1
|
Voegeli B, Sommer S, Knaden M, Wehner R. Vector-based navigation in desert ants: the significance of path-integration vectors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:209-220. [PMID: 39625532 PMCID: PMC12003618 DOI: 10.1007/s00359-024-01725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 04/18/2025]
Abstract
In the longstanding discussion of whether insects, especially central place foragers such as bees and ants, use metric representations of their landmark surroundings (so-called "cognitive maps"), the ability to find novel shortcuts between familiar locations has been considered one of the most decisive proofs for the use of such maps. Here we show by channel-based field experiments that desert ants Cataglyphis can travel such shortcuts between locations (defined by memorized goal vectors) just on the basis of path integration. When trained to visit two spatially separated feeders A and B they later travel the hitherto novel route A→B. This behavior may originate from the interaction of goal vectors retrieved from long-term memory and the current vector computed by the continuously running path integrator. Based on former experiments, we further argue that path integration is a necessary requirement also for acquiring landmark information (in form of learned goal-directed views). This emphasizes the paramount importance of path integration in these central place foragers. Finally we hypothesize that the ant's overall system of navigation consists in the optimal combination of path-integration vectors and view-based vectors, and thus handles and uses vectorial information without the need of constructing a "vector map", in which vectors are linked to known places in the environment others than to the origin of all journeys, the nest.
Collapse
Affiliation(s)
- Beatrice Voegeli
- Canton of Zurich, Office of Landscape and Nature, Zurich, Switzerland
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rüdiger Wehner
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Patel RN, Roberts NS, Kempenaers J, Zadel A, Heinze S. Parallel vector memories in the brain of a bee as foundation for flexible navigation. Proc Natl Acad Sci U S A 2024; 121:e2402509121. [PMID: 39008670 PMCID: PMC11287249 DOI: 10.1073/pnas.2402509121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Insects rely on path integration (vector-based navigation) and landmark guidance to perform sophisticated navigational feats, rivaling those seen in mammals. Bees in particular exhibit complex navigation behaviors including creating optimal routes and novel shortcuts between locations, an ability historically indicative of the presence of a cognitive map. A mammalian cognitive map has been widely accepted. However, in insects, the existence of a centralized cognitive map is highly contentious. Using a controlled laboratory assay that condenses foraging behaviors to short distances in walking bumblebees, we reveal that vectors learned during path integration can be transferred to long-term memory, that multiple such vectors can be stored in parallel, and that these vectors can be recalled at a familiar location and used for homeward navigation. These findings demonstrate that bees meet the two fundamental requirements of a vector-based analog of a decentralized cognitive map: Home vectors need to be stored in long-term memory and need to be recalled from remembered locations. Thus, our data demonstrate that bees possess the foundational elements for a vector-based map. By utilizing this relatively simple strategy for spatial organization, insects may achieve high-level navigation behaviors seen in vertebrates with the limited number of neurons in their brains, circumventing the computational requirements associated with the cognitive maps of mammals.
Collapse
Affiliation(s)
- Rickesh N. Patel
- Lund Vision Group, Department of Biology, Lund University, Lund22362, Sweden
| | - Natalie S. Roberts
- Lund Vision Group, Department of Biology, Lund University, Lund22362, Sweden
| | - Julian Kempenaers
- Lund Vision Group, Department of Biology, Lund University, Lund22362, Sweden
| | - Ana Zadel
- Lund Vision Group, Department of Biology, Lund University, Lund22362, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund22362, Sweden
- Nano Lund, Centre for Nanoscience, Lund University, Lund22362, Sweden
| |
Collapse
|
3
|
Goulard R, Heinze S, Webb B. Emergent spatial goals in an integrative model of the insect central complex. PLoS Comput Biol 2023; 19:e1011480. [PMID: 38109465 PMCID: PMC10760860 DOI: 10.1371/journal.pcbi.1011480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The insect central complex appears to encode and process spatial information through vector manipulation. Here, we draw on recent insights into circuit structure to fuse previous models of sensory-guided navigation, path integration and vector memory. Specifically, we propose that the allocentric encoding of location provided by path integration creates a spatially stable anchor for converging sensory signals that is relevant in multiple behavioural contexts. The allocentric reference frame given by path integration transforms a goal direction into a goal location and we demonstrate through modelling that it can enhance approach of a sensory target in noisy, cluttered environments or with temporally sparse stimuli. We further show the same circuit can improve performance in the more complex navigational task of route following. The model suggests specific functional roles for circuit elements of the central complex that helps explain their high preservation across insect species.
