1
|
Pitolli C, Marini A, Sette C, Pagliarini V. Physiological and pathological roles of the transcriptional kinases CDK12 and CDK13 in the central nervous system. Cell Death Differ 2025; 32:371-381. [PMID: 39533070 PMCID: PMC11893892 DOI: 10.1038/s41418-024-01413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cyclin-dependent kinases 12 (CDK12) and 13 (CDK13) govern several steps of gene expression, including transcription, RNA processing and translation. The main target of CDK12/13 is the serine 2 residue of the carboxy-terminal domain of RNA polymerase II (RNAPII), thus influencing the directionality, elongation rate and processivity of the enzyme. The CDK12/13-dependent regulation of RNAPII activity influences the expression of selected target genes with important functional roles in the proliferation and viability of all eukaryotic cells. Neuronal cells are particularly affected by the loss of CDK12/13, as result of the high dependency of neuronal genes on RNAPII processivity for their expression. Deregulation of CDK12/13 activity strongly affects brain physiology by influencing the stemness potential and differentiation properties of neuronal precursor cells. Moreover, mounting evidence also suggest the involvement of CDK12/13 in brain tumours. Herein, we discuss the functional role(s) of CDK12 and CDK13 in gene expression regulation and highlight similarities and differences between these highly homologous kinases, with particular attention to their impact on brain physiology and pathology. Lastly, we provide an overview of CDK12/13 inhibitors and of their efficacy in brain tumours and other neoplastic diseases.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Alberto Marini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy.
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy.
| |
Collapse
|
2
|
Zhang L, Liang Y, Qin J, Liu C, Shang M, Sun X. CDK12 antagonizes a viral suppressor of RNAi to modulate antiviral RNAi in Drosophila. mBio 2025; 16:e0286824. [PMID: 39601580 PMCID: PMC11708023 DOI: 10.1128/mbio.02868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The primary antiviral immunity in insects is mediated by the RNA interference (RNAi) pathway. To counteract this antiviral RNAi response, viruses employ virulence factors known as viral suppressors of RNAi (VSR). The question of whether host factors can activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression remains unanswered. In this study, cyclin-dependent kinase 12 (CDK12) was identified to interact with B2, a VSR of Flock House virus (FHV), and the critical amino acids responsible for dsRNA binding and dimerization in B2 were essential for this interaction. Silencing of CDK12 facilitated FHV RNA accumulation only in the context of B2, not for FHVΔB2. Notably, CDK12 abrogated the RNAi suppression exerted by B2. Furthermore, the knockdown of CDK12 inhibited the production of vsiRNAs in FHV-infected Drosophila cells. This study revealed that CDK12 mediated a counter-counter-defense strategy against VSR, thereby enhancing antiviral RNAi immunity in Drosophila.IMPORTANCEThe arms race between virus and host immunity is never-ending. This study enhances our understanding of antiviral defenses in insects by uncovering a novel counter-counter-defense mechanism against viral suppressors of RNA interference (VSRs). The RNA interference (RNAi) pathway serves as a primary antiviral response in insects, but viruses, such as Flock House virus (FHV), have evolved VSRs like B2 to disrupt this defense. Our research identifies cyclin-dependent kinase 12 (CDK12) as a critical host factor that interacts with the VSR B2. The discovery that CDK12 can counteract B2-mediated RNAi suppression and stimulate the production of viral small interfering RNAs (vsiRNAs) in FHV-infected Drosophila cells highlights its pivotal role in enhancing antiviral RNAi immunity. This study not only reveals a new dimension of host-virus interactions but also opens avenues for developing strategies to strengthen RNAi-based antiviral defenses.
