1
|
Keesey IW, Doll G, Chakraborty SD, Baschwitz A, Lemoine M, Kaltenpoth M, Svatoš A, Sachse S, Knaden M, Hansson BS. Neuroecology of alcohol risk and reward: Methanol boosts pheromones and courtship success in Drosophila melanogaster. SCIENCE ADVANCES 2025; 11:eadi9683. [PMID: 40173238 PMCID: PMC11963984 DOI: 10.1126/sciadv.adi9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Attraction of Drosophila melanogaster toward by-products of alcoholic fermentation, especially ethanol, has been extensively studied. Previous research has provided several interpretations of this attraction, including potential drug abuse, or a self-medicating coping strategy after mate rejection. We posit that the ecologically adaptive value of alcohol attraction has not been fully explored. Here, we assert a simple yet vital biological rationale for this alcohol preference. Flies display attraction to fruits rich in alcohol, specifically ethanol and methanol, where contact results in a rapid amplification of fatty acid-derived pheromones that enhance courtship success. We also identify olfactory sensory neurons that detect these alcohols, where we reveal roles in both attraction and aversion, and show that valence is balanced around alcohol concentration. Moreover, we demonstrate that methanol can be deadly, and adult flies must therefore accurately weigh the trade-off between benefits and costs for exposure within their naturally fermented and alcohol-rich environments.
Collapse
Affiliation(s)
- Ian W. Keesey
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Georg Doll
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sudeshna Das Chakraborty
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- European Neuroscience Institute (ENI), Neural Computation and Behavior, Grisebachstraße 5, 37077 Göttingen, Germany
| | - Amelie Baschwitz
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Marion Lemoine
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Mass Spectrometry/Proteomics Research Group, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
2
|
Portman DS. Behavioral evolution: No sex please, we're hermaphrodites. Curr Biol 2024; 34:R501-R504. [PMID: 38772338 DOI: 10.1016/j.cub.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Many 'hard-wired', innate animal behaviors are related to reproduction. So what happens when reproductive systems evolve? New research in nematodes has identified principles underlying the co-evolution of reproductive strategy and sexual behavior, revealing some surprises and raising intriguing new questions.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics and Ernest J. Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Luo J, Bainbridge C, Miller RM, Barrios A, Portman DS. C. elegans males optimize mate-preference decisions via sex-specific responses to multimodal sensory cues. Curr Biol 2024; 34:1309-1323.e4. [PMID: 38471505 PMCID: PMC10965367 DOI: 10.1016/j.cub.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
For sexually reproducing animals, selecting optimal mates is important for maximizing reproductive fitness. In the nematode C. elegans, populations reproduce largely by hermaphrodite self-fertilization, but the cross-fertilization of hermaphrodites by males also occurs. Males' ability to recognize hermaphrodites involves several sensory cues, but an integrated view of the ways males use these cues in their native context to assess characteristics of potential mates has been elusive. Here, we examine the mate-preference behavior of C. elegans males evoked by natively produced cues. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside sex pheromones, surface-associated cues, and other signals to assess multiple features of potential mates. Specific aspects of mate preference are communicated by distinct signals: developmental stage and sex are signaled by ascaroside pheromones and surface cues, whereas the presence of a self-sperm-depleted hermaphrodite is likely signaled by VSPs. Furthermore, males prefer to interact with virgin over mated, and well-fed over food-deprived, hermaphrodites; these preferences are likely adaptive and are also mediated by ascarosides and other cues. Sex-typical mate-preference behavior depends on the sexual state of the nervous system, such that pan-neuronal genetic masculinization in hermaphrodites generates male-typical social behavior. We also identify an unexpected role for the sex-shared ASH sensory neurons in male attraction to ascaroside sex pheromones. Our findings lead to an integrated view in which the distinct physical properties of various mate-preference cues guide a flexible, stepwise behavioral program by which males assess multiple features of potential mates to optimize mate preference.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Chance Bainbridge
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14620, USA
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
4
|
Ebert MS, Bargmann CI. Evolution remodels olfactory and mating-receptive behaviors in the transition from female to hermaphrodite reproduction. Curr Biol 2024; 34:969-979.e4. [PMID: 38340714 DOI: 10.1016/j.cub.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Male/hermaphrodite species have arisen multiple times from a male/female ancestral state in nematodes, providing a model to study behavioral adaptations to different reproductive strategies. Here, we examined the mating behaviors of male/female (gonochoristic) Caenorhabditis species in comparison with male/hermaphrodite (androdiecious) close relatives. We find that females from two species in the Elegans group chemotax to volatile odor from males, but hermaphrodites do not. Females, but not hermaphrodites, also display known mating-receptive behaviors such as sedation when male reproductive structures contact the vulva. Focusing on the male/female species C. nigoni, we show that female chemotaxis to males is limited to adult females approaching adult or near-adult males and relies upon the AWA neuron-specific transcription factor ODR-7, as does male chemotaxis to female odor as previously shown in C. elegans. However, female receptivity during mating contact is odr-7 independent. All C. nigoni female behaviors are suppressed by mating and all are absent in young hermaphrodites from the sister species C. briggsae. However, latent receptivity during mating contact can be uncovered in mutant or aged C. briggsae hermaphrodites that lack self-sperm. These results reveal two mechanistically distinct components of the shift from female to hermaphrodite behavior: the loss of female-specific odr-7-dependent chemotaxis and a sperm-dependent state of reduced receptivity to mating contact. Hermaphrodites from a second androdioecious species, C. tropicalis, recover all female behaviors upon aging, including chemotaxis to males. Regaining mating receptivity after sperm depletion could maximize hermaphrodite fitness across their lifespan.