Collapse
Affiliation(s)
- Roman Goulard
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
4
|
Menzel R. Navigation and dance communication in honeybees: a cognitive perspective. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:515-527. [PMID: 36799987 PMCID: PMC10354182 DOI: 10.1007/s00359-023-01619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Flying insects like the honeybee experience the world as a metric layout embedded in a compass, the time-compensated sun compass. The focus of the review lies on the properties of the landscape memory as accessible by data from radar tracking and analyses of waggle dance following. The memory formed during exploration and foraging is thought to be composed of multiple elements, the aerial pictures that associate the multitude of sensory inputs with compass directions. Arguments are presented that support retrieval and use of landscape memory not only during navigation but also during waggle dance communication. I argue that bees expect landscape features that they have learned and that are retrieved during dance communication. An intuitive model of the bee's navigation memory is presented that assumes the picture memories form a network of geographically defined locations, nodes. The intrinsic components of the nodes, particularly their generalization process leads to binding structures, the edges. In my view, the cognitive faculties of landscape memory uncovered by these experiments are best captured by the term cognitive map.
Collapse
Affiliation(s)
- Randolf Menzel
- Fachbereich Biologie, Chemie, Pharmazie, Institut Für Biologie, Freie Universität Berlin, Königin Luisestr. 1-3, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Dhein K. The cognitive map debate in insects: A historical perspective on what is at stake. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 98:62-79. [PMID: 36863222 DOI: 10.1016/j.shpsa.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/19/2023]
Abstract
Though well established in mammals, the cognitive map hypothesis has engendered a decades-long, ongoing debate in insect navigation studies involving many of the field's most prominent researchers. In this paper, I situate the debate within the broader context of 20th century animal behavior research and argue that the debate persists because competing research groups are guided by different constellations of epistemic aims, theoretical commitments, preferred animal subjects, and investigative practices. The expanded history of the cognitive map provided in this paper shows that more is at stake in the cognitive map debate than the truth value of propositions characterizing insect cognition. What is at stake is the future direction of an extraordinarily productive tradition of insect navigation research stretching back to Karl von Frisch. Disciplinary labels like ethology, comparative psychology, and behaviorism became less relevant at the turn of the 21st century, but as I show, the different ways of knowing animals associated with these disciplines continue to motivate debates about animal cognition. This examination of scientific disagreement surrounding the cognitive map hypothesis also has significant consequences for philosophers' use of cognitive map research as a case study.
Collapse
Affiliation(s)
- Kelle Dhein
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| |
Collapse
|
6
|
Doussot C, Bertrand OJN, Egelhaaf M. The Critical Role of Head Movements for Spatial Representation During Bumblebees Learning Flight. Front Behav Neurosci 2021; 14:606590. [PMID: 33542681 PMCID: PMC7852487 DOI: 10.3389/fnbeh.2020.606590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Bumblebees perform complex flight maneuvers around the barely visible entrance of their nest upon their first departures. During these flights bees learn visual information about the surroundings, possibly including its spatial layout. They rely on this information to return home. Depth information can be derived from the apparent motion of the scenery on the bees' retina. This motion is shaped by the animal's flight and orientation: Bees employ a saccadic flight and gaze strategy, where rapid turns of the head (saccades) alternate with flight segments of apparently constant gaze direction (intersaccades). When during intersaccades the gaze direction is kept relatively constant, the apparent motion contains information about the distance of the animal to environmental objects, and thus, in an egocentric reference frame. Alternatively, when the gaze direction rotates around a fixed point in space, the animal perceives the depth structure relative to this pivot point, i.e., in an allocentric reference frame. If the pivot point is at the nest-hole, the information is nest-centric. Here, we investigate in which reference frames bumblebees perceive depth information during their learning flights. By precisely tracking the head orientation, we found that half of the time, the head appears to pivot actively. However, only few of the corresponding pivot points are close to the nest entrance. Our results indicate that bumblebees perceive visual information in several reference frames when they learn about the surroundings of a behaviorally relevant location.