Collapse
Affiliation(s)
- Liqin Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yu Liang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiayu Qin
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengwei Shang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoming Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zhang H, Zhou Y, Feng Y, Hou W, Chen Y, Xing Z, Zhang Y, Wei Q, Yin Y, Guo J, Hu H. Cyclin-dependent kinase 12 deficiency reprogrammes cellular metabolism to alleviate ferroptosis potential and promote the progression of castration-resistant prostate cancer. Clin Transl Med 2024; 14:e1678. [PMID: 38736108 PMCID: PMC11089090 DOI: 10.1002/ctm2.1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yi Zhou
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yating Feng
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Wenli Hou
- Department of UrologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yafei Chen
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Zengzhen Xing
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yifan Zhang
- Department of UrologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Qiang Wei
- Department of UrologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yu Yin
- Department of PathologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ju Guo
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hailiang Hu
- Department of BiochemistrySchool of MedicineSouthern University of Science and TechnologyShenzhenChina
- Key University Laboratory of Metabolism and Health of GuangdongSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
4
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Townsend LN, Clarke H, Maddison D, Jones KM, Amadio L, Jefferson A, Chughtai U, Bis DM, Züchner S, Allen ND, Van der Goes van Naters W, Peters OM, Smith GA. Cdk12 maintains the integrity of adult axons by suppressing actin remodeling. Cell Death Discov 2023; 9:348. [PMID: 37730761 PMCID: PMC10511712 DOI: 10.1038/s41420-023-01642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The role of cyclin-dependent kinases (CDKs) that are ubiquitously expressed in the adult nervous system remains unclear. Cdk12 is enriched in terminally differentiated neurons where its conical role in the cell cycle progression is redundant. We find that in adult neurons Cdk12 acts a negative regulator of actin formation, mitochondrial dynamics and neuronal physiology. Cdk12 maintains the size of the axon at sites proximal to the cell body through the transcription of homeostatic enzymes in the 1-carbon by folate pathway which utilize the amino acid homocysteine. Loss of Cdk12 leads to elevated homocysteine and in turn leads to uncontrolled F-actin formation and axonal swelling. Actin remodeling further induces Drp1-dependent fission of mitochondria and the breakdown of axon-soma filtration barrier allowing soma restricted cargos to enter the axon. We demonstrate that Cdk12 is also an essential gene for long-term neuronal survival and loss of this gene causes age-dependent neurodegeneration. Hyperhomocysteinemia, actin changes, and mitochondrial fragmentation are associated with several neurodegenerative conditions such as Alzheimer's disease and we provide a candidate molecular pathway to link together such pathological events.
Collapse
Affiliation(s)
- L N Townsend
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - H Clarke
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D Maddison
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - K M Jones
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - L Amadio
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - A Jefferson
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - U Chughtai
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D M Bis
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - S Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - N D Allen
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - O M Peters
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - G A Smith
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
6
|
Angelin A. Cyclin-dependent kinases regulate the adult nervous system via the one-carbon-metabolism. Cell Death Dis 2023; 14:429. [PMID: 37452015 PMCID: PMC10349070 DOI: 10.1038/s41419-023-05950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zhuang L, Li C, Peng F, Xue E, Li W, Sun X, Chen P, Zhou Q, Xue L. Depletion of ESCRT ameliorates APP-induced AD-like symptoms in Drosophila. J Cell Physiol 2023. [PMID: 37183375 DOI: 10.1002/jcp.31035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
The amyloid-β (Aβ) peptide, produced from amyloid precursor protein (APP) by β and γ-secretases, has been implicated in the etiology of Alzheimer's disease (AD). However, the precise intracellular trafficking pathway of APP and its subcellular locations to produce Aβ have remained unclear. To address these issues, we established fly AD models that recapitulated multiple AD-like symptoms by expressing human APP in the Drosophila nerve system. The ESCRT (endosomal sorting complexes required for transport) machinery regulates the sorting and trafficking of endocytosed proteins, yet its role in AD pathogenesis has not been explored in vivo. We found that knockdown of distinct ESCRT components ameliorated APP-induced morphological and behavioral defects, including impaired wing expansion, eye degeneration, dopamine neuron loss, locomotor disability, lifespan shortening, and cognitive deficits. Mechanistically, we showed that impaired ESCRT impeded APP's intracellular transportation from early endosomes to late endosomes, resulting in reduced Aβ production and amyloid deposit load. These data suggest that APP undergoes ESCRT-mediated endocytic trafficking, and Aβ is generated mainly in late endosomes. Our data provide the first in vivo evidence to support a physiological role of ESCRT in AD pathogenesis, suggesting that interfering with ESCRT machinery might be an alternative therapeutic strategy for AD.
