formula: see text], coinciding with the isostatic point of frames with central-force interactions in two dimensions. We further demonstrate the emergence of a stiffening transition when the coordination is increased towards the isostatic point, which shares similarities with the strain-induced stiffening transition observed in biopolymeric fibrous materials, and coincides with an auxeticity transition above which the material's Poisson's ratio approaches -1 when bond-bending interactions dominate.
Collapse
Affiliation(s)
- Robbie Rens
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Berthier L, Biroli G, Charbonneau P, Corwin EI, Franz S, Zamponi F. Gardner physics in amorphous solids and beyond. J Chem Phys 2019; 151:010901. [PMID: 31272167 DOI: 10.1063/1.5097175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
One of the most remarkable predictions to emerge out of the exact infinite-dimensional solution of the glass problem is the Gardner transition. Although this transition was first theoretically proposed a generation ago for certain mean-field spin glass models, its materials relevance was only realized when a systematic effort to relate glass formation and jamming was undertaken. A number of nontrivial physical signatures associated with the Gardner transition have since been considered in various areas, from models of structural glasses to constraint satisfaction problems. This perspective surveys these recent advances and discusses the novel research opportunities that arise from them.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | | | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Silvio Franz
- LPTMS, UMR 8626, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
24
|
Impact of jamming criticality on low-temperature anomalies in structural glasses. Proc Natl Acad Sci U S A 2019; 116:13768-13773. [PMID: 31235596 DOI: 10.1073/pnas.1820360116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a mechanism for the anomalous behavior of the specific heat in low-temperature amorphous solids. The analytic solution of a mean-field model belonging to the same universality class as high-dimensional glasses, the spherical perceptron, suggests that there exists a cross-over temperature above which the specific heat scales linearly with temperature, while below it, a cubic scaling is displayed. This relies on two crucial features of the phase diagram: (i) the marginal stability of the free-energy landscape, which induces a gapless phase responsible for the emergence of a power-law scaling; and (ii) the vicinity of the classical jamming critical point, as the cross-over temperature gets lowered when approaching it. This scenario arises from a direct study of the thermodynamics of the system in the quantum regime, where we show that, contrary to crystals, the Debye approximation does not hold.
Collapse
|
25
|
Olsson P. Dimensionality and Viscosity Exponent in Shear-driven Jamming. PHYSICAL REVIEW LETTERS 2019; 122:108003. [PMID: 30932641 DOI: 10.1103/physrevlett.122.108003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 06/09/2023]
Abstract
Collections of bidisperse frictionless particles at zero temperature in three dimensions are simulated with a shear-driven dynamics with the aim to compare with the behavior in two dimensions. Contrary to the prevailing picture, and in contrast to results from isotropic jamming from compression or quench, we find that the critical exponents in three dimensions are different from those in two dimensions and conclude that shear-driven jamming in two and three dimensions belong to different universality classes.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
26
|
Brito C, Ikeda H, Urbani P, Wyart M, Zamponi F. Universality of jamming of nonspherical particles. Proc Natl Acad Sci U S A 2018; 115:11736-11741. [PMID: 30381457 PMCID: PMC6243269 DOI: 10.1073/pnas.1812457115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amorphous packings of nonspherical particles such as ellipsoids and spherocylinders are known to be hypostatic: The number of mechanical contacts between particles is smaller than the number of degrees of freedom, thus violating Maxwell's mechanical stability criterion. In this work, we propose a general theory of hypostatic amorphous packings and the associated jamming transition. First, we show that many systems fall into a same universality class. As an example, we explicitly map ellipsoids into a system of "breathing" particles. We show by using a marginal stability argument that in both cases jammed packings are hypostatic and that the critical exponents related to the contact number and the vibrational density of states are the same. Furthermore, we introduce a generalized perceptron model which can be solved analytically by the replica method. The analytical solution predicts critical exponents in the same hypostatic jamming universality class. Our analysis further reveals that the force and gap distributions of hypostatic jamming do not show power-law behavior, in marked contrast to the isostatic jamming of spherical particles. Finally, we confirm our theoretical predictions by numerical simulations.
