1
|
Pizarro AD, Berli CLA, Soler-Illia GJAA, Bellino MG. Autonomous Noncoalescence among Water Drops through Nanopore-Induced Self-Warping. NANO LETTERS 2025; 25:5193-5199. [PMID: 40119806 DOI: 10.1021/acs.nanolett.4c06359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
A pervasive phenomenon in nature and technology events is that the interaction among water-based volumes leads to coalescence and thus losing their individuality. Herein, we report a framework in which the opposite can be true: the interaction between adjacent water droplets on a nanoporous thin-film surface spontaneously manifests an autonomous noncoalescing action to drive the topographic emergence of macrostructural organization, based in the hydraulic control exerted by water self-confined in nanopores (avoiding the need to resort to chemical approaches for aqueous partitions). Accordingly, we also introduce strategies to perform the shaping of water through water to tailor droplet contact area shapes and local interdroplet dosing of regents. The observation of crowded water drops warping rather than coalescing reveals novel fluid manipulation with high spatial resolution and offers new possibilities of broad applicability ranging from artificial cell compartmentalization, biochemical analysis, and thermal management to hydro-smart surfaces innovation.
Collapse
Affiliation(s)
- Agustin D Pizarro
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, INS-EByN-UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Argentina
| | - Claudio Luis Alberto Berli
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC-UNL-CONICET) Predio CCT CONICET, RN 168, 3000 Santa Fe, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, INS-EByN-UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Argentina
| | - Martín Gonzalo Bellino
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, B1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
2
|
Rasera F, Gresham IJ, Tinti A, Neto C, Giacomello A. Molecular Origin of Slippery Behavior in Tethered Liquid Layers. ACS NANO 2025; 19:8020-8029. [PMID: 39964795 DOI: 10.1021/acsnano.4c15843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Slippery covalently attached liquid surfaces (SCALS) are a family of nanothin polymer layers with ultralow static droplet friction, characterized by a low contact angle hysteresis (CAH < 5°), which makes them ideally suited for self-cleaning, water harvesting, and antifouling applications. Recently, a Goldilocks zone of lowest CAH has been identified for polydimethylsiloxane (PDMS) SCALS of intermediate thickness (≈4 nm); yet, molecular-level insights are missing to reveal the underlying physical mechanism of this elusive, slippery optimum. In this work, the agreement between coarse-grained molecular dynamics simulations and atomic force microscopy data shows that nanoscale defects, as well as deformation for thicker layers, are key to explaining the existence of this "just right" regime. At low thickness values, insufficient substrate coverage gives rise to chemical patchiness; at large thickness values, two features appear: (1) a waviness due to a previously overlooked lateral microphase separation occurring in polydisperse brushes, and (2) layer deformation due to the contact line being larger than in thinner layers. The most pronounced slippery behavior occurs for smooth PDMS layers that do not exhibit nanoscale waviness. The converging insights from simulations, experiments, and a CAH theory provide design guidelines for tethered polymer layers with ultralow CAH.
Collapse
Affiliation(s)
- Fabio Rasera
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| | - Isaac J Gresham
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Antonio Tinti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| | - Chiara Neto
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
3
|
Heima Y, Teshima H, Zhang X, Li QY, Takahashi K. Impact of Sub-Nanoscale Surface Topography on Contact Line Profile: Insights from Coherence Scanning Interferometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:917-925. [PMID: 39719270 PMCID: PMC11736849 DOI: 10.1021/acs.langmuir.4c04227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024]
Abstract
Despite the importance of the effect of subnanoscale roughness on contact line behavior, it is difficult to directly observe the local behavior of contact lines at the micro- and nanoscale, leaving significant gaps in our current understanding. In this research, we investigate contact line motions and their relationship with nanoscale surface topography using coherence scanning interferometry. Our experiments were conducted on the substrates with different wettability without changing nanoscale surface topography. Titanium dioxide was used as a substrate, the wettability of which was varied under UV-light irradiation. A ridge-like structure with a height of approximately 1 nm was observed to cause contact line deformation toward the droplet side, regardless of the direction of the contact line motion. This was explained in terms of an imbalance in the local capillary pressure at the nanoscale contact line. We also found that the deformation becomes larger on the more hydrophilic surface, which was rationalized by theoretical prediction based on analysis of the work done by the force acting on the contact line and the change in surface free energy associated with the deformation of the liquid/gas interface. Furthermore, it was revealed by contact angle measurements that the maximum pinning forces on a hydrophilic surface were less than half of those on a hydrophobic surface. We attributed the weak pinning force on the hydrophilic surface to cascading depinning, where the initial depinning event triggers a chain reaction of subsequent depinning events, driven by the conversion of excess surface energy to kinetic energy. Our experimental works provide new insights of the relationship between the subnanoscale surface roughness and macroscopic contact line motion.