Collapse
Affiliation(s)
- Luming Zhuang
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Chenglin Li
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Fei Peng
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Elleen Xue
- Mathey College, Princeton University, Princeton, New Jersey, USA
| | - Wenzhe Li
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Xinyue Sun
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Ping Chen
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Qian Zhou
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Lei Xue
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Guangdong, Zhuhai, China
| |
Collapse
|
8
|
Lei P, Zhang J, Liao P, Ren C, Wang J, Wang Y. Current progress and novel strategies that target CDK12 for drug discovery. Eur J Med Chem 2022; 240:114603. [PMID: 35868123 DOI: 10.1016/j.ejmech.2022.114603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
CDK12 is a cyclin-dependent kinase that plays critical roles in DNA replication, transcription, mRNA splicing, and DNA damage repair. CDK12 genomic changes, including mutation, amplification, deletion, and fusion, lead to various cancers, such as colorectal cancer, gastric cancer, and ovarian cancer. An increasing number of CDK12 inhibitors have been reported since CDK12 was identified as a biomarker and cancer therapeutic target. A major challenge lies in that CDK12 and CDK13 share highly similar sequences, which leads to great difficulties in the development of highly selective CDK12 inhibitors. In recent years, great efforts were made in developing selective CDK12 blockers. Techniques including PROTAC and molecular glue degraders were also applied to facilitate their development. Also, the drug combination strategy of CDK12 small molecule inhibitors were studied. This review discusses the latest studies on CDK12 inhibitors and analyzes their structure-activity relationships, shedding light on their further development.
Collapse
Affiliation(s)
- Peng Lei
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Peiyu Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Gao Y, Liu S, Jia Q, Wu L, Yuan D, Li EY, Feng Q, Wang G, Palli SR, Wang J, Li S. Juvenile hormone membrane signaling phosphorylates USP and thus potentiates 20-hydroxyecdysone action in Drosophila. Sci Bull (Beijing) 2022; 67:186-197. [PMID: 36546012 DOI: 10.1016/j.scib.2021.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E) coordinately regulate development and metamorphosis in insects. Two JH intracellular receptors, methoprene-tolerant (Met) and germ-cell expressed (Gce), have been identified in the fruit fly Drosophila melanogaster. To investigate JH membrane signaling pathway without the interference from JH intracellular signaling, we characterized phosphoproteome profiles of the Met gce double mutant in the absence or presence of JH in both chronic and acute phases. Functioning through a potential receptor tyrosine kinase and phospholipase C pathway, JH membrane signaling activated protein kinase C (PKC) which phosphorylated ultraspiracle (USP) at Ser35, the PKC phosphorylation site required for the maximal action of 20E through its nuclear receptor complex EcR-USP. The uspS35A mutant, in which Ser was replaced with Ala at position 35 by genome editing, showed decreased expression of Halloween genes that are responsible for ecdysone biosynthesis and thus attenuated 20E signaling that delayed developmental timing. The uspS35A mutant also showed lower Yorkie activity that reduced body size. Altogether, JH membrane signaling phosphorylates USP at Ser35 and thus potentiates 20E action that regulates the normal fly development. This study helps better understand the complex JH signaling network.
Collapse
Affiliation(s)
- Yue Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lixian Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Emma Y Li
- International Department, The Affiliated High School of South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington 40546, USA
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park 20742, USA.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
10
|
Sun Y, Li Z, Li W, Xue L. Loss of Bicra impairs Drosophila learning and choice abilities. Neurosci Lett 2022; 769:136432. [PMID: 34974109 DOI: 10.1016/j.neulet.2021.136432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
The Drosophila Bicra (CG11873) gene encodes the sole ortholog of mammalian GLTSCR1 and GLTSCR1L, which are components of a chromatin remodeling complex involved in neoplasia and metastasis of cancer cells. Bicra is highly expressed in Drosophila larval CNS and adult brain, yet its physiological functions in the nervous system remain elusive. Here we report that Bicra is expressed in both neurons and glia of adult brains, and is required for courtship learning and choice ability of male flies. The function of Bicra in the mushroom body, and in particular, Bicra expression in neurons but not glia, is responsible for the male courtship learning and choice performance. This study unravels a novel function of Bicra in cognition-related courtship behaviors in Drosophila, and may provide insight into the neuronal functions of its mammalian orthologs.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China.