Collapse
Affiliation(s)
- Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Harukuni Ikeda
- Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Pierfrancesco Urbani
- Institut de Physique Théorique, Université Paris Saclay, CNRS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif-sur-Yvette, France
| | - Matthieu Wyart
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
27
|
Probing the non-Debye low-frequency excitations in glasses through random pinning. Proc Natl Acad Sci U S A 2018; 115:8700-8704. [PMID: 30104381 DOI: 10.1073/pnas.1805024115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate the properties of the low-frequency spectrum in the density of states [Formula: see text] of a 3D model glass former. To magnify the non-Debye sector of the spectrum, we introduce a random pinning field that freezes a finite particle fraction to break the translational invariance and shifts all of the vibrational frequencies of the extended modes toward higher frequencies. We show that non-Debye soft localized modes progressively emerge as the fraction p of pinned particles increases. Moreover, the low-frequency tail of [Formula: see text] goes to zero as a power law [Formula: see text], with [Formula: see text] and [Formula: see text] above a threshold fraction [Formula: see text].
Collapse
|
28
|
Kapteijns G, Bouchbinder E, Lerner E. Universal Nonphononic Density of States in 2D, 3D, and 4D Glasses. PHYSICAL REVIEW LETTERS 2018; 121:055501. [PMID: 30118293 DOI: 10.1103/physrevlett.121.055501] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 06/08/2023]
Abstract
It is now well established that structural glasses possess disorder- and frustration-induced soft quasilocalized excitations, which play key roles in various glassy phenomena. Recent work has established that in model glass formers in three dimensions, these nonphononic soft excitations may assume the form of quasilocalized, harmonic vibrational modes whose frequency follows a universal density of states D(ω)∼ω^{4}, independently of microscopic details, and for a broad range of glass preparation protocols. Here, we further establish the universality of the nonphononic density of vibrational modes by direct measurements in model structural glasses in two dimensions and four dimensions. We also investigate their degree of localization, which is generally weaker in lower spatial dimensions, giving rise to a pronounced system-size dependence of the nonphononic density of states in two dimensions, but not in higher dimensions. Finally, we identify a fundamental glassy frequency scale ω_{c} above which the universal ω^{4} law breaks down.
Collapse
Affiliation(s)
- Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
29
|
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
30
|
Lubchenko V, Wolynes PG. Aging, Jamming, and the Limits of Stability of Amorphous Solids. J Phys Chem B 2018; 122:3280-3295. [PMID: 29216433 DOI: 10.1021/acs.jpcb.7b09553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apart from not having crystallized, supercooled liquids can be considered as being properly equilibrated and thus can be described by a few thermodynamic control variables. In contrast, glasses and other amorphous solids can be arbitrarily far away from equilibrium and require a description of the history of the conditions under which they formed. In this paper we describe how the locality of interactions intrinsic to finite-dimensional systems affects the stability of amorphous solids far off equilibrium. Our analysis encompasses both structural glasses formed by cooling and colloidal assemblies formed by compression. A diagram outlining regions of marginal stability can be adduced which bears some resemblance to the quasi-equilibrium replica meanfield theory phase diagram of hard sphere glasses in high dimensions but is distinct from that construct in that the diagram describes not true phase transitions but kinetic transitions that depend on the preparation protocol. The diagram exhibits two distinct sectors. One sector corresponds to amorphous states with relatively open structures, the other to high density, more closely packed ones. The former transform rapidly owing to there being motions with no free energy barriers; these motions are string-like locally. In the dense region, amorphous systems age via compact activated reconfigurations. The two regimes correspond, in equilibrium, to the collisional or uniform liquid and the so-called landscape regime, respectively. These are separated by a spinodal line of dynamical crossovers. Owing to the rigidity of the surrounding matrix in the landscape, high-density part of the diagram, a sufficiently rapid pressure quench adds compressive energy which also leads to an instability toward string-like motions with near vanishing barriers. Conversely, a dilute collection of rigid particles, such as a colloidal suspension leads, when compressed, to a spatially heterogeneous structure with percolated mechanically stable regions. This jamming corresponds to the onset of activation when the spinodal line is traversed from the low density side. We argue that a stable glass made of sufficiently rigid particles can also be viewed as exhibiting sporadic and localized buckling instabilities that result in local jammed structures. The lines of instability we discuss resemble the Gardner transition of meanfield systems but, in contrast, do not result in true criticality owing to being short-circuited by activated events. The locally marginally stable modes of motion in amorphous solids correspond to secondary relaxation processes in structural glasses. Their relevance to the low temperature anomalies in glasses is also discussed.