Collapse
Affiliation(s)
- Margaret S Ebert
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
5
|
Nava S, Palma W, Wan X, Oh JY, Gharib S, Wang H, Revanna JS, Tan M, Zhang M, Liu J, Chen CH, Lee JS, Perry B, Sternberg PW. A cGAL-UAS bipartite expression toolkit for Caenorhabditis elegans sensory neurons. Proc Natl Acad Sci U S A 2023; 120:e2221680120. [PMID: 38096407 PMCID: PMC10743456 DOI: 10.1073/pnas.2221680120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Animals integrate sensory information from the environment and display various behaviors in response to external stimuli. In Caenorhabditis elegans hermaphrodites, 33 types of sensory neurons are responsible for chemosensation, olfaction, and mechanosensation. However, the functional roles of all sensory neurons have not been systematically studied due to the lack of facile genetic accessibility. A bipartite cGAL-UAS system has been previously developed to study tissue- or cell-specific functions in C. elegans. Here, we report a toolkit of new cGAL drivers that can facilitate the analysis of a vast majority of the 60 sensory neurons in C. elegans hermaphrodites. We generated 37 sensory neuronal cGAL drivers that drive cGAL expression by cell-specific regulatory sequences or intersection of two distinct regulatory regions with overlapping expression (split cGAL). Most cGAL-drivers exhibit expression in single types of cells. We also constructed 28 UAS effectors that allow expression of proteins to perturb or interrogate sensory neurons of choice. This cGAL-UAS sensory neuron toolkit provides a genetic platform to systematically study the functions of C. elegans sensory neurons.
Collapse
Affiliation(s)
- Stephanie Nava
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wilber Palma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jun Young Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Shahla Gharib
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Han Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jasmin S. Revanna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Minyi Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Mark Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jonathan Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Chun-Hao Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - James S. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Barbara Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
6
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
7
|
Ekino T, Yoshiga T, Takeuchi-Kaneko Y, Ichihara Y, Kanzaki N, Shinya R. Highlighting Potential Physical and Chemical Cues Involved in Conspecific Recognition System in a Predator Nematode, Seinura caverna. Integr Comp Biol 2023; 63:865-876. [PMID: 37500258 DOI: 10.1093/icb/icad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Conspecific recognition is the ability to distinguish and respond to individuals of the same species. In nematodes, this behavior can mediate aggregation, feeding behavior, or mating. Here, we investigated whether and how the predatory nematode Seinura caverna recognizes and avoids conspecifics to prey on. In predation assays, S. caverna did not kill conspecifics, but killed nematodes of three heterospecific species. Interestingly, S. caverna did not kill Ektaphelenchoides spondylis nematodes. Seinura caverna did not eject its stylet when encountering conspecifics or E. spondylis. The characterization of the internal cuticle structure of 13 nematode species suggested that the cuticle may play a role in the preying decision, as E. spondylis and S. caverna exhibited similar, type III, cuticle layers. Chemical extracts from S. caverna further repelled conspecifics. We discuss the potential hierarchical use of physical and chemical cues in S. caverna predation behavior and provide insights into the evolutionary adaptations and behavior of this organism.
Collapse
Affiliation(s)
- Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Toyoshi Yoshiga
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | | | - Yu Ichihara
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
8
|
Weng JW, Park H, Valotteau C, Chen RT, Essmann CL, Pujol N, Sternberg PW, Chen CH. Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Curr Biol 2023; 33:3585-3596.e5. [PMID: 37541249 PMCID: PMC10530406 DOI: 10.1016/j.cub.2023.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Physical contact is prevalent in the animal kingdom to recognize suitable mates by decoding information about sex, species, and maturity. Although chemical cues for mate recognition have been extensively studied, the role of mechanical cues remains elusive. Here, we show that C. elegans males recognize conspecific and reproductive mates through short-range cues, and that the attractiveness of potential mates depends on the sex and developmental stages of the hypodermis. We find that a particular group of cuticular collagens is required for mate attractiveness. These collagens maintain body stiffness to sustain mate attractiveness but do not affect the surface properties that evoke the initial step of mate recognition, suggesting that males utilize multiple sensory mechanisms to recognize suitable mates. Manipulations of body stiffness via physical interventions, chemical treatments, and 3D-printed bionic worms indicate that body stiffness is a mechanical property for mate recognition and increases mating efficiency. Our study thus extends the repertoire of sensory cues of mate recognition in C. elegans and provides a paradigm to study the important roles of mechanosensory cues in social behaviors.
Collapse
Affiliation(s)
- Jen-Wei Weng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Claire Valotteau
- Aix-Marseille Univ, INSERM, CNRS, LAI, Turing Centre for Living Systems, 163 Avenue de Luminy, 13009 Marseille, France
| | - Rui-Tsung Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Clara L Essmann
- Bio3/Bioinformatics and Molecular Genetics, Albert-Ludwigs-University, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, case 906, 13009 Marseille, France
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Chun-Hao Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Luo J, Barrios A, Portman DS. C. elegans males optimize mate-choice decisions via sex-specific responses to multimodal sensory cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.08.536021. [PMID: 37066192 PMCID: PMC10104232 DOI: 10.1101/2023.04.08.536021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
For sexually reproducing animals, selecting optimal mates is essential for maximizing reproductive fitness. Because the nematode C. elegans reproduces mostly by self-fertilization, little is known about its mate-choice behaviors. While several sensory cues have been implicated in males' ability to recognize hermaphrodites, achieving an integrated understanding of the ways males use these cues to assess relevant characteristics of potential mates has proven challenging. Here, we use a choice-based social-interaction assay to explore the ability of C. elegans males to make and optimize mate choices. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside pheromones, surface-bound chemical cues, and other signals to robustly assess a variety of features of potential mates. Specific aspects of mate choice are communicated by distinct signals: the presence of a sperm-depleted, receptive hermaphrodite is likely signaled by VSPs, while developmental stage and sex are redundantly specified by ascaroside pheromones and surface-associated cues. Ascarosides also signal nutritional information, allowing males to choose well-fed over starved mates, while both ascarosides and surface-associated cues cause males to prefer virgin over previously mated hermaphrodites. The male-specificity of these behavioral responses is determined by both male-specific neurons and the male state of sex-shared circuits, and we reveal an unexpected role for the sex-shared ASH sensory neurons in male attraction to endogenously produced hermaphrodite ascarosides. Together, our findings lead to an integrated view of the signaling and behavioral mechanisms by which males use diverse sensory cues to assess multiple features of potential mates and optimize mate choice.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S. Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642
| |
Collapse
|
10
|
Chen L, Wang Y, Zhou X, Wang T, Zhan H, Wu F, Li H, Bian P, Xie Z. Investigation into the communication between unheated and heat-stressed Caenorhabditis elegans via volatile stress signals. Sci Rep 2023; 13:3225. [PMID: 36828837 PMCID: PMC9958180 DOI: 10.1038/s41598-022-26554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/16/2022] [Indexed: 02/26/2023] Open
Abstract
Our research group has recently found that radiation-induced airborne stress signals can be used for communication among Caenorhabditis elegans (C. elegans). This paper addresses the question of whether heat stress can also induce the emission of airborne stress signals to alert neighboring C. elegans and elicit their subsequent stress response. Here, we report that heat-stressed C. elegans produces volatile stress signals that trigger an increase in radiation resistance in neighboring unheated C. elegans. When several loss-of-function mutations affecting thermosensory neuron (AFD), heat shock factor-1, HSP-4, and small heat-shock proteins were used to test heat-stressed C. elegans, we found that the production of volatile stress signals was blocked, demonstrating that the heat shock response and ER pathway are involved in controlling the production of volatile stress signals. Our data further indicated that mutations affecting the DNA damage response (DDR) also inhibited the increase in radiation resistance in neighboring unheated C. elegans that might have received volatile stress signals, indicating that the DDR might contribute to radioadaptive responses induction by volatile stress signals. In addition, the regulatory pattern of signal production and action was preliminarily clarified. Together, the results of this study demonstrated that heat-stressed nematodes communicate with unheated nematodes via volatile stress signals.
