1
|
Wan S, Liu WJ, Tan G, Yu HQ. Boosted recovery of rare earth elements from mining wastes and discarded NdFeB magnets by tributyl phosphate-grafted ZIF-8. Proc Natl Acad Sci U S A 2025; 122:e2423217122. [PMID: 39993192 DOI: 10.1073/pnas.2423217122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
The escalating demand for rare earth elements (REEs) highlights the necessity for their sustainable recovery from waste streams and secondary resources. However, this process requires materials with exceptional selectivity and capacity for REEs due to their low concentration and high presence of interfering ions. Herein, we synthesized zeolitic imidazolate framework-8 (ZIF-8) and subsequently modified it with tributyl phosphate (TBP) to enhance its affinity and selectivity for the recovery of REEs. The distribution coefficients (Kd) of ZIF-8-TBP for REEs (neodymium, Nd, and dysprosium, Dy) were orders of magnitude higher than the Kd of main interfering ions (e.g., Mg, Ni Al, and Fe). Particularly, the maximum sorption capacities (qm) for Nd and Dy were 475 and 529 mg g-1, respectively. In addition, the separation factor between Dy (a representative of heavy REE) and Nd (a representative of light REE) reached 24, greatly exceeding the figures reported previously. Importantly, the outstanding ability of ZIF-8-TBP for selective separation and recovery of REEs was demonstrated via its application to real samples including mining wastewater, and leaching solutions from REE filter cakes and discarded NdFeB magnets. Multiscale simulations reveal that ZIF-8-TBP possessed a stronger binding strength and greater sorption energy for REE ions. These results indicate that ZIF-8-TBP could effectively harvest REEs from wastes and offers an efficient alternative for industrial applications in REE recovery.
Collapse
Affiliation(s)
- Shun Wan
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wu-Jun Liu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guangcai Tan
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Li J, Bu YT, Wang AH, Chen J, Cheng SB. d-p Hybridization Induced Open-Shell Planar Four-Membered Transition Metal Carbide Clusters with Double Möbius Aromaticity. J Phys Chem A 2025; 129:28-35. [PMID: 39780707 DOI: 10.1021/acs.jpca.4c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators. Each cluster was characterized by four delocalized π electrons and four delocalized σ electrons, forming a novel class exhibiting double Möbius aromaticity. Intriguingly, the unexpected stability of these open-shell clusters was suggested to arise from the hybridization of d-p atomic orbitals, as revealed by analysis of the composition of delocalized orbitals. Our findings highlight the significance of hybridization between the d orbitals of transition metals and the p orbitals of main group elements in the creation of dual Möbius aromatic species, which offers new avenues for the design of single-molecule magnetic inorganic materials.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yun-Ting Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Ao-Hua Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
3
|
Li XT, Li J, Liu SQ, Du SH, Wang SJ, Chen J, Cheng SB. Dual External Field Strategy in Regulating the Superhalogen Characteristics of the Non-Noble Metal Constituted Tantalum Oxide Clusters. J Phys Chem A 2024; 128:5298-5306. [PMID: 38917472 DOI: 10.1021/acs.jpca.4c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The identification of the non-noble metal constituted TaO cluster as a potential analogue to the noble metal Au is significant for the development of tailored materials. It leverages the superatom concept to engineer properties with precision. However, the impact of incrementally integrating TaO units on the electronic configurations and properties within larger TaO-based clusters remains to be elucidated. By employing the density functional theory calculations, the global minima and low-lying isomers of the TanOn (n = 2-5) clusters were determined, and their structural evolution was disclosed. In the cluster series, Ta5O5 was found to possess the highest electron affinity (EA) with a value of 2.14 eV, based on which a dual external field (DEF) strategy was applied to regulate the electronic property of the cluster. Initially, the electron-withdrawing CO ligand was affixed to Ta5O5, followed by the application of an oriented external electric field (OEEF). The CO ligation was found to be able to enhance the Ta5O5 cluster's electron capture capability by adjusting its electron energy levels, with the EA of Ta5O5(CO)4 peaking at 2.58 eV. Subsequently, the introduction of OEEF further elevated the EA of the CO-ligated cluster. Notably, OEEF, when applied along the +x axis, was observed to sharply increase the EA to 3.26 eV, meeting the criteria for superhalogens. The enhancement of EA in response to OEEF intensity can be quantified as a functional relationship. This finding highlights the advantage of OEEF over conventional methods, demonstrating its capacity for precise and continuous modulation of cluster EAs. Consequently, this research has adeptly transformed tantalum oxide clusters into superhalogen structures, underscoring the effectiveness of the DEF strategy in augmenting cluster EAs and its promise as a viable tool for the creation of superhalogens.