Collapse
Affiliation(s)
- Vassiliy Lubchenko
- Departments of Chemistry and Physics , University of Houston , Houston , Texas 77204 , United States
| | - Peter G Wolynes
- Departments of Chemistry, Physics and Astronomy, and Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
31
|
Wu Q, Bertrand T, Shattuck MD, O'Hern CS. Response of jammed packings to thermal fluctuations. Phys Rev E 2017; 96:062902. [PMID: 29347455 DOI: 10.1103/physreve.96.062902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 06/07/2023]
Abstract
We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. In contrast, numerous prior studies characterized the structural and mechanical properties of MS packings of frictionless spherical particles at zero temperature. Packings of disks with purely repulsive contact interactions possess two main types of nonlinearities, one from the form of the interaction potential (e.g., either linear or Hertzian spring interactions) and one from the breaking (or forming) of interparticle contacts. To identify the temperature regime at which the contact-breaking nonlinearities begin to contribute, we first calculated the minimum temperatures T_{cb} required to break a single contact in the MS packing for both single- and multiple-eigenmode perturbations of the T=0 MS packing. We find that the temperature required to break a single contact for equal velocity-amplitude perturbations involving all eigenmodes approaches the minimum value obtained for a perturbation in the direction connecting disk pairs with the smallest overlap. We then studied deviations in the constant volume specific heat C[over ¯]_{V} and deviations of the average disk positions Δr from their T=0 values in the temperature regime T_{C[over ¯]_{V}}<T<T_{r}, where T_{r} is the temperature beyond which the system samples the basin of a new MS packing. We find that the deviation in the specific heat per particle ΔC[over ¯]_{V}^{0}/C[over ¯]_{V}^{0} relative to the zero-temperature value C[over ¯]_{V}^{0} can grow rapidly above T_{cb}; however, the deviation ΔC[over ¯]_{V}^{0}/C[over ¯]_{V}^{0} decreases as N^{-1} with increasing system size. To characterize the relative strength of contact-breaking versus form nonlinearities, we measured the ratio of the average position deviations Δr^{ss}/Δr^{ds} for single- and double-sided linear and nonlinear spring interactions. We find that Δr^{ss}/Δr^{ds}>100 for linear spring interactions is independent of system size. This result emphasizes that contact-breaking nonlinearities are dominant over form nonlinearities in the low-temperature range T_{cb}<T<T_{r} for model jammed systems.
Collapse
Affiliation(s)
- Qikai Wu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Thibault Bertrand
- Laboratoire Jean Perrin UMR 8237 CNRS/UPMC, Université Pierre et Marie Curie, 75255 Paris Cedex, France
| | - Mark D Shattuck
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics and Benjamin Levich Institute, City College of the City University of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
32
|
Wyart M, Cates ME. Does a Growing Static Length Scale Control the Glass Transition? PHYSICAL REVIEW LETTERS 2017; 119:195501. [PMID: 29219532 DOI: 10.1103/physrevlett.119.195501] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Several theories of the glass transition propose that the structural relaxation time τ_{α} is controlled by a growing static length scale ξ that is determined by the free energy landscape but not by the local dynamic rules governing its exploration. We argue, based on recent simulations using particle-radius-swap dynamics, that only a modest factor in the increase in τ_{α} on approach to the glass transition may stem from the growth of a static length, with a vastly larger contribution attributable, instead, to a slowdown of local dynamics. This reinforces arguments that we base on the observed strong coupling of particle diffusion and density fluctuations in real glasses.