Collapse
Affiliation(s)
- Liangwen Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Yun Wang
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Ting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Huimin Zhan
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Fei Wu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Haolan Li
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, School of Bioengineering, Huainan Normal University, Huainan, 232001, People's Republic of China
| | - Po Bian
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
11
|
Quevarec L, Réale D, Dufourcq‐Sekatcheff E, Car C, Armant O, Dubourg N, Adam‐Guillermin C, Bonzom J. Male frequency in Caenorhabditis elegans increases in response to chronic irradiation. Evol Appl 2022; 15:1331-1343. [PMID: 36187185 PMCID: PMC9488675 DOI: 10.1111/eva.13420] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/09/2023] Open
Abstract
Outcrossing can be advantageous in a changing environment because it promotes the purge of deleterious mutations and increases the genetic diversity within a population, which may improve population persistence and evolutionary potential. Some species may, therefore, switch their reproductive mode from inbreeding to outcrossing when under environmental stress. This switch may have consequences on the demographic dynamics and evolutionary trajectory of populations. For example, it may directly influence the sex ratio of a population. However, much remains to be discovered about the mechanisms and evolutionary implications of sex ratio changes in a population in response to environmental stress. Populations of the androdioecious nematode Caenorhabditis elegans, are composed of selfing hermaphrodites and rare males. Here, we investigate the changes in the sex ratio of C. elegans populations exposed to radioactive pollution for 60 days or around 20 generations. We experimentally exposed populations to three levels of ionizing radiation (i.e., 0, 1.4, and 50 mGy.h-1). We then performed reciprocal transplant experiments to evaluate genetic divergence between populations submitted to different treatments. Finally, we used a mathematical model to examine the evolutionary mechanisms that could be responsible for the change in sex ratio. Our results showed an increase in male frequency in irradiated populations, and this effect increased with the dose rate. The model showed that an increase in male fertilization success or a decrease in hermaphrodite self-fertilization could explain this increase in the frequency of males. Moreover, males persisted in populations after transplant back into the control conditions. These results suggested selection favoring outcrossing under irradiation conditions. This study shows that ionizing radiation can sustainably alter the reproductive strategy of a population, likely impacting its long-term evolutionary history. This study highlights the need to evaluate the impact of pollutants on the reproductive strategies of populations when assessing the ecological risks.
Collapse
Affiliation(s)
- Loïc Quevarec
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQuebecCanada
| | | | - Clément Car
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Olivier Armant
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Nicolas Dubourg
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Christelle Adam‐Guillermin
- PSE‐SANTE/SDOS/LMDN, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| | - Jean‐Marc Bonzom
- PSE‐ENV/SRTE/LECO, CadaracheInstitut de Radioprotection et de Sûreté Nucléaire (IRSN)Saint Paul Lez DuranceFrance
| |
Collapse
|
12
|
Dai Z, Zhang W, Shang M, Tang H, Wu L, Wu Y, Wang T, Bian P. A Non-Cell-Autonomous Mode of DNA Damage Response in Soma of Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23147544. [PMID: 35886900 PMCID: PMC9318560 DOI: 10.3390/ijms23147544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Life has evolved a mechanism called DNA damage response (DDR) to sense, signal and remove/repair DNA damage, and its deficiency and dysfunction usually lead to genomic instability and development of cancer. The signaling mode of the DDR has been believed to be of cell-autonomy. However, the paradigm is being shifted with in-depth research into model organism Caenorhabditis elegans. Here, we mainly investigate the effect of DDR activation on the radiosensitivity of vulva of C. elegans, and first found that the vulval radiosensitivity is mainly regulated by somatic DDR, rather than the DDR of germline. Subsequently, the worm lines with pharynx-specific rescue of DDR were constructed, and it is shown that the 9-1-1-ATR and MRN-ATM cascades in pharynx restore approximately 90% and 70% of vulval radiosensitivity, respectively, through distantly regulating the NHEJ repair of vulval cells. The results suggest that the signaling cascade of DDR might also operate in a non-cell autonomous mode. To further explore the underlying regulatory mechanisms, the cpr-4 mutated gene is introduced into the DDR-rescued worms, and CPR-4, a cysteine protease cathepsin B, is confirmed to mediate the inter-tissue and inter-individual regulation of DDR as a signaling molecule downstream of 9-1-1-ATR. Our findings throw some light on the regulation of DNA repair in soma of C. elegans, and might also provide new cues for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhangyu Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.D.); (W.Z.); (H.T.); (Y.W.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Wenjing Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.D.); (W.Z.); (H.T.); (Y.W.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Mengke Shang
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (M.S.); (L.W.)
| | - Huangqi Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.D.); (W.Z.); (H.T.); (Y.W.)
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (M.S.); (L.W.)
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.D.); (W.Z.); (H.T.); (Y.W.)
| | - Ting Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence: (T.W.); (P.B.)
| | - Po Bian
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.D.); (W.Z.); (H.T.); (Y.W.)