Collapse
Affiliation(s)
- Charlotte Doussot
- Department of Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | | | |
Collapse
|
7
|
Kheradmand B, Nieh JC. The Role of Landscapes and Landmarks in Bee Navigation: A Review. INSECTS 2019; 10:E342. [PMID: 31614833 PMCID: PMC6835465 DOI: 10.3390/insects10100342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
The ability of animals to explore landmarks in their environment is essential to their fitness. Landmarks are widely recognized to play a key role in navigation by providing information in multiple sensory modalities. However, what is a landmark? We propose that animals use a hierarchy of information based upon its utility and salience when an animal is in a given motivational state. Focusing on honeybees, we suggest that foragers choose landmarks based upon their relative uniqueness, conspicuousness, stability, and context. We also propose that it is useful to distinguish between landmarks that provide sensory input that changes ("near") or does not change ("far") as the receiver uses these landmarks to navigate. However, we recognize that this distinction occurs on a continuum and is not a clear-cut dichotomy. We review the rich literature on landmarks, focusing on recent studies that have illuminated our understanding of the kinds of information that bees use, how they use it, potential mechanisms, and future research directions.
Collapse
Affiliation(s)
- Bahram Kheradmand
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, UC San Diego, La Jolla, CA 92093, USA.
| | - James C Nieh
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Liu Y, Day LB, Summers K, Burmeister SS. A cognitive map in a poison frog. ACTA ACUST UNITED AC 2019; 222:222/11/jeb197467. [PMID: 31182504 DOI: 10.1242/jeb.197467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/29/2019] [Indexed: 02/04/2023]
Abstract
A fundamental question in cognitive science is whether an animal can use a cognitive map. A cognitive map is a mental representation of the external world, and knowledge of one's place in this world, that can be used to determine efficient routes to any destination. Many birds and mammals are known to employ a cognitive map, but whether other vertebrates can create a cognitive map is less clear. Amphibians are capable of using beacons, gradients and landmarks when navigating, and many are proficient at homing. Yet only one prior study directly tested for a cognitive map in amphibians, with negative results. Poison frogs exhibit unusually complex social and spatial behaviors and are capable of long-distance homing after displacement, suggesting that they may be using complex spatial navigation strategies in nature. Here, we trained the poison frog Dendrobates auratus in a modified Morris water maze that was designed to suppress thigmotaxis to the maze wall, promoting exploration of the arena. In our moat maze, the poison frogs were able to use a configuration of visual cues to find the hidden platform. Moreover, we demonstrate that they chose direct paths to the goal from multiple random initial positions, a hallmark of a cognitive map. The performance of the frogs in the maze was qualitatively similar to that of rodents, suggesting that the potential to evolve a cognitive map is an evolutionarily conserved trait of vertebrates.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
9
|
Abstract
A basic set of navigation strategies supports navigational tasks ranging from homing to novel detours and shortcuts. To perform these last two tasks, it is generally thought that humans, mammals and perhaps some insects possess Euclidean cognitive maps, constructed on the basis of input from the path integration system. In this article, I review the rationale and behavioral evidence for this metric cognitive map hypothesis, and find it unpersuasive: in practice, there is little evidence for truly novel shortcuts in animals, and human performance is highly unreliable and biased by environmental features. I develop the alternative hypothesis that spatial knowledge is better characterized as a labeled graph: a network of paths between places augmented with local metric information. What distinguishes such a cognitive graph from a metric cognitive map is that this local information is not embedded in a global coordinate system, so spatial knowledge is often geometrically inconsistent. Human path integration appears to be better suited to piecewise measurements of path lengths and turn angles than to building a consistent map. In a series of experiments in immersive virtual reality, we tested human navigation in non-Euclidean environments and found that shortcuts manifest large violations of the metric postulates. The results are contrary to the Euclidean map hypothesis and support the cognitive graph hypothesis. Apparently Euclidean behavior, such as taking novel detours and approximate shortcuts, can be explained by the adaptive use of non-Euclidean strategies.