Collapse
Affiliation(s)
- Matthieu Wyart
- Institute of Physics, EPFL, CH-1015 Lausanne, Switzerland
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
33
|
Baldi G, Benassi P, Fontana A, Giugni A, Monaco G, Nardone M, Rossi F. Damping of vibrational excitations in glasses at terahertz frequency: The case of 3-methylpentane. J Chem Phys 2017; 147:164501. [PMID: 29096506 DOI: 10.1063/1.4998696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a compared analysis of inelastic X ray scattering (IXS) and of low frequency Raman data of glassy 3-methylpentane. The IXS spectra have been analysed allowing for the existence of two distinct excitations at each scattering wavevector obtaining a consistent interpretation of the spectra. In particular, this procedure allows us to interpret the linewidth of the modes in terms of a simple model which relates them to the width of the first sharp diffraction peak in the static structure factor. In this model, the width of the modes arises from the blurring of the dispersion curves which increases approaching the boundary of the first pseudo-Brillouin zone. The position of the boson peak contribution to the density of vibrational states derived from the Raman scattering measurements is in agreement with the interpretation of the two excitations in terms of a longitudinal mode and a transverse mode, the latter being a result of the mixed character of the transverse modes away from the center of the pseudo-Brillouin zone.
Collapse
Affiliation(s)
- Giacomo Baldi
- Dipartimento di Fisica, Università di Trento, 38050 Povo, Trento, Italy
| | - Paola Benassi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Aldo Fontana
- Dipartimento di Fisica, Università di Trento, 38050 Povo, Trento, Italy
| | - Andrea Giugni
- PSE and BESE Divisions, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Giulio Monaco
- Dipartimento di Fisica, Università di Trento, 38050 Povo, Trento, Italy
| | - Michele Nardone
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Flavio Rossi
- Dipartimento di Fisica, Università di Trento, 38050 Povo, Trento, Italy
| |
Collapse
|
34
|
Pathak SN, Esposito V, Coniglio A, Ciamarra MP. Force percolation transition of jammed granular systems. Phys Rev E 2017; 96:042901. [PMID: 29347617 DOI: 10.1103/physreve.96.042901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The mechanical and transport properties of jammed materials originate from an underlying percolating network of contact forces between the grains. Using extensive simulations we investigate the force-percolation transition of this network, where two particles are considered as linked if their interparticle force overcomes a threshold. We show that this transition belongs to the random percolation universality class, thus ruling out the existence of long-range correlations between the forces. Through a combined size and pressure scaling for the percolative quantities, we show that the continuous force percolation transition evolves into the discontinuous jamming transition in the zero pressure limit, as the size of the critical region scales with the pressure.
Collapse
Affiliation(s)
- Sudhir N Pathak
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Valentina Esposito
- Dipartimento di Matematica e Fisica, Università degli studi della Campania "Luigi Vanvitelli," Viale Lincoln 5, 81100 Caserta, Italy
| | - Antonio Coniglio
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| |
Collapse
|
35
|
Kooij S, Lerner E. Unjamming in models with analytic pairwise potentials. Phys Rev E 2017; 95:062141. [PMID: 28709333 DOI: 10.1103/physreve.95.062141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 06/07/2023]
Abstract
Canonical models for studying the unjamming scenario in systems of soft repulsive particles assume pairwise potentials with a sharp cutoff in the interaction range. The sharp cutoff renders the potential nonanalytic but makes it possible to describe many properties of the solid in terms of the coordination number z, which has an unambiguous definition in these cases. Pairwise potentials without a sharp cutoff in the interaction range have not been studied in this context, but should in fact be considered to understand the relevance of the unjamming phenomenology in systems where such a cutoff is not present. In this work we explore two systems with such interactions: an inverse power law and an exponentially decaying pairwise potential, with the control parameters being the exponent (of the inverse power law) for the former and the number density for the latter. Both systems are shown to exhibit the characteristic features of the unjamming transition, among which are the vanishing of the shear-to-bulk modulus ratio and the emergence of an excess of low-frequency vibrational modes. We establish a relation between the pressure-to-bulk modulus ratio and the distance to unjamming in each of our model systems. This allows us to predict the dependence of other key observables on the distance to unjamming. Our results provide the means for a quantitative estimation of the proximity of generic glass-forming models to the unjamming transition in the absence of a clear-cut definition of the coordination number and highlight the general irrelevance of nonaffine contributions to the bulk modulus.