Collapse
Affiliation(s)
- Yuta Heima
- Department
of Aeronautics and Astronautics, Kyushu
University, Motooka 744, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department
of Aeronautics and Astronautics, Kyushu
University, Motooka 744, Nishi-Ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Xuehua Zhang
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta AB T6G 2R3, Canada
| | - Qin-Yi Li
- Department
of Aeronautics and Astronautics, Kyushu
University, Motooka 744, Nishi-Ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department
of Aeronautics and Astronautics, Kyushu
University, Motooka 744, Nishi-Ku, Fukuoka 819-0395, Japan
- International
Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Iannetti L, Cambiaso S, Rasera F, Giacomello A, Rossi G, Bochicchio D, Tinti A. The surface tension of Martini 3 water mixtures. J Chem Phys 2024; 161:084707. [PMID: 39189655 DOI: 10.1063/5.0221199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of organic and inorganic molecules. The modeling of coarse-grained beads as Lennard-Jones particles poses challenges for the accurate reproduction of liquid-vapor interfacial properties, which are crucial in various applications, especially in the case of water. The latest version of the forcefield introduces refined interaction parameters for water beads, tackling the well-known artifact of Martini water freezing at room temperature. In addition, multiple sizes of water beads are available for simulating the solvation of small cavities, including the smallest pockets of proteins. This work focuses on studying the interfacial properties of Martini water, including surface tension and surface thickness. Employing the test-area method, we systematically compute the liquid-vapor surface tension across various combinations of water bead sizes and for temperatures from 300 to 350 K. These findings are of interest to the Martini community as they allow users to account for the low interfacial tension of Martini water by properly adjusting observables computed via coarse-grained simulations to allow for accurate matching against all-atom or experimental results. Surface tension data are also interpreted in terms of local enrichment of the various mixture components at the liquid-vapor interface by means of Gibbs' adsorption formalism. Finally, the critical scaling of the Martini surface tension with temperature is reported to be consistent with the critical exponent of the 3D Ising universality class.
Collapse
Affiliation(s)
- Lorenzo Iannetti
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Sonia Cambiaso
- Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Fabio Rasera
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Giulia Rossi
- Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Davide Bochicchio
- Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Antonio Tinti
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
5
|
Paulo G, Bartolomé L, Bondarchuk O, Meloni S, Grosu Y, Giacomello A. Partial Water Intrusion and Extrusion in Hydrophobic Nanopores for Thermomechanical Energy Dissipation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12036-12045. [PMID: 39081555 PMCID: PMC11284848 DOI: 10.1021/acs.jpcc.4c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
Forced wetting (intrusion) and spontaneous dewetting (extrusion) of hydrophobic/lyophobic nanoporous materials by water/nonwetting liquid are of great importance for a broad span of technological and natural systems such as shock-absorbers, molecular springs, separation, chromatography, ion channels, nanofluidics, and many more. In most of these cases, the process of intrusion-extrusion is not complete due to the stochastic nature of external stimuli under realistic operational conditions. However, understanding of these partial processes is limited, as most of the works are focused on an idealized complete intrusion-extrusion cycle. In this work, we show an experimental system operating under partial intrusion/extrusion conditions and present a simple model that captures its main features. We rationalize these operational conditions in terms of the pore entrance and cavity size distributions of the material, which control the range of intrusion/extrusion pressures.