Collapse
Affiliation(s)
- William H Warren
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Menzel R, Tison L, Fischer-Nakai J, Cheeseman J, Balbuena MS, Chen X, Landgraf T, Petrasch J, Polster J, Greggers U. Guidance of Navigating Honeybees by Learned Elongated Ground Structures. Front Behav Neurosci 2019; 12:322. [PMID: 30697152 PMCID: PMC6341004 DOI: 10.3389/fnbeh.2018.00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 02/03/2023] Open
Abstract
Elongated landscape features like forest edges, rivers, roads or boundaries of fields are particularly salient landmarks for navigating animals. Here, we ask how honeybees learn such structures and how they are used during their homing flights after being released at an unexpected location (catch-and-release paradigm). The experiments were performed in two landscapes that differed with respect to their overall structure: a rather feature-less landscape, and one rich in close and far distant landmarks. We tested three different forms of learning: learning during orientation flights, learning during training to a feeding site, and learning during homing flights after release at an unexpected site within the explored area. We found that bees use elongated ground structures, e.g., a field boundary separating two pastures close to the hive (Experiment 1), an irrigation channel (Experiment 2), a hedgerow along which the bees were trained (Experiment 3), a gravel road close to the hive and the feeder (Experiment 4), a path along an irrigation channel with its vegetation close to the feeder (Experiment 5) and a gravel road along which bees performed their homing flights (Experiment 6). Discrimination and generalization between the learned linear landmarks and similar ones in the test area depend on their object properties (irrigation channel, gravel road, hedgerow) and their compass orientation. We conclude that elongated ground structures are embedded into multiple landscape features indicating that memory of these linear structures is one component of bee navigation. Elongated structures interact and compete with other references. Object identification is an important part of this process. The objects are characterized not only by their appearance but also by their alignment in the compass. Their salience is highest if both components are close to what had been learned. High similarity in appearance can compensate for (partial) compass misalignment, and vice versa.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Lea Tison
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Johannes Fischer-Nakai
- Fachbereich Biowissenschaften, Polytechnische Gesellschaft Frankfurt am Main, Institute für Bienenkunde, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
| | - James Cheeseman
- Department of Anaesthesiology, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maria Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Xiuxian Chen
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Tim Landgraf
- Dahlem Center of Machine Learning and Robotics, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Julian Petrasch
- Dahlem Center of Machine Learning and Robotics, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Johannes Polster
- Dahlem Center of Machine Learning and Robotics, Institute for Informatics, Freie Universität Berlin, Berlin, Germany
| | - Uwe Greggers
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Murray T, Kocsi Z, Dahmen H, Narendra A, Le Möel F, Wystrach A, Zeil J. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J Exp Biol 2019; 223:jeb.210021. [DOI: 10.1242/jeb.210021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023]
Abstract
Solitary foraging ants rely on vision when travelling along routes and when pinpointing their nest. We tethered foragers of Myrmecia croslandi on a trackball and recorded their intended movements when the trackball was located on their normal foraging corridor (on-route), above their nest and at a location several meters away where they have never been before (off-route). We find that at on- and off-route locations, most ants walk in the nest or foraging direction and continue to do so for tens of metres in a straight line. In contrast, above the nest, ants walk in random directions and change walking direction frequently. In addition, the walking direction of ants above the nest oscillates at a fine scale, reflecting search movements that are absent from the paths of ants at the other locations. An agent-based simulation shows that the behaviour of ants at all three locations can be explained by the integration of attractive and repellent views directed towards or away from the nest, respectively. Ants are likely to acquire such views via systematic scanning movements during their learning walks. The model predicts that ants placed in a completely unfamiliar environment should behave as if at the nest, which our subsequent experiments confirmed. We conclude first, that the ants’ behaviour at release sites is exclusively driven by what they currently see and not by information on expected outcomes of their behaviour. Second, that navigating ants might continuously integrate attractive and repellent visual memories. We discuss the benefits of such a procedure.