Collapse
Affiliation(s)
- Stefan Kooij
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
| |
Collapse
|
36
|
Charbonneau P, Yaida S. Nontrivial Critical Fixed Point for Replica-Symmetry-Breaking Transitions. PHYSICAL REVIEW LETTERS 2017; 118:215701. [PMID: 28598669 DOI: 10.1103/physrevlett.118.215701] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 06/07/2023]
Abstract
The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon-the Gardner transition-has recently been predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has, however, long been questioned below their upper critical dimension, d_{u}=6. Here, we obtain evidence for the existence of these transitions in d<d_{u} using a two-loop calculation. Because the critical fixed point is found in the strong-coupling regime, we corroborate the result by resumming the perturbative series with inputs from a three-loop calculation and an analysis of its large-order behavior. Our study offers a resolution of the long-lasting controversy surrounding phase transitions in finite-dimensional disordered systems.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Sho Yaida
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
37
|
Jin Y, Yoshino H. Exploring the complex free-energy landscape of the simplest glass by rheology. Nat Commun 2017; 8:14935. [PMID: 28397805 PMCID: PMC5394243 DOI: 10.1038/ncomms14935] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/08/2017] [Indexed: 11/09/2022] Open
Abstract
For amorphous solids, it has been intensely debated whether the traditional view on solids, in terms of the ground state and harmonic low energy excitations on top of it, such as phonons, is still valid. Recent theoretical developments of amorphous solids revealed the possibility of unexpectedly complex free-energy landscapes where the simple harmonic picture breaks down. Here we demonstrate that standard rheological techniques can be used as powerful tools to examine nontrivial consequences of such complex free-energy landscapes. By extensive numerical simulations on a hard sphere glass under quasistatic shear at finite temperatures, we show that above the so-called Gardner transition density, the elasticity breaks down, the stress relaxation exhibits slow, and ageing dynamics and the apparent shear modulus becomes protocol-dependent. Being designed to be reproducible in laboratories, our approach may trigger explorations of the complex free-energy landscapes of a large variety of amorphous materials.
Collapse
Affiliation(s)
- Yuliang Jin
- Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hajime Yoshino
- Cybermedia Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
38
|
Abstract
Disordered systems are characterized by the existence of many sample-dependent local-energy minima that cause a step-wise response when the system is perturbed. In this article we use an approach based on elementary probabilistic methods to compute the complete probability distribution of the jumps (static avalanches) in the response of mean-field systems described by replica symmetry breaking; we find a precise condition for having a power-law behavior in the distribution of avalanches caused by small perturbations, and we show that our predictions are in remarkable agreement both with previous results and with what is found in simulations of three-dimensional systems of soft spheres, either at jamming or at slightly higher densities.