Collapse
Affiliation(s)
- Gonçalo Paulo
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| | - Luis Bartolomé
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Álava, Spain
| | - Oleksandr Bondarchuk
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- SPIN-LAB
Centre for microscopic research on matter, University of Silesia in Katowice, 75 Pułku Piechoty 1A St., bldg J, 41-500 Chorzów, Poland
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Simone Meloni
- Dipartimento
di Scienze chimiche, farmaceutiche ed agrarie, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Yaroslav Grosu
- Centre
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Álava, Spain
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Alberto Giacomello
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
6
|
Giacomello A. What keeps nanopores boiling. J Chem Phys 2023; 159:110902. [PMID: 37724724 DOI: 10.1063/5.0167530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liquid-to-vapor transition can occur under unexpected conditions in nanopores, opening the door to fundamental questions and new technologies. The physics of boiling in confinement is progressively introduced, starting from classical nucleation theory, passing through nanoscale effects, and terminating with the material and external parameters that affect the boiling conditions. The relevance of boiling in specific nanoconfined systems is discussed, focusing on heterogeneous lyophobic systems, chromatographic columns, and ion channels. The current level of control of boiling in nanopores enabled by microporous materials such as metal organic frameworks and biological nanopores paves the way to thrilling theoretical challenges and to new technological opportunities in the fields of energy, neuromorphic computing, and sensing.
Collapse
Affiliation(s)
- Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
7
|
Gao C, Gaur P, Almutairi D, Rubin S, Fainman Y. Optofluidic memory and self-induced nonlinear optical phase change for reservoir computing in silicon photonics. Nat Commun 2023; 14:4421. [PMID: 37479712 PMCID: PMC10362060 DOI: 10.1038/s41467-023-40127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Nanophotonics allows to employ light-matter interaction to induce nonlinear optical effects and realize non-conventional memory and computation capabilities, however to date, light-liquid interaction was not considered as a potential mechanism to achieve computation on a nanoscale. Here, we experimentally demonstrate self-induced phase change effect which relies on the coupling between geometric changes of thin liquid film to optical properties of photonic waveguide modes, and then employ it for neuromorphic computing. In our optofluidic silicon photonics system we utilize thermocapillary-based deformation of thin liquid film capable to induce nonlinear effect which is more than one order of magnitude higher compared to the more traditional heat-based thermo-optical effect, and allowing operation as a nonlinear actuator and memory element, both residing at the same compact spatial region. The resulting dynamics allows to implement Reservoir Computing at spatial region which is approximately five orders of magnitude smaller compared to state-of-the-art experimental liquid-based systems.
Collapse
Affiliation(s)
- Chengkuan Gao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Prabhav Gaur
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Dhaifallah Almutairi
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - Shimon Rubin
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Yeshaiahu Fainman
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Diedkova K, Pogrebnjak AD, Kyrylenko S, Smyrnova K, Buranich VV, Horodek P, Zukowski P, Koltunowicz TN, Galaszkiewicz P, Makashina K, Bondariev V, Sahul M, Čaplovičová M, Husak Y, Simka W, Korniienko V, Stolarczyk A, Blacha-Grzechnik A, Balitskyi V, Zahorodna V, Baginskiy I, Riekstina U, Gogotsi O, Gogotsi Y, Pogorielov M. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892008 DOI: 10.1021/acsami.2c22780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kateryna Diedkova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Alexander D Pogrebnjak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Department of Motor Vehicles, Lublin University of Technology, Nadbystrzycka 38 A, Lublin 20-618, Poland
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Sergiy Kyrylenko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
| | - Kateryna Smyrnova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | | | - Pawel Horodek
- Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Street, Krakow 31-342, Poland
| | - Pawel Zukowski
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Tomasz N Koltunowicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Piotr Galaszkiewicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Kristina Makashina
- East-Kazakhstan State Technical University, D. Serikbayev Street, 19, Ust-Kamenogorsk 070000, Kazakhstan
| | - Vitaly Bondariev
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Martin Sahul
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | - Maria Čaplovičová
- Centre for Nanodiagnostics of Materials, Slovak University of Technology in Bratislava, 5 Vazovova Street, Bratislava 812 43, Slovakia
| | - Yevheniia Husak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Viktoriia Korniienko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Agnieszka Stolarczyk
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Vitalii Balitskyi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Ivan Baginskiy
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Una Riekstina
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Oleksiy Gogotsi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Yury Gogotsi
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| |
Collapse
|
9
|
Zhang J, Ding W, Hampel U. How droplets pin on solid surfaces. J Colloid Interface Sci 2023; 640:940-948. [PMID: 36907154 DOI: 10.1016/j.jcis.2023.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
HYPOTHESIS When a droplet starts sliding on a solid surface, the droplet-solid friction force develops in a manner comparable to the solid-solid friction force, showing a static regime and a kinetic regime. Today, the kinetic friction force that acts on a sliding droplet is well-characterized. But the mechanism underlying the static friction force is still less understood. Here we hypothesize that we can further draw an analogy between the detailed droplet-solid and solid-solid friction law, i.e., the static friction force is contact area dependent. METHODS We deconstruct a complex surface defect into three primary surface defects (atomic structure, topographical defect, and chemical heterogeneity). Using large-scale Molecular Dynamics simulations, we study the mechanisms of droplet-solid static friction forces induced by primary surface defects. FINDINGS Three element-wise static friction forces related to primary surface defects are revealed and the corresponding mechanisms for the static friction force are disclosed. We find that the static friction force induced by chemical heterogeneity is contact line length dependent, while the static friction force induced by atomic structure and topographical defect is contact area dependent. Moreover, the latter causes energy dissipation and leads to a wiggle movement of the droplet during the static-kinetic friction transition.