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence: (T.W.); (P.B.)
| |
Collapse
|
13
|
Toker IA, Lev I, Mor Y, Gurevich Y, Fisher D, Houri-Zeevi L, Antonova O, Doron H, Anava S, Gingold H, Hadany L, Shaham S, Rechavi O. Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C. elegans. Dev Cell 2022; 57:298-309.e9. [PMID: 35134343 PMCID: PMC8826646 DOI: 10.1016/j.devcel.2022.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/12/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
It is unknown whether transient transgenerational epigenetic responses to environmental challenges affect the process of evolution, which typically unfolds over many generations. Here, we show that in C. elegans, inherited small RNAs control genetic variation by regulating the crucial decision of whether to self-fertilize or outcross. We found that under stressful temperatures, younger hermaphrodites secrete a male-attracting pheromone. Attractiveness transmits transgenerationally to unstressed progeny via heritable small RNAs and the Argonaute Heritable RNAi Deficient-1 (HRDE-1). We identified an endogenous small interfering RNA pathway, enriched in endo-siRNAs that target sperm genes, that transgenerationally regulates sexual attraction, male prevalence, and outcrossing rates. Multigenerational mating competition experiments and mathematical simulations revealed that over generations, animals that inherit attractiveness mate more and their alleles spread in the population. We propose that the sperm serves as a "stress-sensor" that, via small RNA inheritance, promotes outcrossing in challenging environments when increasing genetic variation is advantageous.
Collapse
Affiliation(s)
- Itai Antoine Toker
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Itamar Lev
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Mor
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Gurevich
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Doron Fisher
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leah Houri-Zeevi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Olga Antonova
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Doron
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Susoy V, Hung W, Witvliet D, Whitener JE, Wu M, Park CF, Graham BJ, Zhen M, Venkatachalam V, Samuel ADT. Natural sensory context drives diverse brain-wide activity during C. elegans mating. Cell 2021; 184:5122-5137.e17. [PMID: 34534446 PMCID: PMC8488019 DOI: 10.1016/j.cell.2021.08.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.
Collapse
Affiliation(s)
- Vladislav Susoy
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel Witvliet
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joshua E Whitener
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Core Francisco Park
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Brett J Graham
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Vivek Venkatachalam
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Northeastern University, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Abstract
For the first 25 years after the landmark 1974 paper that launched the field, most C. elegans biologists were content to think of their subjects as solitary creatures. C. elegans presented no shortage of fascinating biological problems, but some of the features that led Brenner to settle on this species-in particular, its free-living, self-fertilizing lifestyle-also seemed to reduce its potential for interesting social behavior. That perspective soon changed, with the last two decades bringing remarkable progress in identifying and understanding the complex interactions between worms. The growing appreciation that C. elegans behavior can only be meaningfully understood in the context of its ecology and evolution ensures that the coming years will see similarly exciting progress.
Collapse
Affiliation(s)
- Douglas S Portman
- Departments of Biomedical Genetics, Neuroscience, and Biology, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
17
|
Abstract
Sexual interactions negatively impact health and longevity in many species across the animal kingdom. C. elegans has been established as a good model to study how mating and intense sexual interactions influence longevity of the individuals. In this chapter, we review the most recent discoveries in this field. We first describe the phenotypes caused by intense mating, including shrinking, fat loss, and glycogen loss. We then describe three major mechanisms underlying mating-induced killing: germline activation, seminal fluid transfer, and male pheromone-mediated toxicity. Next, we summarize the current knowledge of genetic pathways involved in regulating mating-induced death, including DAF-9/DAF-12 steroid signaling, Insulin/IGF-1 signaling (IIS), and TOR signaling. Finally, we discuss the possible fitness benefits of mating-induced death. Throughout this review, we compare and contrast mating-induced death between the sexes and among different species in an effort to discuss this phenomenon and underlying mechanisms from the evolutionary perspective. Further investigation using mated C. elegans will improve our understanding of sexual antagonism, as well as the coordination between reproduction and somatic longevity in response to various external signals. Due to the evolutionary conservation in many aspects of mating-induced death, what we learn from a short-lived mated worm could provide new strategies to improve our own fitness and longevity.
Collapse
Affiliation(s)
- Cheng Shi
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
18
|
Gordon K. Recent Advances in the Genetic, Anatomical, and Environmental Regulation of the C. elegans Germ Line Progenitor Zone. J Dev Biol 2020; 8:E14. [PMID: 32707774 PMCID: PMC7559772 DOI: 10.3390/jdb8030014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
The C. elegans germ line and its gonadal support cells are well studied from a developmental genetics standpoint and have revealed many foundational principles of stem cell niche biology. Among these are the observations that a niche-like cell supports a self-renewing stem cell population with multipotential, differentiating daughter cells. While genetic features that distinguish stem-like cells from their differentiating progeny have been defined, the mechanisms that structure these populations in the germ line have yet to be explained. The spatial restriction of Notch activation has emerged as an important genetic principle acting in the distal germ line. Synthesizing recent findings, I present a model in which the germ stem cell population of the C. elegans adult hermaphrodite can be recognized as two distinct anatomical and genetic populations. This review describes the recent progress that has been made in characterizing the undifferentiated germ cells and gonad anatomy, and presents open questions in the field and new directions for research to pursue.
Collapse
Affiliation(s)
- Kacy Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Enhancement of DNA damage repair potential in germ cells of Caenorhabditis elegans by a volatile signal from their irradiated partners. DNA Repair (Amst) 2019; 86:102755. [PMID: 31812126 DOI: 10.1016/j.dnarep.2019.102755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022]
Abstract
Radiation-induced bystander effects have been demonstrated within organisms. Recently, it is found that the organisms can also signal irradiation cues to their co-cultured partners in a waterborne manner. In contrast, there is a limited understanding of radiation-induced airborne signaling between individuals, especially on the aspect of DNA damage responses (DDR). Here, we establish a co-culture experimental system using Caenorhabdis elegans in a top-bottom layout, where communication between "top" and "bottom" worms is airborne. The radiation response of top worms is evaluated using radio-adaptive response (RAR) of embryonic lethality (F1), which reflects an enhancement in repair potential of germ cells to subsequent DNA damage. It is shown that gamma-irradiation of bottom worms alleviates the embryonic lethality of top worms caused by 25 Gy of subsequent gamma-irradiation, i.e. RAR, indicating that a volatile signal might play an essential role in radiation-induced inter-worm communication. The RAR is absent in the top worms impaired in DNA damage checkpoint, nucleotide excision repair, and olfactory sensory neurons, respectively. The induction of RAR is restricted to the mitotic zone of the female germline of hermaphrodites. These results indicate that the top worms sense the volatile signal through cephalic sensory neurons, and the neural stimulation distantly modulates the DDR in germ mitotic cells, leading to the enhancement of DNA damage repair potential. The volatile signal is produced specifically by the L3-stage bottom worms and functionally distinct from the known sex pheromone. Its production and/or release are regulated by water-soluble ascaroside pheromones in a population-dependent manner.