Collapse
Affiliation(s)
- S Franz
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - S Spigler
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
39
|
Urbani P, Zamponi F. Shear Yielding and Shear Jamming of Dense Hard Sphere Glasses. PHYSICAL REVIEW LETTERS 2017; 118:038001. [PMID: 28157373 DOI: 10.1103/physrevlett.118.038001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 06/06/2023]
Abstract
We investigate the response of dense hard sphere glasses to a shear strain in a wide range of pressures ranging from the glass transition to the infinite-pressure jamming point. The phase diagram in the density-shear strain plane is calculated analytically using the mean-field infinite-dimensional solution. We find that just above the glass transition, the glass generically yields at a finite shear strain. The yielding transition in the mean-field picture is a spinodal point in presence of disorder. At higher densities, instead, we find that the glass generically jams at a finite shear strain: the jamming transition prevents yielding. The shear yielding and shear jamming lines merge in a critical point, close to which the system yields at extremely large shear stress. Around this point, highly nontrivial yielding dynamics, characterized by system-spanning disordered fractures, is expected.
Collapse
Affiliation(s)
- Pierfrancesco Urbani
- Institut de physique théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France
| | - Francesco Zamponi
- Laboratoire de Physique Théorique, ENS & PSL University, UPMC & Sorbonne Universités, UMR 8549 CNRS, 75005 Paris, France
| |
Collapse
|
40
|
|
41
|
Seguin A, Dauchot O. Experimental Evidence of the Gardner Phase in a Granular Glass. PHYSICAL REVIEW LETTERS 2016; 117:228001. [PMID: 27925738 DOI: 10.1103/physrevlett.117.228001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Analyzing the dynamics of a vibrated bidimensional packing of bidisperse granular disks below jamming, we provide evidence of a Gardner phase deep into the glass phase. To do so, we perform several compression cycles within a given realization of the same glass and show that the particles select different average vibrational positions at each cycle, while the neighborhood structure remains unchanged. The separation between the cages obtained for different compression cycles plateaus with an increasing packing fraction, while the mean square displacement steadily decreases. This phenomenology is strikingly similar to that reported in recent numerical observations when entering the Gardner phase, for a mean-field model of glass as well as for hard spheres in finite dimension. We also characterize the distribution of the cage order parameters. Here we note several differences from the numerical results, which could be attributed to activated processes and cage heterogeneities.
Collapse
Affiliation(s)
- A Seguin
- Laboratoire FAST, Université Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France
- SPEC, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - O Dauchot
- EC2M, UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
42
|
Lin J, Jorjadze I, Pontani LL, Wyart M, Brujic J. Evidence for Marginal Stability in Emulsions. PHYSICAL REVIEW LETTERS 2016; 117:208001. [PMID: 27886471 DOI: 10.1103/physrevlett.117.208001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 06/06/2023]
Abstract
We report the first measurements of the effect of pressure on vibrational modes in emulsions, which serve as a model for soft frictionless spheres at zero temperature. As a function of the applied pressure, we find that the density of states D(ω) exhibits a low-frequency cutoff ω^{*}, which scales linearly with the number of extra contacts per particle δz. Moreover, for ω<ω^{*}, our results are consistent with D(ω)∼ω^{2}/ω^{*2}, a quadratic behavior whose prefactor is larger than what is expected from Debye theory. This surprising result agrees with recent theoretical findings [E. DeGiuli, A. Laversanne-Finot, G. A. Düring, E. Lerner, and M. Wyart, Soft Matter 10, 5628 (2014); S. Franz, G. Parisi, P. Urbani, and F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 112, 14539 (2015)]. Finally, the degree of localization of the softest low frequency modes increases with compression, as shown by the participation ratio as well as their spatial configurations. Overall, our observations show that emulsions are marginally stable and display non-plane-wave modes up to vanishing frequencies.
Collapse
Affiliation(s)
- Jie Lin
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ivane Jorjadze
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Lea-Laetitia Pontani
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
- Institut des Nanosciences de Paris, UMR 7588-CNRS/Universite Pierre et Marie Curie, 75005 Paris, France
| | - Matthieu Wyart
- Physics Institute, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Jasna Brujic
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| |
Collapse
|
43
|
Shabalin AG, Meijer JM, Dronyak R, Yefanov OM, Singer A, Kurta RP, Lorenz U, Gorobtsov OY, Dzhigaev D, Kalbfleisch S, Gulden J, Zozulya AV, Sprung M, Petukhov AV, Vartanyants IA. Revealing Three-Dimensional Structure of an Individual Colloidal Crystal Grain by Coherent X-Ray Diffractive Imaging. PHYSICAL REVIEW LETTERS 2016; 117:138002. [PMID: 27715114 DOI: 10.1103/physrevlett.117.138002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 06/06/2023]
Abstract
We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. As a result, an exact stacking sequence of hexagonal close-packed layers including planar and linear defects were identified.