Collapse
Affiliation(s)
- Trevor Murray
- Research School of Biology, Australian National University, Canberra, Australia
| | - Zoltan Kocsi
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Florent Le Möel
- Research Center on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| | - Antoine Wystrach
- Research Center on Animal Cognition, University Paul Sabatier/CNRS, Toulouse, France
| | - Jochen Zeil
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
12
|
Yeap WK, Hossain M. What is a cognitive map? Unravelling its mystery using robots. Cogn Process 2018; 20:203-225. [PMID: 30539324 DOI: 10.1007/s10339-018-0895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 12/03/2018] [Indexed: 11/25/2022]
Abstract
Despite years of research into cognitive mapping, the process remains controversial and little understood. A computational theory of cognitive mapping is needed, but developing it is difficult due to the lack of a clear interpretation of the empirical findings. For example, without knowing what a cognitive map is or how landmarks are defined, how does one develop a computational theory for it? We thus face the conundrum of trying to develop a theory without knowing what is computed. In this paper, we overcome the conundrum by abandoning the idea that the process begins by integrating successive views to form a global map of the environment experienced. Instead, we argue that cognitive mapping begins by remembering views as local maps and we empower a mobile robot with the process and study its behaviour as it acquires its "cognitive map". Our results show that what is computed initially could be described as a "route" map and from it, some form of a "survey map" can be computed. The latter, as it turns out, bears much of the characteristics of a cognitive map. Based on our findings, we discuss what a cognitive map is, how cognitive mapping evolves and why such a process also supports the perception of a stable world.
Collapse
Affiliation(s)
- Wai K Yeap
- Centre for Artificial Intelligence Research, Auckland University of Technology, Auckland, New Zealand.
| | - Md Hossain
- Centre for Artificial Intelligence Research, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
13
|
Exploratory behavior of re-orienting foragers differs from other flight patterns of honeybees. PLoS One 2018; 13:e0202171. [PMID: 30157186 PMCID: PMC6114720 DOI: 10.1371/journal.pone.0202171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
Honeybees, Apis mellifera, perform re-orientation flights to learn about the new surroundings of the hive when their hive is transported to a new location. Since the pattern of re-orientation flights has not yet been studied, we asked whether this form of exploratory behavior differs from the well described exploratory orientation flights performed by young honeybees before they start foraging. We also investigated whether the exploratory components of re-orientation flights differ from foraging flights and if so how. We recorded re-orientation flights using harmonic radar technology and compared the patterns and flight parameters of these flights with the first exploratory orientation flights of young honeybees and foraging flights of experienced foragers. Just as exploratory orientation flights of young honeybees, re-orientation flights can be classified into short- and long-range flights, and most short-range re-orientation flights were performed under unfavorable weather conditions. This indicates that bees adapt the flight pattern of their re-orientation and orientation flights to changing weather conditions in a similar way. Unlike exploratory orientation flights, more than one sector of the landscape was explored during a long-range re-orientation flight, and significantly longer flight durations and flight distances were observed. Thus, re-orienting bees explored a larger terrain than bees performing their first exploratory orientation flight. By displacing some bees after their first re-orientation flight, we could demonstrate that a single re-orientation flight seems to be sufficient to learn the new location of the hive. The flight patterns of re-orientation flights differed clearly from those of foraging flights. Thus, re-orientation flights represent a special exploratory behavior that is triggered by a change in the location of the hive.
Collapse
|
14
|
Towne WF, Ritrovato AE, Esposto A, Brown DF. Honeybees use the skyline in orientation. ACTA ACUST UNITED AC 2017; 220:2476-2485. [PMID: 28450409 DOI: 10.1242/jeb.160002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/23/2017] [Indexed: 11/20/2022]
Abstract
In view-based navigation, animals acquire views of the landscape from various locations and then compare the learned views with current views in order to orient in certain directions or move toward certain destinations. One landscape feature of great potential usefulness in view-based navigation is the skyline, the silhouette of terrestrial objects against the sky, as it is distant, relatively stable and easy to detect. The skyline has been shown to be important in the view-based navigation of ants, but no flying insect has yet been shown definitively to use the skyline in this way. Here, we show that honeybees do indeed orient using the skyline. A feeder was surrounded with an artificial replica of the natural skyline there, and the bees' departures toward the nest were recorded from above with a video camera under overcast skies (to eliminate celestial cues). When the artificial skyline was rotated, the bees' departures were rotated correspondingly, showing that the bees oriented by the artificial skyline alone. We discuss these findings in the context of the likely importance of the skyline in long-range homing in bees, the likely importance of altitude in using the skyline, the likely role of ultraviolet light in detecting the skyline, and what we know about the bees' ability to resolve skyline features.