Collapse
|
20
|
Cohen D, Teichman G, Volovich M, Zeevi Y, Elbaum L, Madar A, Louie K, Levy DJ, Rechavi O. Bounded rationality in C. elegans is explained by circuit-specific normalization in chemosensory pathways. Nat Commun 2019; 10:3692. [PMID: 31409788 PMCID: PMC6692327 DOI: 10.1038/s41467-019-11715-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 08/01/2019] [Indexed: 12/04/2022] Open
Abstract
Rational choice theory assumes optimality in decision-making. Violations of a basic axiom of economic rationality known as "Independence of Irrelevant Alternatives" (IIA) have been demonstrated in both humans and animals and could stem from common neuronal constraints. Here we develop tests for IIA in the nematode Caenorhabditis elegans, an animal with only 302 neurons, using olfactory chemotaxis assays. We find that in most cases C. elegans make rational decisions. However, by probing multiple neuronal architectures using various choice sets, we show that violations of rationality arise when the circuit of olfactory sensory neurons is asymmetric. We further show that genetic manipulations of the asymmetry between the AWC neurons can make the worm irrational. Last, a context-dependent normalization-based model of value coding and gain control explains how particular neuronal constraints on information coding give rise to irrationality. Thus, we demonstrate that bounded rationality could arise due to basic neuronal constraints.
Collapse
Affiliation(s)
- Dror Cohen
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Guy Teichman
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Meshi Volovich
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yoav Zeevi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- Statistics and Operation Research, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lilach Elbaum
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Asaf Madar
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Kenway Louie
- Center for Neural Science, New York University, New York, NY, USA
| | - Dino J Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.
- Coller School of Management, Tel Aviv University, Tel Aviv-Yafo, Israel.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
21
|
Booth LN, Maures TJ, Yeo RW, Tantilert C, Brunet A. Self-sperm induce resistance to the detrimental effects of sexual encounters with males in hermaphroditic nematodes. eLife 2019; 8:46418. [PMID: 31282863 PMCID: PMC6697445 DOI: 10.7554/elife.46418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
Sexual interactions have a potent influence on health in several species, including mammals. Previous work in C. elegans identified strategies used by males to accelerate the demise of the opposite sex (hermaphrodites). But whether hermaphrodites evolved counter-strategies against males remains unknown. Here we discover that young C. elegans hermaphrodites are remarkably resistant to brief sexual encounters with males, whereas older hermaphrodites succumb prematurely. Surprisingly, it is not their youthfulness that protects young hermaphrodites, but the fact that they have self-sperm. The beneficial effect of self-sperm is mediated by a sperm-sensing pathway acting on the soma rather than by fertilization. Activation of this pathway in females triggers protection from the negative impact of males. Interestingly, the role of self-sperm in protecting against the detrimental effects of males evolved independently in hermaphroditic nematodes. Endogenous strategies to delay the negative effect of mating may represent a key evolutionary innovation to maximize reproductive success. A nematode worm known as Caenorhabditis elegans is often used in the laboratory to study how animals grow and develop. There are two types of C. elegans worm: hermaphrodite individuals produce both female sex cells (eggs) and male sex cells (sperm), while male individuals only produce sperm. The hermaphrodite worms are able to reproduce without mating with another worm, allowing populations of C. elegans to grow rapidly when they are living in favorable conditions. However, when the hermaphrodites do mate with males they tend to produce more offspring. These offspring are also usually healthier because they receive a mixture of genetic material from two different parents. Although mating is beneficial for the survival of a species it can also harm an individual animal. Previous studies have shown that mating with male worms can accelerate aging of hermaphrodite worms and cause premature death. However, it remained unclear whether hermaphrodite worms have evolved any mechanisms to protect themselves after mating with a male. To address this question, Booth et al. used genetic techniques to study the lifespans of hermaphrodite worms. The experiments found that the hermaphrodites’ own sperm (known as self-sperm) regulated a sperm-sensing signaling pathway that protected them from the negative impact of mating with males. Hermaphrodites with self-sperm that mated with males lived for a similar length of time as hermaphrodites that did not mate. On the other hand, hermaphrodites that did not have self-sperm (because they were older or had a genetic mutation) had shorter lifespans after mating than worms that did not mate. Modulating the sperm-sensing signaling pathway in worms that lacked self-sperm was sufficient to protect them from the negative effects of mating with males. Further experiments found that the hermaphrodites of another nematode worm called C. briggsae – which evolved self-sperm independently of C. elegans – also protected themselves from the negative effects of mating with males in a similar way. This suggests that other animals may also have evolved similar mechanisms to protect themselves from harm when mating. A separate study by Shi et al. has found that the beneficial effects of self-sperm are mediated by a pathway linked to longevity that also exists in mammals. The results of both investigations combined suggest possible avenues for future research into the complex relationship between health, longevity, and reproduction.