Collapse
Affiliation(s)
- A G Shabalin
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
- A.V. Shubnikov Institute of Crystallography RAS, Leninskii pr. 59, 119333 Moscow, Russia
| | - J-M Meijer
- Van 't Hoff laboratory for Physical and Colloid chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3508 TB Utrecht, Netherlands
| | - R Dronyak
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - O M Yefanov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - A Singer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - R P Kurta
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - U Lorenz
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - O Y Gorobtsov
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
- NRC Kurchatov Institute, pl. Akademika Kurchatova, Moscow 123182, Russia
| | - D Dzhigaev
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - S Kalbfleisch
- Institute for X-Ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - J Gulden
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - A V Zozulya
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - M Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - A V Petukhov
- Van 't Hoff laboratory for Physical and Colloid chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3508 TB Utrecht, Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - I A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| |
Collapse
|
44
|
Lerner E, Düring G, Bouchbinder E. Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses. PHYSICAL REVIEW LETTERS 2016; 117:035501. [PMID: 27472122 DOI: 10.1103/physrevlett.117.035501] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 06/06/2023]
Abstract
Low-frequency vibrational modes play a central role in determining various basic properties of glasses, yet their statistical and mechanical properties are not fully understood. Using extensive numerical simulations of several model glasses in three dimensions, we show that in systems of linear size L sufficiently smaller than a crossover size L_{D}, the low-frequency tail of the density of states follows D(ω)∼ω^{4} up to the vicinity of the lowest Goldstone mode frequency. We find that the sample-to-sample statistics of the minimal vibrational frequency in systems of size L<L_{D} is Weibullian, with scaling exponents in excellent agreement with the ω^{4} law. We further show that the lowest-frequency modes are spatially quasilocalized and that their localization and associated quartic anharmonicity are largely frequency independent. The effect of preparation protocols on the low-frequency modes is elucidated, and a number of glassy length scales are briefly discussed.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gustavo Düring
- Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
| | - Eran Bouchbinder
- Chemical Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
45
|
Vågberg D, Olsson P, Teitel S. Critical scaling of Bagnold rheology at the jamming transition of frictionless two-dimensional disks. Phys Rev E 2016; 93:052902. [PMID: 27300966 DOI: 10.1103/physreve.93.052902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Indexed: 06/06/2023]
Abstract
We carry out constant volume simulations of steady-state shear-driven rheology in a simple model of bidisperse soft-core frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. We discuss in detail the critical scaling ansatz for the shear-driven jamming transition and carry out a detailed scaling analysis of our resulting data for pressure p and shear stress σ. Our analysis determines the critical exponent β that describes the algebraic divergence of the Bagnold transport coefficients lim_{γ[over ̇]→0}p/γ[over ̇]^{2},σ/γ[over ̇]^{2}∼(ϕ_{J}-ϕ)^{-β} as the jamming transition ϕ_{J} is approached from below. For the low strain rates considered in this work, we show that it is still necessary to consider the leading correction-to-scaling term in order to achieve a self-consistent analysis of our data, in which the critical parameters become independent of the size of the window of data used in the analysis. We compare our resulting value β≈5.0±0.4 against previous numerical results and competing theoretical models. Our results confirm that the shear-driven jamming transition in Bagnoldian systems is well described by a critical scaling theory and we relate this scaling theory to the phenomenological constituent laws for dilatancy and friction.