Collapse
Affiliation(s)
- Jinming Zhang
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, Dresden 01328, Germany.
| | - Wei Ding
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, Dresden 01328, Germany.
| | - Uwe Hampel
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, Dresden 01328, Germany; Technische Universität Dresden, Institute of Power Engineering, Dresden 01062, Germany.
| |
Collapse
|
10
|
Abstract
Liquid-repellent surfaces, especially smooth solid surfaces with covalently grafted flexible polymer brushes or alkyl monolayers, are the focus of an expanding research area. Surface-tethered flexible species are highly mobile at room temperature, giving solid surfaces a unique liquid-like quality and unprecedented dynamical repellency towards various liquids regardless of their surface tension. Omniphobic liquid-like surfaces (LLSs) are a promising alternative to air-mediated superhydrophobic or superoleophobic surfaces and lubricant-mediated slippery surfaces, avoiding fabrication complexity and air/lubricant loss issues. More importantly, the liquid-like molecular layer controls many important interface properties, such as slip, friction and adhesion, which may enable novel functions and applications that are inaccessible with conventional solid coatings. In this Review, we introduce LLSs and their inherent dynamic omniphobic mechanisms. Particular emphasis is given to the fundamental principles of surface design and the consequences of the liquid-like nature for task-specific applications. We also provide an overview of the key challenges and opportunities for omniphobic LLSs.
Collapse
Affiliation(s)
- Liwei Chen
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shilin Huang
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Robin H A Ras
- Department of Applied Physics, Aalto University School of Science, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
| | - Xuelin Tian
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
11
|
Mezzasalma SA, Kruse J, Ibarra AI, Arbe A, Grzelczak M. Statistical thermodynamics in reversible clustering of gold nanoparticles. A first step towards nanocluster heat engines. J Colloid Interface Sci 2022; 628:205-214. [DOI: 10.1016/j.jcis.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 12/01/2022]
|
12
|
Butt HJ, Liu J, Koynov K, Straub B, Hinduja C, Roismann I, Berger R, Li X, Vollmer D, Steffen W, Kappl M. Contact angle hysteresis. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Tsao YH, Wang TY, Tsao HK, Sheng YJ. Thermally assisted mobility of nanodroplets on surfaces with weak defects. J Colloid Interface Sci 2021; 604:150-156. [PMID: 34265675 DOI: 10.1016/j.jcis.2021.06.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Thermal activation plays an essential role in contact line dynamics on nanorough surfaces. However, the relation between the aforementioned concept and the sliding motion of nanodroplets remains unclear. As a result, thermally assisted motion of nanodroplets on nanorough surfaces is investigated in this work. EXPERIMENTS Steady slide and random motion of nanodroplets on surfaces with weak defects are investigated by Many-body Dissipative Particle Dynamics. The surface roughness is characterized by the slip length acquired from the velocity profile associated with the flowing film. FINDINGS The slip length is found to decline with increasing the defect density. The linear relationship between the sliding velocity and driving force gives the mobility and reveals the absence of contact line pinning. On the basis of the Navier condition, a simple relation is derived and states that the mobility is proportional to the slip length and the reciprocal of the product of viscosity and contact area. Our simulation results agree excellently with the theoretical prediction. In the absence of external forces, a two-dimensional Brownian motion of nanodroplets is observed and its mean square displacement decreases with increasing the defect density. The diffusivity is proportional to the mobility, consistent with the Einstein relation. This consequence suggests that thermal fluctuations are able to overcome contact line pinning caused by weak defects.