Collapse
Affiliation(s)
- Xiao-Tong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Si-Qi Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Hu Du
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Jun Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
4
|
Liu LY, Li J, Liu SQ, Du SH, Siddique MBA, Zhang L, Bu Y, Cheng SB. Beyond Shell-Filling: Strong Enhancement of Electron Affinity of Metal Clusters through a Noninvasive Oriented External Electric Field. J Phys Chem Lett 2024; 15:7028-7035. [PMID: 38949686 DOI: 10.1021/acs.jpclett.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traditional electron counting rules, like the Jellium model, have long been successfully utilized in designing superhalogens by modifying clusters to have one electron less than a filled electronic shell. However, this shell-filling approach, which involves altering the intrinsic properties of the clusters, can be complex and challenging to control, especially in experiments. In this letter, we theoretically establish that the oriented external electric field (OEEF) can substantially enhance the electron affinity (EA) of diverse aluminum-based metal clusters with varying valence electron configurations, leading to the creation of superhalogen species without altering their shell arrangements. This OEEF approach offers a noninvasive alternative to traditional superatom design strategies, as it does not disrupt the clusters' geometrical structures and superatomic states. These findings contribute a vital piece to the puzzle of constructing superalkalis and superhalogens, extending beyond conventional shell-filling strategies and potentially expanding the range of applications for functional clusters.
Collapse
Affiliation(s)
- Li-Ye Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Si-Qi Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Hu Du
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | | - Lei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Geng L, Luo Z. Magnetic Metal Clusters and Superatoms. J Phys Chem Lett 2024; 15:1856-1865. [PMID: 38335129 DOI: 10.1021/acs.jpclett.3c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Metal clusters with tunable magnetism and chemical activity are ideal models to study magnetic order changes from microstructures to macroscopic substances, to understand the spin effect in diverse catalytic reactions, and to create information carriers of qubits in quantum computation. Precise preparation, reaction, and characterization of magnetic clusters provide a platform to understand spin-exchange interactions and geometrical/electronic structure-property relationships; thus, they are beneficial for the rational design and development of new cluster-genetic materials and spintronics microdevices. Advances in this field have discovered some high-spin magnetic clusters and superatoms, expanding the understanding of magnetism, aromaticity, cluster stability, and electron delocalization. Herein we present a perspective of the experimental and theoretical progress regarding magnetic clusters and superatoms, with the expectation of stimulating more research interest in this field.
Collapse
Affiliation(s)
- Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wang H, Li J, Chen J, Bu Y, Cheng SB. Solvent field regulated superhalogen in pure and doped gold cluster anions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Dong XX, Zhao Y, Li J, Wang H, Bu Y, Cheng SB. Dual External Field-Engineered Hyperhalogen. J Phys Chem Lett 2022; 13:3942-3948. [PMID: 35476542 DOI: 10.1021/acs.jpclett.2c00916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hyperhalogens, a superatom featuring the highest known electron affinity (EA), have promising applications in the synthesis of superoxidizers. Contributions regarding the identified numbers and corresponding design strategies of hyperhalogens, however, are scarce. Herein, a novel and noninvasive dual external field (DEF) strategy, including the ligand field and oriented external electric field (OEEF), is proposed to construct hyperhalogens. The DEF strategy was shown to possess the power to increase Au8's EA, forming the hyperhalogen. Strikingly, the ligation process can increase the cluster's stability, while OEEF can realize the precise and continuous regulation of the cluster's EA. Moreover, besides the model Au8 system, an experimentally synthesized Ag17 nanocluster was also investigated, further demonstrating the reliability of the proposed strategy. Considering the crucial role of ligands in the liquid synthesis of clusters and the convenient source of OEEF, such a DEF strategy may greatly increase the synthesis and applications of hyperhalogens in the condensed phase.