| |
Collapse
|
11
|
Cassart C, Yague-Sanz C, Bauer F, Ponsard P, Stubbe FX, Migeot V, Wery M, Morillon A, Palladino F, Robert V, Hermand D. RNA polymerase II CTD S2P is dispensable for embryogenesis but mediates exit from developmental diapause in C. elegans. SCIENCE ADVANCES 2020; 6:6/50/eabc1450. [PMID: 33298437 PMCID: PMC7725455 DOI: 10.1126/sciadv.abc1450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Serine 2 phosphorylation (S2P) within the CTD of RNA polymerase II is considered a Cdk9/Cdk12-dependent mark required for 3'-end processing. However, the relevance of CTD S2P in metazoan development is unknown. We show that cdk-12 lesions or a full-length CTD S2A substitution results in an identical phenotype in Caenorhabditis elegans Embryogenesis occurs in the complete absence of S2P, but the hatched larvae arrest development, mimicking the diapause induced when hatching occurs in the absence of food. Genome-wide analyses indicate that when CTD S2P is inhibited, only a subset of growth-related genes is not properly expressed. These genes correspond to SL2 trans-spliced mRNAs located in position 2 and over within operons. We show that CDK-12 is required for maximal occupancy of cleavage stimulatory factor necessary for SL2 trans-splicing. We propose that CTD S2P functions as a gene-specific signaling mark ensuring the nutritional control of the C. elegans developmental program.
Collapse
Affiliation(s)
- C Cassart
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - C Yague-Sanz
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - F Bauer
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - P Ponsard
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - F X Stubbe
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - V Migeot
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium
| | - M Wery
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - A Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, PSL Research University, CNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - F Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - V Robert
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - D Hermand
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur 5000 Belgium.
| |
Collapse
|
12
|
Eeckhoutte A, Saint-Ghislain M, Reverdy M, Raynal V, Baulande S, Bataillon G, Golmard L, Stoppa-Lyonnet D, Popova T, Houdayer C, Manié E, Stern MH. Lack of evidence for CDK12 as an ovarian cancer predisposing gene. Fam Cancer 2020; 19:203-209. [PMID: 32172432 DOI: 10.1007/s10689-020-00169-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CDK12 variants were investigated as a genetic susceptibility to ovarian cancer in a series of 416 unrelated and consecutive patients with ovarian carcinoma and who carry neither germline BRCA1 nor BRCA2 pathogenic variant. The presence of CDK12 variants was searched in germline DNA by massive parallel sequencing on pooled DNAs. The lack of detection of deleterious variants and the observed proportion of missense variants in the series of ovarian carcinoma patients as compared with all human populations strongly suggests that CDK12 is not an ovarian cancer predisposing gene.
Collapse
Affiliation(s)
- Alexandre Eeckhoutte
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisee par la Ligue Nationale Contre le Cancer, Institut Curie, 26 Rue d'Ulm, 75248, Paris, France
- Inserm U830, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
| | - Mathilde Saint-Ghislain
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisee par la Ligue Nationale Contre le Cancer, Institut Curie, 26 Rue d'Ulm, 75248, Paris, France
- Inserm U830, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
| | - Manon Reverdy
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisee par la Ligue Nationale Contre le Cancer, Institut Curie, 26 Rue d'Ulm, 75248, Paris, France
- Inserm U830, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
| | - Virginie Raynal
- Inserm U830, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
- NGS Platform, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
| | - Sylvain Baulande
- NGS Platform, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
| | - Guillaume Bataillon
- Department of Biopathology, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris, France
| | - Lisa Golmard
- Institut Curie, Hôpital, Service de Génétique, 26 Rue d'Ulm, 75248, Paris, France
| | - Dominique Stoppa-Lyonnet
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisee par la Ligue Nationale Contre le Cancer, Institut Curie, 26 Rue d'Ulm, 75248, Paris, France
- Institut Curie, Hôpital, Service de Génétique, 26 Rue d'Ulm, 75248, Paris, France
- University Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France
| | - Tatiana Popova
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisee par la Ligue Nationale Contre le Cancer, Institut Curie, 26 Rue d'Ulm, 75248, Paris, France
- Inserm U830, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
| | - Claude Houdayer
- Institut Curie, Hôpital, Service de Génétique, 26 Rue d'Ulm, 75248, Paris, France
- Department of Genetics, Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, 37 Boulevard Gambetta, 76000, Rouen, France
| | - Elodie Manié
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisee par la Ligue Nationale Contre le Cancer, Institut Curie, 26 Rue d'Ulm, 75248, Paris, France
- Inserm U830, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France
| | - Marc-Henri Stern
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisee par la Ligue Nationale Contre le Cancer, Institut Curie, 26 Rue d'Ulm, 75248, Paris, France.