Collapse
Affiliation(s)
- Yu-Hao Tsao
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan
| | - Ting-Ya Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan.
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
14
|
Picard C, Gérard V, Michel L, Cattoën X, Charlaix E. Dynamics of heterogeneous wetting in periodic hybrid nanopores. J Chem Phys 2021; 154:164710. [PMID: 33940834 DOI: 10.1063/5.0044391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We present experimental and theoretical results concerning the forced filling and spontaneous drying of hydrophobic cylindrical mesopores in the dynamical regime. Pores are structured with organic/inorganic moieties responsible for a periodicity of the surface energy along their axis. We find that the forced intrusion of water in these hydrophobic pores presents a slow dynamics: the intrusion pressure decreases as the logarithm of the intrusion time. We find that this slow dynamics is well described quantitatively by a classical model of activated wetting at the nanoscale, giving access to the structural length scales and surface energies of the mesoporous material.
Collapse
Affiliation(s)
- C Picard
- CNRS, LIPhy, University Grenoble Alpes, 38000 Grenoble, France
| | - V Gérard
- CNRS, LIPhy, University Grenoble Alpes, 38000 Grenoble, France
| | - L Michel
- CNRS, LIPhy, University Grenoble Alpes, 38000 Grenoble, France
| | - X Cattoën
- CNRS, Grenoble INP, Institut Néel, University Grenoble Alpes, 38000 Grenoble, France
| | - E Charlaix
- CNRS, LIPhy, University Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
15
|
Tortora M, Meloni S, Tan BH, Giacomello A, Ohl CD, Casciola CM. The interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles. NANOSCALE 2020; 12:22698-22709. [PMID: 33169778 DOI: 10.1039/d0nr05859a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface nanobubbles are gaseous domains found at immersed substrates, whose remarkable persistence is still not fully understood. Recently, it has been observed that the formation of nanobubbles is often associated with a local high gas oversaturation at the liquid-solid interface. Tan, An and Ohl have postulated the existence of an effective potential attracting the dissolved gas to the substrate and producing a local oversaturation within 1 nm from it that can stabilize nanobubbles by preventing outgassing in the region where gas flow would be maximum. It is this effective solid-gas potential - which is not the intrinsic, mechanical interaction between solid and gas atoms - its dependence on chemical and physical characteristics of the substrate, gas and liquid, that controls the stability and the other characteristics of surface nanobubbles. Here, we perform free energy atomistic calculations to determine, for the first time, the effective solid-gas interaction that allows us to identify the molecular origin of the stability and other properties of surface nanobubbles. By combining the Tan-An-Ohl model and the present results, we provide a comprehensive theoretical framework allowing, among others, the interpretation of recent unexplained experimental results, such as the stability of surface nanobubbles in degassed liquids, the very high gas concentration in the liquid surrounding nanobubbles, and nanobubble instability in organic solvents with high gas solubility.
Collapse
Affiliation(s)
- Marco Tortora
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma La Sapienza, Via Eudossiana 18, 00184 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Gao Y, Zhu C, Zuhlke C, Alexander D, Francisco JS, Zeng XC. Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. J Am Chem Soc 2020; 142:18491-18502. [DOI: 10.1021/jacs.0c07224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yurui Gao
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Chongqin Zhu
- Department of Earth and Environmental Science, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Craig Zuhlke
- Department of Electrical and Computer Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Dennis Alexander
- Department of Electrical and Computer Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph S. Francisco
- Department of Earth and Environmental Science, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
17
|
Imaizumi Y, Omori T, Kusudo H, Bistafa C, Yamaguchi Y. Wilhelmy equation revisited: A lightweight method to measure liquid–vapor, solid–liquid, and solid–vapor interfacial tensions from a single molecular dynamics simulation. J Chem Phys 2020; 153:034701. [DOI: 10.1063/5.0011979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuta Imaizumi
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Takeshi Omori
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Hiroki Kusudo
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Carlos Bistafa
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Yasutaka Yamaguchi
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
- Water Frontier Science & Technology Research Center (W-FST), Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
18
|
Gerlach F, Hartmann M, Tropea C. The interaction of inner and outer surface corners during spontaneous wetting. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Marchio S, Meloni S, Giacomello A, Casciola CM. Wetting and recovery of nano-patterned surfaces beyond the classical picture. NANOSCALE 2019; 11:21458-21470. [PMID: 31686077 DOI: 10.1039/c9nr05105h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrophobic (nano)textured surfaces, also known as superhydrophobic surfaces, have a wide range of technological applications, including in the self-cleaning, anti-moisture, anti-icing, anti-fogging and friction/drag reduction fields, and many more. The accidental complete wetting of surface textures, which destroys superhydrophobicity, and the opposite process of recovery are two crucial processes that can prevent or enable the technological applications mentioned before. Understanding these processes is key to designing surfaces with tailored wetting and recovery properties. However, recent experiments have suggested that the currently available theories are insufficient for describing the observed phenomena. In this work we offer a dynamic picture of these processes beyond the state of the art showing that the key ingredient determining the experimental behavior is the inertia of the liquid in the wetting and dewetting processes, which is neglected in microscopic and macroscopic quasi-static theories inspired by the classical nucleation theory. The present findings are also important for other related phenomena, such as heterogeneous cavitation, where vapor/gas bubbles form at surface asperities, condensation, dynamics of the triple line, micelle formation, etc.
