1
|
Rocha S, Kumar R, Nordén B, Wittung-Stafshede P. Orientation of α-Synuclein at Negatively Charged Lipid Vesicles: Linear Dichroism Reveals Time-Dependent Changes in Helix Binding Mode. J Am Chem Soc 2021; 143:18899-18906. [PMID: 34748321 PMCID: PMC8603351 DOI: 10.1021/jacs.1c05344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The neuronal protein
α-synuclein, linked to Parkinson’s
disease, binds to negatively charged vesicles adopting a partial α-helix
structure, but helix arrangement at the vesicle surface is not fully
understood. Using linear dichroism spectroscopy (LD), we study the
interaction of monomeric α-synuclein with large unilamellar
vesicles of 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), and 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG) under mild shear flow. The LD data
of oriented lipid vesicles show that the long axis of the protein
helix is oriented preferentially perpendicular to the membrane normal
but deviates from a uniform in-plane distribution. Upon initial binding,
a fraction of helices are oriented in the direction of least curvature
for all ellipsoid-shaped vesicles at a lipid:protein molar ratio of
100. However, at a lower protein concentration the helices distribute
uniformly on DOPS and POPS vesicles. In all cases, the α-synuclein
helices rearrange with time (minute time scale) in the shear flow
and begin to tilt into the vesicle membrane. Faster reorientation
kinetics in the presence of flow suggests that modulation of membrane
dynamics, by thermal or shear-dynamic activation, may overcome steric
barriers by what may be called “flow catalysis”.
Collapse
|
2
|
Venko K, Novič M, Stoka V, Žerovnik E. Prediction of Transmembrane Regions, Cholesterol, and Ganglioside Binding Sites in Amyloid-Forming Proteins Indicate Potential for Amyloid Pore Formation. Front Mol Neurosci 2021; 14:619496. [PMID: 33642992 PMCID: PMC7902868 DOI: 10.3389/fnmol.2021.619496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Besides amyloid fibrils, amyloid pores (APs) represent another mechanism of amyloid induced toxicity. Since hypothesis put forward by Arispe and collegues in 1993 that amyloid-beta makes ion-conducting channels and that Alzheimer's disease may be due to the toxic effect of these channels, many studies have confirmed that APs are formed by prefibrillar oligomers of amyloidogenic proteins and are a common source of cytotoxicity. The mechanism of pore formation is still not well-understood and the structure and imaging of APs in living cells remains an open issue. To get closer to understand AP formation we used predictive methods to assess the propensity of a set of 30 amyloid-forming proteins (AFPs) to form transmembrane channels. A range of amino-acid sequence tools were applied to predict AP domains of AFPs, and provided context on future experiments that are needed in order to contribute toward a deeper understanding of amyloid toxicity. In a set of 30 AFPs we predicted their amyloidogenic propensity, presence of transmembrane (TM) regions, and cholesterol (CBM) and ganglioside binding motifs (GBM), to which the oligomers likely bind. Noteworthy, all pathological AFPs share the presence of TM, CBM, and GBM regions, whereas the functional amyloids seem to show just one of these regions. For comparative purposes, we also analyzed a few examples of amyloid proteins that behave as biologically non-relevant AFPs. Based on the known experimental data on the β-amyloid and α-synuclein pore formation, we suggest that many AFPs have the potential for pore formation. Oligomerization and α-TM helix to β-TM strands transition on lipid rafts seem to be the common key events.