- Inserm U830, Institut Curie, PSL Research University, 26 Rue d'Ulm, 75248, Paris, France.
- Institut Curie, Hôpital, Service de Génétique, 26 Rue d'Ulm, 75248, Paris, France.
| |
Collapse
|
13
|
Pilarova K, Herudek J, Blazek D. CDK12: cellular functions and therapeutic potential of versatile player in cancer. NAR Cancer 2020; 2:zcaa003. [PMID: 34316683 PMCID: PMC8210036 DOI: 10.1093/narcan/zcaa003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) phosphorylates the C-terminal domain of RNA polymerase II and is needed for the optimal transcription elongation and translation of a subset of human protein-coding genes. The kinase has a pleiotropic effect on the maintenance of genome stability, and its inactivation in prostate and ovarian tumours results in focal tandem duplications, a CDK12-unique genome instability phenotype. CDK12 aberrations were found in many other malignancies and have the potential to be used as biomarkers for therapeutic intervention. Moreover, the inhibition of CDK12 emerges as a promising strategy for treatment in several types of cancers. In this review, we summarize mechanisms that CDK12 utilizes for the regulation of gene expression and discuss how the perturbation of CDK12-sensitive genes contributes to the disruption of cell cycle progression and the onset of genome instability. Furthermore, we describe tumour-suppressive and oncogenic functions of CDK12 and its potential as a biomarker and inhibition target in anti-tumour treatments.
Collapse
Affiliation(s)
- Kveta Pilarova
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jan Herudek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
14
|
Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discov 2020; 10:351-370. [DOI: 10.1158/2159-8290.cd-19-0528] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
15
|
Transcription Repressor Hes1 Contributes to Neuropathic Pain Development by Modifying CDK9/RNAPII-Dependent Spinal mGluR5 Transcription. Int J Mol Sci 2019; 20:ijms20174177. [PMID: 31454988 PMCID: PMC6747068 DOI: 10.3390/ijms20174177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 11/18/2022] Open
Abstract
Diverse transcriptional controls in the dorsal horn have been observed in pain hypersensitivity. However, the understanding of the exact causes and mechanisms of neuropathic pain development is still fragmentary. Here, the results demonstrated nerve injury decreased the expression of spinal hairy and enhancer of split 1 (Hes1), a transcriptional repressor, and enhanced metabotropic glutamate receptor subtype 5 (mGluR5) transcription/expression, which was accompanied with behavioral allodynia. Moreover, nerve injury decreased Hes1 levels and reciprocally increased cyclin dependent kinase-9 (CDK9) levels and recruited CDK9 to phosphorylate RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. These effects were also induced by intrathecally administering naïve rats with Hes1 small interfering RNA (siRNA). Conversely, Hes1 overexpression using intrathecal lentiviral vectors in nerve injury rats produced reversal of pain behavior and reversed protein expressions, phosphorylation, and coupling to the promoter segments in the dorsal horn. Collectively, the results in this study indicated nerve injury diminishes spinal Hes1-dependent suppression of CDK9-dependent RNAPII phosphorylation on the mGluR5 promoter that possibly enhances mGluR5 transcription/expression for neuropathic pain development.