Collapse
Affiliation(s)
- Xiao-Xiao Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yang Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
8
|
Wu X, Yu F, Xie W, Liu Z, Wang Z, Zhang S. High-Stability Light-Element Magnetic Superatoms Determined by Hund's Rule. J Phys Chem Lett 2022; 13:2632-2637. [PMID: 35297251 DOI: 10.1021/acs.jpclett.2c00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving stable high-magnetism light-element structures at nanoscale is vital to the field of magnetism, which has traditionally been ruled by transition-metal elements with localized d or f electrons. By first-principles calculations, we show that superatoms made of pure earth-abundant light elements (i.e., boron and nitrogen) exhibit desired magnetic properties that rival those of rare-earth elements, and the magnetism is dictated entirely by Hund's maximum spin rule. Importantly, the chemical and structural stabilities of the superatoms are not jeopardized by its high spins and are in fact better than those of transition-metal-element-embedded clusters. Our work thus establishes the basic principles for designing novel light-element, high-stability, and high-moment magnetic superatoms.
Collapse
Affiliation(s)
- Xiaochen Wu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Famin Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Weiyu Xie
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zheng Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Shengbai Zhang
- Department of Physics, Applied Physics, & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
9
|
Li J, Cui M, Yang H, Chen J, Cheng S. Ligand-field regulated superalkali behavior of the aluminum-based clusters with distinct shell occupancy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Chen TT, Cheung LF, Wang LS. Probing the Nature of the Transition-Metal-Boron Bonds and Novel Aromaticity in Small Metal-Doped Boron Clusters Using Photoelectron Spectroscopy. Annu Rev Phys Chem 2022; 73:233-253. [PMID: 35044792 DOI: 10.1146/annurev-physchem-082820-113041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoelectron spectroscopy combined with quantum chemistry has been a powerful approach to elucidate the structures and bonding of size-selected boron clusters (Bn-), revealing a prevalent planar world that laid the foundation for borophenes. Investigations of metal-doped boron clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The current review focuses on recent advances in transition-metal-doped boron clusters, including the discoveries of metal-boron multiple bonds and metal-doped novel aromatic boron clusters. The study of the RhB- and RhB2O- clusters led to the discovery of the first quadruple bond between boron and a transition-metal atom, whereas a metal-boron triple bond was found in ReB2O- and IrB2O-. The ReB4- cluster was shown to be the first metallaborocycle with Möbius aromaticity, and the planar ReB6- cluster was found to exhibit aromaticity analogous to metallabenzenes. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Teng-Teng Chen
- Department of Chemistry, Brown University, Providence, Rhode Island, USA; .,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Ling Fung Cheung
- Department of Chemistry, Brown University, Providence, Rhode Island, USA; .,Hitachi Ltd., Research and Development Group, Center for Technology Innovation-Decarbonized Energy, Hitachi-shi, Ibaraki-ken, Japan
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island, USA;
| |
Collapse
|
11
|
Duan YJ, Zhao Y, Cheng SB, Wei Q. On the Precise and Continuous Regulation of the Superatomic and Spectroscopic Behaviors of the Quasi-Cubic W 4C 4 Cluster by the Oriented External Electric Field. J Phys Chem A 2021; 126:29-35. [PMID: 34941267 DOI: 10.1021/acs.jpca.1c08452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing and realizing novel superatoms with controllable and tunable electronic properties is vital for their potential applications in cluster-assembly nanomaterials. Here, we investigated the effect of the oriented external electric field (OEEF) on the geometric and electronic structures as well as the spectroscopic properties of the quasi-cubic W4C4 cluster by utilizing the density functional theory (DFT) calculations. Compared with traditional models, the OEEF was observed to hold the special capability in continuously and precisely modulating the electronic properties of W4C4, that is, remarkably increasing its electron affinity (EA) (1.58 eV) to 5.61 eV under the 0.040 au OEEF (larger than any halogen atoms in the periodic table), which possesses the superhalogen behavior. Furthermore, the downward movement of the lowest unoccupied molecular orbital level of the cluster accompanied by the enhancement of the OEEF intensity was demonstrated to be the origin of the EA increment. Additionally, the photoelectron spectra (PES) of W4C4- were also simulated under different OEEF intensities, where the PES peaks move to a higher energy area following the enhancement of the OEEF strength, exhibiting the blue-shift behavior. These findings observed here open a new avenue in conveniently and precisely adjusting the electronic properties of clusters, which will be beneficial for the rational design of superatoms or superatom-assembled nanomaterials under the external field.