Collapse
Affiliation(s)
- Lauren N Booth
- Department of Genetics, Stanford University, Stanford, United States
| | - Travis J Maures
- Department of Genetics, Stanford University, Stanford, United States
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, United States
| | - Cindy Tantilert
- Department of Genetics, Stanford University, Stanford, United States
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, United States.,Glenn Laboratories for the Biology of Aging at Stanford University, Stanford, United States
| |
Collapse
|
22
|
Abstract
Several species of Caenorhabditis nematodes, including Caenorhabditis elegans, have recently evolved self-fertile hermaphrodites from female/male ancestors. These hermaphrodites can either self-fertilize or mate with males, and the extent of outcrossing determines subsequent male frequency. Using experimental evolution, the authors show that a gene family with a historical role in sperm competition plays a large role in regulating male frequency after self-fertility evolves. By reducing, but not completely eliminating outcrossing, loss of the mss genes contributes to adaptive tuning of the sex ratio in a newly self-fertile species. The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species of Caenorhabditis nematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of the male secreted short (mss) gene family to male mating success, sex ratio, and population growth. The mss family is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restore mss function to the androdioecious Caenorhabditis briggsae, we examined how mating system and population subdivision influence the fitness of the mss+ genotype. Consistent with theoretical expectations, when mss+ and mss-null (i.e., wild type) genotypes compete, mss+ is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness of mss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations, mss+ both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize natural Caenorhabditis populations impose selection on sex ratio that makes loss of mss adaptive after self-fertility evolves.
Collapse
|
23
|
Wan X, Zhou Y, Chan CM, Yang H, Yeung C, Chow KL. SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males. EMBO Rep 2019; 20:embr.201846288. [PMID: 30792215 DOI: 10.15252/embr.201846288] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/29/2018] [Accepted: 01/22/2019] [Indexed: 01/23/2023] Open
Abstract
Pheromones are critical cues for attracting mating partners for successful reproduction. Sexually mature Caenorhabditis remanei virgin females and self-sperm-depleted Caenorhabditis elegans hermaphrodites produce volatile sex pheromones to attract adult males of both species from afar. The chemoresponsive receptor in males has remained unknown. Here, we show that the male chemotactic behavior requires amphid sensory neurons (AWA neurons) and the G-protein-coupled receptor SRD-1. SRD-1 expression in AWA neurons is sexually dimorphic, with the levels being high in males but undetectable in hermaphrodites. Notably, srd-1 mutant males lack the chemotactic response and pheromone-induced excitation of AWA neurons, both of which can be restored in males and hermaphrodites by AWA-specific srd-1 expression, and ectopic expression of srd-1 in AWB neurons in srd-1 mutants results in a repulsive behavioral response in both sexes. Furthermore, we show that the C-terminal region of SRD-1 confers species-specific differences in the ability to perceive sex pheromones between C. elegans and C. remanei These findings offer an excellent model for dissecting how a single G-protein-coupled receptor expressed in a dimorphic neural system contributes to sex-specific behaviors in animals.
Collapse
Affiliation(s)
- Xuan Wan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Yuan Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Chung Man Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Hainan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Christine Yeung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - King L Chow
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong .,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong.,Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
24
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|
25
|
Abstract
The recently determined connectome of the Caenorhabditis elegans adult male, together with the known connectome of the hermaphrodite, opens up the possibility for a comprehensive description of sexual dimorphism in this species and the identification and study of the neural circuits underlying sexual behaviors. The C. elegans nervous system consists of 294 neurons shared by both sexes plus neurons unique to each sex, 8 in the hermaphrodite and 91 in the male. The sex-specific neurons are well integrated within the remainder of the nervous system; in the male, 16% of the input to the shared component comes from male-specific neurons. Although sex-specific neurons are involved primarily, but not exclusively, in controlling sex-unique behavior—egg-laying in the hermaphrodite and copulation in the male—these neurons act together with shared neurons to make navigational choices that optimize reproductive success. Sex differences in general behaviors are underlain by considerable dimorphism within the shared component of the nervous system itself, including dimorphism in synaptic connectivity.
Collapse
Affiliation(s)
- Scott W. Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
26
|
Fagan KA, Luo J, Lagoy RC, Schroeder FC, Albrecht DR, Portman DS. A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Curr Biol 2018; 28:902-914.e5. [PMID: 29526590 PMCID: PMC5862148 DOI: 10.1016/j.cub.2018.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
Biological sex, a fundamental dimension of internal state, can modulate neural circuits to generate behavioral variation. Understanding how and why circuits are tuned by sex can provide important insights into neural and behavioral plasticity. Here we find that sexually dimorphic behavioral responses to C. elegans ascaroside sex pheromones are implemented by the functional modulation of shared chemosensory circuitry. In particular, the sexual state of a single sensory neuron pair, ADF, determines the nature of an animal's behavioral response regardless of the sex of the rest of the body. Genetic feminization of ADF causes males to be repelled by, rather than attracted to, ascarosides, whereas masculinization of ADF has the opposite effect in hermaphrodites. When ADF is ablated, both sexes are weakly repelled by ascarosides. Genetic sex modulates ADF function by tuning chemosensation: although ADF is functional in both sexes, it detects the ascaroside ascr#3 only in males, a consequence of cell-autonomous action of the master sexual regulator tra-1. This occurs in part through the conserved DM-domain gene mab-3, which promotes the male state of ADF. The sexual modulation of ADF has a key role in reproductive fitness, as feminization or ablation of ADF renders males unable to use ascarosides to locate mates. Our results reveal an economical mechanism in which sex-specific behavioral valence arises through the cell-autonomous regulation of a chemosensory switch by genetic sex, allowing a social cue with salience for both sexes to elicit navigational responses commensurate with the differing needs of each.
Collapse
Affiliation(s)
- Kelli A Fagan
- Neuroscience Graduate Program, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Jintao Luo
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Ross C Lagoy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | | | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | - Douglas S Portman
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Departments of Biomedical Genetics, Neuroscience, and Biology, University of Rochester, 601 Elmwood Avenue, Box 645, Rochester, NY 14610, USA.
| |
Collapse
|
27
|
Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018; 208:909-935. [PMID: 29487147 PMCID: PMC5844341 DOI: 10.1534/genetics.117.300294] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
As fundamental features of nearly all animal species, sexual dimorphisms and sex differences have particular relevance for the development and function of the nervous system. The unique advantages of the nematode Caenorhabditis elegans have allowed the neurobiology of sex to be studied at unprecedented scale, linking ultrastructure, molecular genetics, cell biology, development, neural circuit function, and behavior. Sex differences in the C. elegans nervous system encompass prominent anatomical dimorphisms as well as differences in physiology and connectivity. The influence of sex on behavior is just as diverse, with biological sex programming innate sex-specific behaviors and modifying many other aspects of neural circuit function. The study of these differences has provided important insights into mechanisms of neurogenesis, cell fate specification, and differentiation; synaptogenesis and connectivity; principles of circuit function, plasticity, and behavior; social communication; and many other areas of modern neurobiology.