Collapse
Affiliation(s)
- Katja Venko
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novič
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
3
|
Michler's hydrol blue elucidates structural differences in prion strains. Proc Natl Acad Sci U S A 2020; 117:29677-29683. [PMID: 33168711 DOI: 10.1073/pnas.2001732117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast prions provide self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that confer distinct phenotypes when introduced into cells that do not carry the prion. Classic dyes, such as thioflavin T and Congo red, exhibit large increases in fluorescence when bound to amyloids, but these dyes are not sensitive to local structural differences that distinguish amyloid strains. Here we describe the use of Michler's hydrol blue (MHB) to investigate fibrils formed by the weak and strong prion fibrils of Sup35NM and find that MHB differentiates between these two polymorphs. Quantum mechanical time-dependent density functional theory (TDDFT) calculations indicate that the fluorescence properties of amyloid-bound MHB can be correlated to the change of binding site polarity and that a tyrosine to phenylalanine substitution at a binding site could be detected. Through the use of site-specific mutants, we demonstrate that MHB is a site-specific environmentally sensitive probe that can provide structural details about amyloid fibrils and their polymorphs.
Collapse
|
4
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
5
|
Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register. Proc Natl Acad Sci U S A 2017; 114:3642-3647. [PMID: 28330994 DOI: 10.1073/pnas.1619051114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a β-helical arrangement, whereas others suggest a parallel in-register organization. Intermolecular contacts are often determined by experiments that probe long-range heteronuclear contacts for fibrils templated from a 1:1 mixture of 13C- and 15N-labeled monomers. However, for Sup35NM, like many large proteins, chemical shift degeneracy limits the usefulness of this approach. Segmental and specific isotopic labeling reduce degeneracy, but experiments to measure long-range interactions are often too insensitive. To limit degeneracy and increase experimental sensitivity, we combined specific and segmental isotopic labeling schemes with dynamic nuclear polarization (DNP) NMR. Using this combination, we examined an amyloid form of Sup35NM that does not have a parallel in-register structure. The combination of a small number of specific labels with DNP NMR enables determination of architectural information about polymeric protein systems.
Collapse
|
6
|
Ing NL, Nusca TD, Hochbaum AI. Geobacter sulfurreducenspili support ohmic electronic conduction in aqueous solution. Phys Chem Chem Phys 2017; 19:21791-21799. [DOI: 10.1039/c7cp03651e] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solid-state and electrochemical observations of ohmic conductivity in purifiedGeobacter sulfurreducenspili.
Collapse
Affiliation(s)
- Nicole L. Ing
- Department of Chemical Engineering and Materials Science
- University of California
- Irvine
- Irvine
- USA
| | - Tyler D. Nusca
- Department of Chemical Engineering and Materials Science
- University of California
- Irvine
- Irvine
- USA
| | - Allon I. Hochbaum
- Department of Chemical Engineering and Materials Science
- University of California
- Irvine
- Irvine
- USA
| |
Collapse
|
7
|
Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochem J 2016; 474:123-147. [DOI: 10.1042/bcj20160737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022]
Abstract
Misfolding and aggregation of cellular prion protein is associated with a large array of neurological disorders commonly called the transmissible spongiform encephalopathies. Designing inhibitors against prions has remained a daunting task owing to limited information about mechanism(s) of their pathogenic self-assembly. Here, we explore the anti-prion properties of a combinatorial library of bispidine-based peptidomimetics (BPMs) that conjugate amino acids with hydrophobic and aromatic side chains. Keeping the bispidine unit unaltered, a series of structurally diverse BPMs were synthesized and tested for their prion-modulating properties. Administration of Leu- and Trp-BPMs delayed and completely inhibited the amyloidogenic conversion of human prion protein (HuPrP), respectively. We found that each BPM induced the HuPrP to form unique oligomeric nanostructures differing in their biophysical properties, cellular toxicities and response to conformation-specific antibodies. While Leu-BPMs were found to stabilize the oligomers, Trp-BPMs effected transient oligomerization, resulting in the formation of non-toxic, non-fibrillar aggregates. Yet another aromatic residue, Phe, however, accelerated the aggregation process in HuPrP. Molecular insights obtained through MD (molecular dynamics) simulations suggested that each BPM differently engages a conserved Tyr 169 residue at the α2–β2 loop of HuPrP and affects the stability of α2 and α3 helices. Our results demonstrate that this new class of molecules having chemical scaffolds conjugating hydrophobic/aromatic residues could effectively modulate prion aggregation and toxicity.