Collapse
Affiliation(s)
- Yu-Jing Duan
- School of Science, Chongqing University of Technology, Chongqing 400050, People's Republic of China
| | - Yang Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Qiang Wei
- School of Science, Chongqing University of Technology, Chongqing 400050, People's Republic of China
| |
Collapse
|
12
|
Zhang J, Chen S, Yu J, Deng Z, Qin Z, Qiu X, Jiang Y, Jiao C, Tang Z. Deciphering the Superatomic Behavior of Group V Metal Monoxides. J Phys Chem Lett 2021; 12:7636-7640. [PMID: 34351149 DOI: 10.1021/acs.jpclett.1c01971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The valence orbitals of Group V metal monoxides exhibit atomic-like properties which mimic that of coinage metal element atoms. The electronic structures of MO-1/0 (M = V, Nb, and Ta) have been determined by negative ion photoelectron velocity map imaging. Electron affinities and vibrational frequencies for the ground state and excited states of MO (M = V, Nb, and Ta) molecules have been identified as well as photoelectron angular distributions. On the basis of the equivalent-electron principle, MO- (M = V, Nb, and Ta) molecules bear valence electron configurations similar to those of coinage metal elemental atoms, despite having more complicated electronic states for molecules, and concomitant mimicry of magnetic superatom. Generally, other than low-spin states of coinage metal atoms, Group V metal monoxides demonstrate a high-spin state except for TaO, possessing the potential applications to inexpensive superatoms in industrial catalysis.
Collapse
Affiliation(s)
- Jiangle Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shanjun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingxiong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zefeng Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengbo Qin
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xingtai Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihuang Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengxiang Jiao
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Jiang ZY, Chen TT, Chen WJ, Li WL, Li J, Wang LS. Expanded Inverse-Sandwich Complexes of Lanthanum Borides: La 2B 10- and La 2B 11. J Phys Chem A 2021; 125:2622-2630. [PMID: 33739102 DOI: 10.1021/acs.jpca.1c01149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inverse-sandwich structures have been observed recently for dilanthanide boride clusters, in which two Ln atoms sandwich a monocyclic Bx ring for x = 7-9. An interesting question is if larger Bx rings are possible to form such inverse-sandwich clusters. Here we address this question by investigating La2B10- and La2B11- using photoelectron spectroscopy and ab initio quantum chemical calculations. Photoelectron spectra of La2B10- and La2B11- show complicated, but well-resolved, spectral features that are used to compare with theoretical calculations. We have found that global minimum structures of the two clusters are based on the octa-boron ring. The global minimum of La2B10- consists of two chiral enantiomers with C1 symmetry, which can be viewed as adding a B2 unit off-plane to the B8 ring, whereas that of La2B11- can be viewed as adding a B3 unit in-plane to the B8 ring in a second coordination shell. Chemical bonding analyses reveal localized B-B bonds on the edge of the clusters and delocalized bonds in the expanded boron frameworks. The interactions between the La atoms and the boron frameworks include the unique (d-p)δ bonding, which was found to be the key for inverse-sandwich complexes with monocyclic boron rings. The current study confirms that the largest monocyclic boron ring to form the inverse-sandwich structures is B9 and provide insights into the structural evolutions of larger lanthanide boride clusters.