Collapse
Affiliation(s)
- Maureen M Barr
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082
| | - L Rene García
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Douglas S Portman
- Department of Biomedical Genetics, University of Rochester, New York 14642
- Department of Neuroscience, University of Rochester, New York 14642
- Department of Biology, University of Rochester, New York 14642
| |
Collapse
|
28
|
Borne F, Kasimatis KR, Phillips PC. Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS One 2017; 12:e0189679. [PMID: 29236762 PMCID: PMC5728554 DOI: 10.1371/journal.pone.0189679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/30/2017] [Indexed: 01/17/2023] Open
Abstract
Pheromone cues are an important component of intersexual communication, particularly in regards to mate choice. Caenorhabditis nematodes predominant rely on pheromone production for mate finding and mate choice. Here we describe a new microfluidic paradigm for studying mate choice in nematodes. Specifically, the Pheromone Arena allows for a constant flow of odorants, including pheromones and other small molecules, to be passed in real time from signaling worms to those making a choice without any physical contact. We validated this microfluidic paradigm by corroborating previous studies in showing that virgin C. remanei and C. elegans males have a strong preference for virgin females over mated ones. Moreover, our results suggest that the strength of attraction is an additive effect of male receptivity and female signal production. We also explicitly examine female choice and find that females are more attracted to virgin males. However, a female's mate choice is strongly dependent on her mating status.
Collapse
Affiliation(s)
- Flora Borne
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Katja R. Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
29
|
Portman DS. Sexual modulation of sex-shared neurons and circuits in Caenorhabditis elegans. J Neurosci Res 2017; 95:527-538. [PMID: 27870393 DOI: 10.1002/jnr.23912] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Studies using the nematode C. elegans have provided unique insights into the development and function of sex differences in the nervous system. Enabled by the relative simplicity of this species, comprehensive studies have solved the complete cellular neuroanatomy of both sexes as well as the complete neural connectomes of the entire adult hermaphrodite and the adult male tail. This work, together with detailed behavioral studies, has revealed three aspects of sex differences in the nervous system: sex-specific neurons and circuits; circuits with sexually dimorphic synaptic connectivity; and sex differences in the physiology and functions of shared neurons and circuits. At all of these levels, biological sex influences neural development and function through the activity of a well-defined genetic hierarchy that acts throughout the body to translate chromosomal sex into the state of a master autosomal regulator of sexual differentiation, the transcription factor TRA-1A. This Review focuses on the role of genetic sex in implementing sex differences in shared neurons and circuits, with an emphasis on linking the sexual modulation of specific neural properties to the specification and optimization of sexually divergent and dimorphic behaviors. An important and unexpected finding from these studies is that chemosensory neurons are a primary focus of sexual modulation, with genetic sex adaptively shaping chemosensory repertoire to guide behavioral choice. Importantly, hormone-independent functions of genetic sex are the principal drivers of all of these sex differences, making nematodes an excellent model for understanding similar but poorly understood mechanisms that likely act throughout the animal kingdom. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Douglas S Portman
- Center for Neural Development and Disease, Department of Biomedical Genetics, Neuroscience, and Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
30
|
Angeles-Albores D, Leighton DHW, Tsou T, Khaw TH, Antoshechkin I, Sternberg PW. The Caenorhabditis elegans Female-Like State: Decoupling the Transcriptomic Effects of Aging and Sperm Status. G3 (BETHESDA, MD.) 2017; 7:2969-2977. [PMID: 28751504 PMCID: PMC5592924 DOI: 10.1534/g3.117.300080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
Understanding genome and gene function in a whole organism requires us to fully comprehend the life cycle and the physiology of the organism in question. Caenorhabditis elegans XX animals are hermaphrodites that exhaust their sperm after 3 d of egg-laying. Even though C. elegans can live for many days after cessation of egg-laying, the molecular physiology of this state has not been as intensely studied as other parts of the life cycle, despite documented changes in behavior and metabolism. To study the effects of sperm depletion and aging of C. elegans during the first 6 d of adulthood, we measured the transcriptomes of first-day adult hermaphrodites and sixth-day sperm-depleted adults, and, at the same time points, mutant fog-2(lf) worms that have a feminized germline phenotype. We found that we could separate the effects of biological aging from sperm depletion. For a large subset of genes, young adult fog-2(lf) animals had the same gene expression changes as sperm-depleted sixth-day wild-type hermaphrodites, and these genes did not change expression when fog-2(lf) females reached the sixth day of adulthood. Taken together, this indicates that changing sperm status causes a change in the internal state of the worm, which we call the female-like state. Our data provide a high-quality picture of the changes that happen in global gene expression throughout the period of early aging in the worm.