Collapse
|
8
|
Wu H, Fuxreiter M. The Structure and Dynamics of Higher-Order Assemblies: Amyloids, Signalosomes, and Granules. Cell 2016; 165:1055-1066. [PMID: 27203110 DOI: 10.1016/j.cell.2016.05.004] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 02/08/2023]
Abstract
We here attempt to achieve an integrated understanding of the structure and dynamics of a number of higher-order assemblies, including amyloids, various kinds of signalosomes, and cellular granules. We propose that the synergy between folded domains, linear motifs, and intrinsically disordered regions regulates the formation and intrinsic fuzziness of all higher-order assemblies, creating a structural and dynamic continuum. We describe how such regulatory mechanisms could be influenced under pathological conditions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Monika Fuxreiter
- MTA-DE Momentum, Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, 4010 Debrecen, Hungary.
| |
Collapse
|
9
|
A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System. Sci Rep 2016; 6:30633. [PMID: 27464832 PMCID: PMC4964355 DOI: 10.1038/srep30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Innovation in hypotheses is a key transformative driver for scientific development.
The conventional centralized hypothesis formulation approach, where a dominant
hypothesis is typically derived from a primary phenomenon, can, inevitably, impose
restriction on the range of conceivable experiments and legitimate hypotheses, and
ultimately impede understanding of the system of interest. We report herein the
proposal of a decentralized approach for the formulation of hypotheses, through
initial preconception-free phenomenon accumulation and subsequent reticular logical
reasoning processes. The two-step approach can provide an unbiased, panoramic view
of the system and as such should enable the generation of a set of more coherent and
therefore plausible hypotheses. As a proof-of-concept demonstration of the utility
of this open-ended approach, a hierarchical model has been developed for a prion
self-assembled system, allowing insight into hitherto elusive static and dynamic
features associated with this intriguing structure.
Collapse
|
10
|
Antosiewicz JM, Shugar D. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore. Biophys Rev 2016; 8:151-161. [PMID: 28510058 PMCID: PMC4884207 DOI: 10.1007/s12551-016-0198-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/17/2016] [Indexed: 11/08/2022] Open
Abstract
Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV–Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.
Collapse
Affiliation(s)
- Jan M Antosiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - David Shugar
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
11
|
Poloni C, Stuart MCA, van der Meulen P, Szymanski W, Feringa BL. Light and heat control over secondary structure and amyloid-like fiber formation in an overcrowded-alkene-modified Trp zipper. Chem Sci 2015; 6:7311-7318. [PMID: 28757990 PMCID: PMC5512536 DOI: 10.1039/c5sc02735g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022] Open
Abstract
The external photocontrol over peptide folding, by the incorporation of molecular photoswitches into their structure, provides a powerful tool to study biological processes. However, it is limited so far to switches that exhibit only a rather limited geometrical change upon photoisomerization and that show thermal instability of the photoisomer. Here we describe the use of an overcrowded alkene photoswitch to control a model β-hairpin peptide. This photoresponsive unit undergoes a large conformational change and has two thermally stable isomers which has major influence on the secondary structure and the aggregation of the peptide, permitting the phototriggered formation of amyloid-like fibrils.
Collapse
Affiliation(s)
- Claudia Poloni
- Centre for Systems Chemistry , Stratingh Institute for Chemistry , Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands . ;
| | - Marc C A Stuart
- Centre for Systems Chemistry , Stratingh Institute for Chemistry , Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands . ;
| | - Pieter van der Meulen
- Centre for Systems Chemistry , Stratingh Institute for Chemistry , Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands . ;
| | - Wiktor Szymanski
- Centre for Systems Chemistry , Stratingh Institute for Chemistry , Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands . ;
- Department of Radiology , University of Groningen , University Medical Center Groningen , Hanzeplein 1 , 9713 GZ , Groningen , The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry , Stratingh Institute for Chemistry , Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands . ;
| |
Collapse
|