Collapse
Affiliation(s)
- Zhi-Yu Jiang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Teng-Teng Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Wei-Jia Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Wan-Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
14
|
Zhang XL, Zhang L, Ye YL, Li XH, Ni BL, Li Y, Sun WM. On the Role of Alkali-Metal-Like Superatom Al 12 P in Reduction and Conversion of Carbon Dioxide. Chemistry 2020; 27:1039-1045. [PMID: 32969553 DOI: 10.1002/chem.202003733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Developing efficient catalysts for the conversion of CO2 into fuels and value-added chemicals is of great significance to relieve the growing energy crisis and global warming. With the assistance of DFT calculations, it was found that, different from Al12 X (X=Be, Al, and C), the alkali-metal-like superatom Al12 P prefers to combine with CO2 via a bidentate double oxygen coordination, yielding a stable Al12 P(η2 -O2 C) complex containing an activated radical anion of CO2 (i.e., CO2 .- ). Thereby, this compound could not only participate in the subsequent cycloaddition reaction with propylene oxide but also initiate the radical reaction with hydrogen gas to form high-value chemicals, revealing that Al12 P can play an important role in catalyzing these conversion reactions. Considering that Al12 P has been produced in laboratory and is capable of absorbing visible light to drive the activation and transformation of CO2 , it is anticipated that this work could guide the discovery of additional superatom catalysts for CO2 transformation and open up a new research field of superatom catalysis.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China.,The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China
| | - Li Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China.,The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China
| | - Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China.,The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China
| | - Xiang-Hui Li
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, P. R. China
| | - Bi-Lian Ni
- The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China
| | - Ying Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China.,The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, P. R. China
| |
Collapse
|
15
|
|
16
|
Zhao Y, Chen J, Yang H, Wei Q, Cheng SB. A density functional theory calculation on the geometrical structures and electronic properties of Ag19 under the oriented external electric field. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Wang J, Chen J, Wei Q, Cheng SB. On the dual aromaticity and external field induced superhalogen modulation of the AuSc2 cluster: A computational study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Chen J, Wei Q, Yang H, Cheng SB. On the structures, electronic properties, and superhalogen regulation of the MnB6− cluster: A density functional theory investigation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Chen J, Yang H, Wang J, Cheng SB. Revealing the effect of the oriented external electronic field on the superatom-polymeric Zr 3O 3 cluster: Superhalogen modulation and spectroscopic characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118400. [PMID: 32348920 DOI: 10.1016/j.saa.2020.118400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Seeking novel strategies for designing superatoms is of significance for the potential applications in cluster-assembled nanomaterials. Herein, by employing the density functional theory (DFT) calculations, the effect of the oriented external electronic field (OEEF) on the electronic and photoelectron spectroscopic properties of the superatom-polymeric Zr3O3 cluster was explored. We present the evidence that the increment of the OEEF along all directions results in the remarkable enhancement of the electron affinity (EA) of Zr3O3, which turns it into superhalogen with an EA value of 4.02 eV under 0.020 au OEEF along +y direction. Strikingly, this EA value is larger than that of any halogen atoms in the periodic table. The downward shift of the electronic spectrum induced by the OEEF was confirmed to be the origin of the observed EA enhancement. Furthermore, the investigation of the OEEF's effect on the molecular orbitals (MOs) and photoelectron spectra (PES) of the cluster reveals that the OEEF could alter the electron distribution as well as promoting the blue shift of the PES without changing the spacings between different energetic levels. The OEEF highlighted here provides a new strategy in designing superatoms together with tuning their electronic and spectroscopic properties conveniently and precisely. We wish this finding could stimulate more efforts in designing novel superatoms or superatom-assembled materials from both theory and experiments.