Collapse
Affiliation(s)
- Sara Marchio
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma Sapienza, Via Eudossiana 18, 00184 Roma, Italy.
| | - Simone Meloni
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma Sapienza, Via Eudossiana 18, 00184 Roma, Italy. and Dipartimento di Scienze Chimiche e Farmaceutiche (DipSCF), Universitá degli Studi di Ferrara (Unife), Via Luigi Borsari 46, I-44121, Ferrara, Italy.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma Sapienza, Via Eudossiana 18, 00184 Roma, Italy.
| | - Carlo Massimo Casciola
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma Sapienza, Via Eudossiana 18, 00184 Roma, Italy.
| |
Collapse
|
20
|
Kusudo H, Omori T, Yamaguchi Y. Extraction of the equilibrium pinning force on a contact line exerted from a wettability boundary of a solid surface through the connection between mechanical and thermodynamic routes. J Chem Phys 2019; 151:154501. [DOI: 10.1063/1.5124014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hiroki Kusudo
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omori
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasutaka Yamaguchi
- Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Giacomello A, Schimmele L, Dietrich S, Tasinkevych M. Recovering superhydrophobicity in nanoscale and macroscale surface textures. SOFT MATTER 2019; 15:7462-7471. [PMID: 31512709 PMCID: PMC8751625 DOI: 10.1039/c9sm01049a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 05/30/2023]
Abstract
Here, we investigate the complete drying of hydrophobic cavities in order to elucidate the dependence of drying on the size, the geometry, and the degree of hydrophobicity of the confinement. Two complementary theoretical approaches are adopted: a macroscopic one based on classical capillarity and a microscopic classical density functional theory. This combination allows us to pinpoint unique drying mechanisms at the nanoscale and to clearly differentiate them from the mechanisms operational at the macroscale. Nanoscale hydrophobic cavities allow the thermodynamic destabilization of the confined liquid phase over an unexpectedly broad range of conditions, including pressures as large as 10 MPa and contact angles close to 90°. On the other hand, for cavities on the micron scale, such destabilization occurs only for much larger contact angles and close to liquid-vapor coexistence. These scale-dependent drying mechanisms are used to propose design criteria for hierarchical superhydrophobic surfaces capable of spontaneous self-recovery over a broad range of operating conditions. In particular, we detail the requirements under which it is possible to realize perpetual superhydrophobicity at positive pressures on surfaces with micron-sized textures by exploiting drying, facilitated by nanoscale coatings. Concerning the issue of superhydrophobicity, these findings indicate a promising direction both for surface fabrication and for the experimental characterization of perpetual surperhydrophobicity. From a more basic perspective, the present results have an echo on a wealth of biological problems in which hydrophobic confinement induces drying, such as in protein folding, molecular recognition, and hydrophobic gating.