Collapse
Affiliation(s)
- Daniel Vågberg
- Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
46
|
Zhang L, Mao X. Finite-temperature mechanical instability in disordered lattices. Phys Rev E 2016; 93:022110. [PMID: 26986291 DOI: 10.1103/physreve.93.022110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 06/05/2023]
Abstract
Mechanical instability takes different forms in various ordered and disordered systems and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We use this theory to study two disordered lattices: a randomly diluted triangular lattice and a randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T=0. We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G∼T(1/2), whereas the square lattice shows G∼T(2/3). We discuss generic scaling laws for finite-T mechanical instabilities and relate them to experimental systems.
Collapse
Affiliation(s)
- Leyou Zhang
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
47
|
Abstract
The jamming transition of particles with finite-range interactions is characterized by a variety of critical phenomena, including power-law distributions of marginal contacts. We numerically study a recently proposed simple model of jamming, which is conjectured to lie in the same universality class as the jamming of spheres in all dimensions. We extract numerical estimates of the critical exponents, θ=0.451±0.006 and γ=0.404±0.004, that match the exponents observed in sphere packing systems. We analyze finite-size scaling effects that manifest in a subcritical cutoff regime and size-independent but protocol-dependent scaling curves. Our results support the conjectured link with sphere jamming, provide more precise measurements of the critical exponents than previously reported, and shed light on the finite-size scaling behavior of continuous constraint satisfiability transitions.
Collapse
Affiliation(s)
- Yoav Kallus
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
| |
Collapse
|
48
|
Baity-Jesi M, Martín-Mayor V, Parisi G, Perez-Gaviro S. Soft Modes, Localization, and Two-Level Systems in Spin Glasses. PHYSICAL REVIEW LETTERS 2015; 115:267205. [PMID: 26765021 DOI: 10.1103/physrevlett.115.267205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 06/05/2023]
Abstract
In the three-dimensional Heisenberg spin glass in a random field, we study the properties of the inherent structures that are obtained by an instantaneous cooling from infinite temperature. For a not too large field the density of states g(ω) develops localized soft plastic modes and reaches zero as ω(4) (for large fields a gap appears). When we perturb the system adding a force along the softest mode, one reaches very similar minima of the energy, separated by small barriers, that appear to be good candidates for classical two-level systems.
Collapse
Affiliation(s)
- M Baity-Jesi
- Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain, Dipartimento di Fisica, La Sapienza Università di Roma, 00185 Roma, Italy, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - V Martín-Mayor
- Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - G Parisi
- Dipartimento di Fisica, NANOTEC-CNR, Soft and Living Matter Laboratory and INFN, La Sapienza Università di Roma, 00185 Roma, Italy
| | - S Perez-Gaviro
- Centro Universitario de la Defensa, Carretera de Huesca s/n, 50090 Zaragoza, Spain, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| |
Collapse
|
49
|
Abstract
We report an analytical study of the vibrational spectrum of the simplest model of jamming, the soft perceptron. We identify two distinct classes of soft modes. The first kind of modes are related to isostaticity and appear only in the close vicinity of the jamming transition. The second kind of modes instead are present everywhere in the glass phase and are related to the hierarchical structure of the potential energy landscape. Our results highlight the universality of the spectrum of normal modes in disordered systems, and open the way toward a detailed analytical understanding of the vibrational spectrum of low-temperature glasses.
Collapse
|
50
|
Liu W, Li S, Baule A, Makse HA. Adhesive loose packings of small dry particles. SOFT MATTER 2015; 11:6492-6498. [PMID: 26186271 DOI: 10.1039/c5sm01169h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We explore adhesive loose packings of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for Ad > 1. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes the correlation between bulk and contact spheres. Our theoretical and numerical results predict: (i) an equation of state for adhesive loose packings that appear as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram and (ii) the existence of an asymptotic adhesive loose packing point at a coordination number Z = 2 and a packing fraction ϕ = 1/2(3). Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing (RLP), which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.
Collapse
Affiliation(s)
- Wenwei Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | |
Collapse
|