Collapse
Affiliation(s)
- Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China; Suzhou Institute of Shandong University, Suzhou, Jiangsu 215123, China
| | - Huan Yang
- School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
20
|
Zhao Y, Wang J, Huang HC, Li J, Dong XX, Chen J, Bu YX, Cheng SB. Tuning the Electronic Properties and Performance of Low-Temperature CO Oxidation of the Gold Cluster by Oriented External Electronic Field. J Phys Chem Lett 2020; 11:1093-1099. [PMID: 31967837 DOI: 10.1021/acs.jpclett.9b03794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional electronic rules, including Jellium and Wade-Mingos rules and so on, have long been successfully dedicated to design superatoms. These rules, however, rely on altering the intrinsic properties, for example, the compositions or the number of valence electrons, of clusters, which is relatively complicated and inconvenient to manipulate, especially in experiments. Herein, by employing density functional theory calculations, the oriented external electric field (OEEF) was demonstrated to possess the capability of precisely and continuously regulating the electronic properties of clusters at will, representing a novel and noninvasive methodology in constructing stable superatoms because it hardly changes the geometries of clusters. More interestingly, the active sites formed by the charge redistribution upon the introduction of an OEEF could significantly promote the catalytic performance of the low-temperature CO oxidation over clusters. Considering the convenient source of the OEEF, the findings highlighted here may boost the potential applications of superatom-assembly nanomaterials in catalysis and materials science.
Collapse
Affiliation(s)
- Yang Zhao
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Jing Wang
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Hai-Cai Huang
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Jun Li
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Xiao-Xiao Dong
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Jing Chen
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
- Suzhou Institute of Shandong University , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Yu-Xiang Bu
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
- Suzhou Institute of Shandong University , Suzhou , Jiangsu 215123 , People's Republic of China
| |
Collapse
|
21
|
Li J, Huang HC, Wang J, Zhao Y, Chen J, Bu YX, Cheng SB. Polymeric tungsten carbide nanoclusters: structural evolution, ligand modulation, and assembled nanomaterials. NANOSCALE 2019; 11:19903-19911. [PMID: 31599909 DOI: 10.1039/c9nr05613k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Seeking novel superatoms with tunable electronic and magnetic properties has attracted much interest due to their potential application in cluster assembly nanomaterials. By employing density functional theory (DFT) calculations, the recently observed superatomic WC cluster was adopted as the basic unit to construct larger polymeric clusters, namely (WC)n (n = 2-7), and their structural evolution was explored to understand the growth pattern of these superatomic clusters into nanoscale materials. An unusual odd-even pattern in structural evolution was disclosed, in which the (WC)2 unit is considered as the basic building block. Moreover, W4C4 is found to possess a cubic structure, based on which the CO and PH3 ligands were attached to examine their ligation effects on W4C4. Theoretical results show that the electronic properties of W4C4 can be dramatically altered during the ligation process. Intriguingly, the continuous attachment of CO and PH3 ligands strongly increases and decreases the electron affinities (EA) and ionization potentials (IP) of the ligated W4C4 clusters, respectively, leading to the formation of superhalogen and superalkali species with high magnetic moments. The observed ligand induced strategy highlighted here could serve as an effective way to tune the electronic and magnetic properties of clusters resulting in the formation of novel superatoms. Finally, studies on the geometrical and electronic structures of the W4C4 cluster solid unveil its special 3-D cubic honeycomb geometry and metallic properties with predominant contribution from the 5d of W, which may have potential applications in electro-catalysis.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Hai-Cai Huang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Jing Wang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Yang Zhao
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Jing Chen
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China. and Suzhou Institute of Shandong University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Yu-Xiang Bu
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China. and School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Shi-Bo Cheng
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
22
|