Collapse
Affiliation(s)
- David Angeles-Albores
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| | - Daniel H W Leighton
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095
| | - Tiffany Tsou
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| | - Tiffany H Khaw
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| | - Igor Antoshechkin
- Department of Biology and Biological Engineering, Caltech, Pasadena, California 91125
| | - Paul W Sternberg
- Department of Biology and Biological Engineering, and Howard Hughes Medical Institute, Caltech, Pasadena, California 91125
| |
Collapse
|
31
|
Shi C, Runnels AM, Murphy CT. Mating and male pheromone kill Caenorhabditis males through distinct mechanisms. eLife 2017; 6. [PMID: 28290982 PMCID: PMC5378475 DOI: 10.7554/elife.23493] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/04/2017] [Indexed: 11/25/2022] Open
Abstract
Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation. DOI:http://dx.doi.org/10.7554/eLife.23493.001 In many animals, different sexes have different life expectancies. This holds true for a roundworm species called Caenorhabditis elegans that has commonly been used to study aging and lifespan. Unlike some related Caenorhabditis roundworm species (which consist of male and female worms), C. elegans worms are predominantly hermaphrodites and reproduce by self-fertilization. C. elegans males are normally rare. However, under stressful conditions the number of males increases to reduce inbreeding and so help the worm population to adapt to the environment. Investigations into the factors that affect the lifespan of C. elegans have mostly studied hermaphrodites. For example, one recent study showed that mating shortens the lifespan of hermaphrodites. Another study showed that pheromones – hormones that change the behavior of other worms – also shorten hermaphrodite lifespan. The male pheromone is produced by males and sensed by both males and hermaphrodites. But does mating and male pheromone affect the lifespan of male roundworms? Shi et al. have now studied Caenorhabditis worms of different species and sexes to investigate how sexual behaviors and male pheromone regulate the lifespan of male roundworms. The results of the experiments revealed two distinct mechanisms of male death. Firstly, mating caused the males of many different Caenorhabditis species to shrink and die, and also killed females and hermaphrodites. Secondly, the males of hermaphroditic species – and only these males – could also be killed by male pheromone. The results suggest that death from mating may be an unavoidable cost of reproducing that is seen across all sexes and species of roundworm. In contrast, death by male pheromone may be a way of culling the male population in hermaphroditic species, for example, after stressful conditions have caused a sudden increase in the number of male worms. Further work is now needed to investigate the finer details of the mechanisms by which mating and male pheromone cause death. Ultimately, this work in Caenorhabditis could be extended to help us to understand how other animals regulate their lifespan and maintain an optimum ratio of the sexes. DOI:http://dx.doi.org/10.7554/eLife.23493.002
Collapse
Affiliation(s)
- Cheng Shi
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, United States
| | - Alexi M Runnels
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, United States
| | - Coleen T Murphy
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, United States
| |
Collapse
|
32
|
Olfactory circuits and behaviors of nematodes. Curr Opin Neurobiol 2016; 41:136-148. [PMID: 27668755 DOI: 10.1016/j.conb.2016.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 12/29/2022]
Abstract
Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits.
Collapse
|
33
|
Leighton DH, Sternberg PW. Mating pheromones of Nematoda: olfactory signaling with physiological consequences. Curr Opin Neurobiol 2016; 38:119-24. [PMID: 27213246 DOI: 10.1016/j.conb.2016.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/17/2023]
Abstract
Secreted pheromones have long been known to influence mating in the phylum Nematoda. The study of nematode sexual behavior has greatly benefited in the last decade from the genetic and neurobiological tools available for the model nematode Caenorhabditis elegans, as well as from the chemical identification of many pheromones secreted by this species. The discovery that nematodes can influence one another's physiological development and stress responsiveness through the sharing of pheromones, in addition to simply triggering sexual attraction, is particularly striking. Here we review recent research on nematode mating pheromones, which has been conducted predominantly on C. elegans, but there are beginning to be parallel studies in other species.
Collapse
Affiliation(s)
- Daniel Hw Leighton
- HHMI and Division of Biology and Biological Engineering, Caltech, Pasadena 91125, USA
| | - Paul W Sternberg
- HHMI and Division of Biology and Biological Engineering, Caltech, Pasadena 91125, USA.
| |
Collapse
|
34
|
Cinquin A, Chiang M, Paz A, Hallman S, Yuan O, Vysniauskaite I, Fowlkes CC, Cinquin O. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line. PLoS Genet 2016; 12:e1005985. [PMID: 27077385 PMCID: PMC4831802 DOI: 10.1371/journal.pgen.1005985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/18/2016] [Indexed: 11/22/2022] Open
Abstract
Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal—for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in “reproductive capacity,” i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent—gonads switch between active and dormant states—and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism’s lifespan. Stem cell cycling is expected to be beneficial because it helps delay aging, by ensuring organ self-renewal. Yet stem cell cycling is best used sparingly: cycling likely causes mutation accumulation—increasing the likelihood of cancer—and may eventually cause stem cells to senesce and thus stop contributing to organ self renewal. It is unknown how self-renewing organs make tradeoffs between benefits and drawbacks of stem cell cycling. Here we use the C. elegans reproductive system as a model organ. We characterize benefits and drawbacks of stem cell cycling—which are keeping worms primed for reproduction, and reducing the number of future progeny worms may bear, respectively. We show that, under specific conditions of reproductive inactivity, stem cells switch back and forth between active and dormant states; the timing of these switches, whose genetic control we start delineating, appears random. This randomness may help explain why populations of aging, reproductively-inactive worms experience an increase in the variability of their reproductive capacity. Stochastic stem cell cycling may underlie tradeoffs between self-renewal and senescence in other organs.
Collapse
Affiliation(s)
- Amanda Cinquin
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Michael Chiang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Adrian Paz
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Sam Hallman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California, Irvine, Irvine, California, United States of America
| | - Oliver Yuan
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Indre Vysniauskaite
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Charless C. Fowlkes
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California, Irvine, Irvine, California, United States of America
| | - Olivier Cinquin
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Shinya R, Chen A, Sternberg PW. Sex Attraction and Mating in Bursaphelenchus okinawaensis and B. xylophilus. J Nematol 2015; 47:176-83. [PMID: 26527838 PMCID: PMC4612187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 06/05/2023] Open
Abstract
The fungal feeding, hermaphroditic Bursaphelenchus okinawaensis is a laboratory model to understand the biology of Bursaphelenchus. The extent to which B. okinawaensis can be used to model Bursaphelenchus xylophilus mating was investigated. A chemotaxis assay was conducted to examine whether B. xylophilus and B. okinawaensis produce and respond to volatile sex attractants. Unmated B. xylophilus females were found to attract B. xylophilus males. Similarly, old (sperm depleted) but not young (sperm repleted) B. okinawaensis hermaphrodites attract B. okinawaensis males. Thus, in both species, sperm status corresponds to its ability to attract males. B. xylophilus males also produce a volatile pheromone that attracts both mated and unmated females. A second assay, in which the behavior of males on petri plates in the presence of different females or hermaphrodites of Bursaphelenchus was observed, revealed that B. xylophilus unmated females attract B. okinawaensis males, and B. okinawaensis old hermaphrodites attract B. xylophilus males. These observations suggested that the pheromones of Bursaphelenchus work to some extent across species. Mating behavior through spicule insertion occurs across species, suggesting that postcopulatory mechanisms prevent production of interspecific progeny. The hermaphroditic B. okinawaensis will be a useful model to conduct genetic studies for the understanding of the molecular mechanisms underlying mating behavior in Bursaphelenchus nematodes.
Collapse
Affiliation(s)
- Ryoji Shinya
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Anthony Chen
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
36
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|