Collapse
|
16
|
Histone acetyltransferase CBP-related H3K23 acetylation contributes to courtship learning in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2018; 18:20. [PMID: 30458702 PMCID: PMC6247617 DOI: 10.1186/s12861-018-0179-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Background Histone modifications are critical in regulating neuronal processes. However, the impacts of individual histone modifications on learning and memory are elusive. Here, we investigated the contributions of histone H3 lysine modifications to learning and memory in Drosophila by using histone lysine-to-alanine mutants. Results Behavioural analysis indicated that compared to the H3WT group, mutants overexpressing H3K23A displayed impaired courtship learning. Chromatin immunoprecipitation analysis of H3K23A mutants showed that H3K23 acetylation (H3K23ac) levels were decreased on learning-related genes. Knockdown of CREB-binding protein (CBP) decreased H3K23ac levels, attenuated the expression of learning-related genes, led to a courtship learning defect and altered development of the mushroom bodies. A decline in courtship learning ability was observed in both larvae and adult treatments with ICG-001. Furthermore, treatment of Drosophila overexpressing mutated H3K23A with a CBP inhibitor did not aggravate the learning defect. Conclusions H3K23ac, catalysed by the acetyltransferases dCBP, contributes to Drosophila learning, likely by controlling the expression of specific genes. This is a novel epigenetic regulatory mechanism underlying neuronal behaviours. Electronic supplementary material The online version of this article (10.1186/s12861-018-0179-z) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Zhang Y, Chang JF, Sun J, Chen L, Yang XM, Tang HY, Jing YY, Kang X, He ZM, Wu JY, Wei HM, Wang DL, Xu RG, Zhu RB, Shen Y, Zeng SY, Wang C, Liu KN, Zhang Y, Mao ZY, Jiang CZ, Sun FL. Histone H3K27 methylation is required for NHEJ and genome stability by modulating the dynamics of FANCD2 on chromatin. J Cell Sci 2018; 131:jcs.215525. [PMID: 29760279 DOI: 10.1242/jcs.215525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of homeostatic balance in di- and tri-methyl H3K27 levels or that caused by mis-sense mutations of histone H3 (H3K27M) was reported to be associated with various types of cancers. In this study, we found that reduction in H3K27me2/3 caused by H3.1K27M, a mutation of H3 variants found in DIPG patients, dramatically attenuated the presence of 53BP1 foci and NHEJ repair capability in HDF cells. H3.1K27M cells showed increased rates of genomic insertions/deletions (In/Dels) and copy number variations (CNVs), as well as augmented p53-dependent apoptotic cells. We further showed that both hypo-H3K27me2/3 and H3.1K27M interacted with FANCD2, a central player to orchestrate DNA repair pathway choice. H3.1K27M triggered an accumulation of FANCD2 on chromatin, supporting the interaction between H3.1K27M and FANCD2. Most interestingly, knock-down of FANCD2 in H3.1K27M cells recovered the number of 53BP1 foci, NHEJ efficiency and apoptosis rate. Although these findings in HDF cells may differ from the case of endogenous H3.1K27M mutant regulation in the specific tumor context of DIPG, our results suggest a new model by which H3K27me2/3 facilitates NHEJ and the maintenance of genome stability.
Collapse
Affiliation(s)
- Ye Zhang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Jin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Lu Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Huan-Yin Tang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Yuan-Ya Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xuan Kang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Zhi-Min He
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Jun-Yu Wu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Hui-Min Wei
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Da-Liang Wang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Rong-Gang Xu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Rui-Bao Zhu
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Ying Shen
- School of Software Engineering, Tongji University, Shanghai 200092, PR China
| | - Shi-Yang Zeng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Chen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Kui-Nan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Yong Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Zhi-Ying Mao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Ci-Zhong Jiang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
18
|
Brueckner L, van Arensbergen J, Akhtar W, Pagie L, van Steensel B. High-throughput assessment of context-dependent effects of chromatin proteins. Epigenetics Chromatin 2016; 9:43. [PMID: 27777628 PMCID: PMC5069885 DOI: 10.1186/s13072-016-0096-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy based on barcoded randomly integrated reporters with Gal4-mediated tethering. We applied the assay to Drosophila heterochromatin protein 1a (HP1a), which is mostly known as a repressive protein but has also been linked to transcriptional activation. RESULTS Recruitment to over 1000 genomic locations revealed that HP1a is a potent repressor able to silence even highly expressing reporter genes. However, the local chromatin context can modulate HP1a function. In pericentromeric regions, HP1a-induced repression was enhanced by twofold. In regions marked by a H3K36me3-rich chromatin signature, HP1a-dependent silencing was significantly decreased. We found no evidence for an activating function of HP1a in our experimental system. Furthermore, we did not observe stable transmission of repression over mitotic divisions after loss of targeted HP1a. CONCLUSIONS The multiplexed tethered reporter assay should be applicable to a large number of chromatin proteins and will be a useful tool to dissect combinatorial regulatory interactions in chromatin.
Collapse
Affiliation(s)
- Laura Brueckner
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joris van Arensbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ludo Pagie
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|