Wang J, Zhao Y, Li J, Huang HC, Chen J, Cheng SB. Unveiling the electronic structures and ligation effect of the superatom-polymeric zirconium oxide clusters: a computational study. Phys Chem Chem Phys 2019; 21:14865-14872. [PMID: 31232409 DOI: 10.1039/c9cp01870k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovering the non-noble ZrO cluster as an analog of the noble metal catalyst Pd is of significance toward designing functional materials with fine-tuned properties using the superatom concept. The effect of gradually assembling the ZrO superatomic unit on the electronic structures and chemical bonding of larger ZrO-polymeric clusters, however, is unclear. Herein, by using density functional theory (DFT) calculations, the lowest-energy structures and low-lying isomers of the (ZrO)n-/0 (n = 2-5) clusters were optimized, in which every O atom in these clusters tends to connect its adjacent two Zr atoms forming metal oxygen bridge bonds. Insights into the electronic characteristics of these clusters were obtained by analyzing their molecular orbitals (MOs) and density of states (DOS). More importantly, our studies on the CO (electron acceptor) and PH3 (electron donor) ligated Zr3O3 clusters unveil that the ligation process can substantially alter the electronic properties of the clusters by tuning the HOMO and LUMO states, which may have potential applications in photovoltaics. Strikingly, the successive attachment of PH3 on Zr3O3 dramatically lowers the adiabatic ionization potential (AIP) of the ligated clusters, resulting in the formation of stable superalkali clusters with large HOMO-LUMO gaps. Furthermore, the potential of constructing the superalkali Zr3O3(PH3)5 based 1-D cluster assembled material was also examined.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Yang Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Hai-Cai Huang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China. and Suzhou Institute of Shandong University, Suzhou, Jiangsu 215123, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
23
|
Chen J, Yang H, Wang J, Cheng SB. Probing the Geometric and Electronic Structures of the Monogadolinium Oxide GdO n-1/0 ( n = 1-4) Clusters. J Phys Chem A 2018; 122:8776-8782. [PMID: 30351102 DOI: 10.1021/acs.jpca.8b09058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The existence of abundant 4f electrons significantly increases the complexity and difficulty in precisely determining the geometric and electronic structures of the lanthanide oxide clusters. Herein, by combining the photoelectron imaging spectroscopy and density functional theory (DFT) calculations, the electronic structure of GdO was investigated. An electron affinity (EA) of 1.16 ± 0.09 eV is obtained, and the measured anisotropy parameter (β) provides direct experimental evidence about the orbital symmetry of the detached electron in GdO-. DFT calculations have been employed to acquire the optimized geometries of the GdO n-1/0 ( n = 2-4) clusters, and multiple activated oxygen species, which are radical, peroxide, superoxide, triradical, and ozonide radical, are found in these oxide clusters. Simulated photoelectron spectra (PES) of the GdO n-1/0 ( n = 2-4) clusters are examined, which may stimulate further experimental investigations on the gadolinium oxide clusters. In addition, the valence molecular orbitals (MOs) of these clusters are also discussed to reveal the interaction between the lanthanide metal (Gd) and O atoms.
Collapse
Affiliation(s)
- Jing Chen
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China.,Suzhou Institute of Shandong University , Suzhou , Jiangsu 215123 , China
| | - Huan Yang
- School of Physics , Shandong University , Jinan 250100 , China
| | - Jing Wang
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| |
Collapse
|
24
|
Chen J, Yang H, Wang J, Cheng SB. Theoretical investigations on the d-p hybridized aromaticity, photoelectron spectroscopy and neutral salts of the LaX 2- (X=Al, Ga, In) clusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:132-138. [PMID: 29874633 DOI: 10.1016/j.saa.2018.05.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
We present an extensive density functional theory (DFT) calculations on the geometrical and electronic structures of the triatomic LaX2- (X=Al, Ga, In) clusters. Various trail structures and spin states have been attempted to determine the lowest-energy geometries of these La-doped metal clusters. The ground states of all three clusters are calculated to possess the trigonal structures with the singlet multiplicities. The calculations on molecular orbitals (MOs) and nucleus-independent chemical shift (NICS) values have been performed to examine the aromatic characteristics of the LaX2- (X=Al, Ga, In) clusters. The present calculations disclose that all these metal clusters are doubly aromatic, namely d-p hybridized σ and π aromaticity resulting from the effective overlap between the 5d atomic orbital of the La atom and the p orbitals of the IIIA group elements. Theoretical vertical detachment energies (VDEs) were also calculated to simulate the photoelectron spectra (PES) of the clusters. In addition, by adding the alkali cations (Li+ and Na+) into the LaX2- (X=Al, Ga, In) clusters, the geometries and electronic structures of the corresponding neutral salts have also been investigated to gain more insights in the potential of using these aromatic anions as building blocks.