Collapse
Affiliation(s)
- William F Towne
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19529, USA
| | | | - Antonina Esposto
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19529, USA
| | - Duncan F Brown
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19529, USA
| |
Collapse
|
15
|
Warrant E, Frost B, Green K, Mouritsen H, Dreyer D, Adden A, Brauburger K, Heinze S. The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator. Front Behav Neurosci 2016; 10:77. [PMID: 27147998 PMCID: PMC4838632 DOI: 10.3389/fnbeh.2016.00077] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 02/03/2023] Open
Abstract
The nocturnal Bogong moth (Agrotis infusa) is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW) and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September), Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m). In hundreds of thousands, moths line the interior walls of these cool alpine caves where they “hibernate” over the summer months (referred to as “estivation”). Towards the end of the summer (February and March), the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes clear that the Bogong moth represents a new and very promising model organism for understanding the sensory basis of nocturnal migration in insects.
Collapse
Affiliation(s)
- Eric Warrant
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| | - Barrie Frost
- Department of Psychology, Queens University Kingston, ON, Canada
| | - Ken Green
- New South Wales National Parks and Wildlife Service Jindabyne, NSW, Australia
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, University of Oldenburg Oldenburg, Germany
| | - David Dreyer
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| |
Collapse
|
16
|
Wehner R. Early ant trajectories: spatial behaviour before behaviourism. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:247-66. [PMID: 26898725 DOI: 10.1007/s00359-015-1060-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/29/2015] [Indexed: 11/26/2022]
Abstract
In the beginning of the twentieth century, when Jacques Loeb's and John Watson's mechanistic view of life started to dominate animal physiology and behavioural biology, several scientists with different academic backgrounds got engaged in studying the wayfinding behaviour of ants. Largely unaffected by the scientific spirit of the time, they worked independently of each other in different countries: in Algeria, Tunisia, Spain, Switzerland and the United States of America. In the current literature on spatial cognition these early ant researchers--Victor Cornetz, Felix Santschi, Charles Turner and Rudolf Brun--are barely mentioned. Moreover, it is virtually unknown that the great neuroanatomist Santiago Ramón y Cajal had also worked on spatial orientation in ants. This general neglect is certainly due to the fact that nearly all these ant researchers were scientific loners, who did their idiosyncratic investigations outside the realm of comparative physiology, neurobiology and the behavioural sciences of the time, and published their results in French, German, and Spanish at rather inaccessible places. Even though one might argue that much of their work resulted in mainly anecdotal evidence, the conceptual approaches of these early ant researchers preempt much of the present-day discussions on spatial representation in animals.
Collapse
Affiliation(s)
- Rüdiger Wehner
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
17
|
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J. Three-dimensional models of natural environments and the mapping of navigational information. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:563-84. [DOI: 10.1007/s00359-015-1002-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/24/2022]
|
18
|
|
19
|
The memory structure of navigation in honeybees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:547-61. [PMID: 25707351 DOI: 10.1007/s00359-015-0987-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
The analytical approach to navigation studies aims to identify elementary sensory motor processes that guide an animal to a remote site. This approach will be used here to characterize components of navigation in a flying insect, the honeybee. However, navigation studies need to go beyond an analysis of behavioral routines to come up with a synthesis. We will defend the concept of an active memory structure guiding navigation in bees that is best described as a mental or cognitive map. In our opinion, spatial/temporal relations of landmarks are stored in a mental map in such a way that behavioral routines such as expectation and planning, as indicated by shortcutting, are possible. We view the mental map of animals including the honeybee as an "action memory of spatial relations" rather than as a sensory representation as we humans experience it by introspection. Two components characterize the mental map, the relational representation of landmarks and the meaning of locations to the animal. As yet, there is little data to suggest that bees assign meaning to the experienced locations. To explore this possibility, further studies will be needed, whereby honeybees provide a unique model to address this question.
Collapse
|