Collapse
Affiliation(s)
- Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China; Suzhou Institute of Shandong University, Suzhou, Jiangsu 215123, China
| | - Huan Yang
- School of Physics, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
25
|
Berkdemir C, Gunaratne KDD, Cheng SB, Castleman AW. Photoelectron imaging spectroscopy of niobium mononitride anion NbN−. J Chem Phys 2016; 145:034301. [DOI: 10.1063/1.4955299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Cuneyt Berkdemir
- Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Physics, Faculty of Science, Erciyes University, Kayseri 38039, Turkey
| | - K. Don Dasitha Gunaratne
- Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shi-Bo Cheng
- Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - A. W. Castleman
- Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
26
|
Huang S, Liao K, Peng B, Luo Q. On the Potential of Using the Al7 Superatom as an Excess Electron Acceptor To Construct Materials with Excellent Nonlinear Optical Properties. Inorg Chem 2016; 55:4421-7. [PMID: 27064431 DOI: 10.1021/acs.inorgchem.6b00224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the aid of density functional theory (DFT) calculations, we found that, when alkali metal approaches the Al7 superatom, its outermost s-value electron can be trapped by Al7 to give the superatom compound MAl7 (M = Li, Na, K) with an excess electron. Different analyses including natural bond orbital (NBO), electron localization function (ELF), and energy decomposition analysis (EDA) show that the resulting M-Al bond is strong and has a polar covalent character. The optimizations of self-assemblies (MAl7)n (n = 2, 3) have been performed to explore the stability of MAl7 in the solid state. The results reveal that only NaAl7 can keep its structural integrity as a building block upon self-assembling, while serious aggregations between Al7 clusters occur in the dimers and trimers of LiAl7 and KAl7, despite the fact that the Li-Al7 and K-Al7 bond energies are comparable to that of Na-Al7. Born-Oppenheimer molecular dynamics (BOMD) simulations for (NaAl7)n (n = 2, 3) indicate that these species are stable toward fragmentation at 300 K. The β0 values of (NaAl7)n (n = 1, 2, and 3) predicted at the CAM-B3LYP/6-311+G(3df) level of theory are in the range of 1.6 × 10(4)a.u. to 7.5 × 10(4) a.u.. This theoretical study implies that NaAl7 is a promising candidate for nolinear optical (NLO) materials. We provide theoretical evidence for the possibility of using the Al7 superatom as an excess electron acceptor to construct materials with excellent NLO properties. Further experimental research is invited.
Collapse
Affiliation(s)
- Shaoyuan Huang
- Center for Computational Quantum Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University , Guangzhou 510631, People's Republic of China
| | - Kuntian Liao
- Center for Computational Quantum Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University , Guangzhou 510631, People's Republic of China
| | - Bin Peng
- Center for Computational Quantum Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University , Guangzhou 510631, People's Republic of China
| | - Qiong Luo
- Center for Computational Quantum Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University , Guangzhou 510631, People's Republic of China
| |
Collapse
|
27
|
Abstract
Direct experimental determination of precise electron affinities (EAs) of lanthanides is a longstanding challenge to experimentalists. Considerable debate exists in previous experiment and theory, hindering the complete understanding about the properties of the atomic anions. Herein, we report the first precise photoelectron imaging spectroscopy of europium (Eu), with the aim of eliminating prior contradictions. The measured EA (0.116 ± 0.013 eV) of Eu is in excellent agreement with recently reported theoretical predictions, providing direct spectroscopic evidence that the additional electron is weakly attached. Additionally, a new experimental strategy is proposed that can significantly increase the yield of the lanthanide anions, opening up the best opportunity to complete the periodic table of the atomic anions. The present findings not only serve to resolve previous discrepancy but also will help in improving the depth and accuracy of our understanding about the fundamental properties of the atomic anions.
Collapse
|