Collapse
Affiliation(s)
- Alberto Giacomello
- Sapienza Università di Roma, Dipartimento di Ingegneria Meccanica e Aerospaziale, 00184 Rome, Italy. and Max-Planck-Institut für Intelligente Systeme, 70569 Stuttgart, Germany
| | - Lothar Schimmele
- Max-Planck-Institut für Intelligente Systeme, 70569 Stuttgart, Germany
| | - Siegfried Dietrich
- Max-Planck-Institut für Intelligente Systeme, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Mykola Tasinkevych
- Centro de Física Teórica e Computacional, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1749-016 Lisboa, Portugal
| |
Collapse
|
22
|
Wang Z, Lin K, Zhao YP. The effect of sharp solid edges on the droplet wettability. J Colloid Interface Sci 2019; 552:563-571. [DOI: 10.1016/j.jcis.2019.05.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/29/2022]
|
23
|
Bao L, Pinchasik BE, Lei L, Xu Q, Hao H, Wang X, Zhang X. Control of Femtoliter Liquid on a Microlens: A Way to Flexible Dual-Microlens Arrays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27386-27393. [PMID: 31268287 DOI: 10.1021/acsami.9b06390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microlens arrays are key elements for light management in optoelectronic devices. The recent advancement in the wearable intelligent electronics has driven the development of flexible microlenses. In this work, we show a controllable and scalable surface-droplet-based strategy to create unconventional flexible polymer microlens arrays. The technique is underpinned by the morphological transition of femtoliter liquid on the surface of a microlens surrounded by a planar area. We found that the droplet liquid wetted the rim of the microlens first and gradually moved upward to the microlens surface with an increase in the liquid volume. The morphology evolution of the droplet is in good agreement with the predication from our simulations based on the interfacial energy minimization under the condition of the pinned boundary. The shape of the droplet on the microlens is well controlled by the droplet volume, aspect ratio of the microlens, and the interfacial energy of the droplets on the microlens. As a result, the obtained structures of one microlens partially covered by a droplet can be produced in arrays over a large scale, serving as templates for fabricating transparent polymer double microlens arrays for improved light emission from the optoelectronic device.
Collapse
Affiliation(s)
- Lei Bao
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
| | - Bat-El Pinchasik
- Department of Physics at Interfaces , Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
- School of Mechanical Engineering, Faculty of Engineering , Tel-Aviv University , Ramat Aviv , 69978 Tel-Aviv , Israel
| | - Lei Lei
- School of Engineering , RMIT University , Melbourne , VIC 3001 , Australia
- School of Civil Engineering , Xuzhou University of Technology , Xuzhou , Jiangsu Province 221000 , China
| | - Qiwei Xu
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Hao Hao
- Department of Chemistry and Biotechnology, School of Science , Swinburne University of Technology , Hawthorn , VIC 3122 , Australia
| | - Xihua Wang
- Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, Faculty of Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
24
|
Vo Q, Tran T. Critical Conditions for Jumping Droplets. PHYSICAL REVIEW LETTERS 2019; 123:024502. [PMID: 31386542 DOI: 10.1103/physrevlett.123.024502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 06/10/2023]
Abstract
A droplet initially overstretched on a solid substrate pulls back to lower the contact area and may jump away from the substrate. The condition to realize such macroscopic behaviors is often dictated by microscopic characteristics, such as contact-line pinning, in nontrivial ways. Here we theoretically and experimentally reveal the hidden contribution of contact-line pinning in forming the critical condition for detachment of a droplet from a solid substrate, among other dominating hydrodynamical effects. Our results demonstrate the relation between classical theories on contact-line pinning and various droplet manipulating applications in microfluidics and bioprinting.
Collapse
Affiliation(s)
- Quoc Vo
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Tuan Tran
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
25
|
Malijevský A, Parry AO, Pospíšil M. Bridging of liquid drops at chemically structured walls. Phys Rev E 2019; 99:042804. [PMID: 31108724 DOI: 10.1103/physreve.99.042804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Using mesoscopic interfacial models and microscopic density functional theory we study fluid adsorption at a dry wall decorated with three completely wet stripes of width L separated by distances D_{1} and D_{2}. The stripes interact with the fluid with long-range forces inducing a large finite-size contribution to the surface free energy. We show that this nonextensive free-energy contribution scales with lnL and drives different types of bridging transition corresponding to the merging of liquid drops adsorbed at neighboring wetting stripes when the separation between them is molecularly small. We determine the surface phase diagram and show that this exhibits two triple points, where isolated drops, double drops, and triple drops coexist. For the symmetric case, D_{1}=D_{2}≡D, our results also confirm that the equilibrium droplet configuration always has the symmetry of the substrate corresponding to either three isolated drops when D is large or a single triple drop when D is small; however, symmetry-broken configurations do occur in a metastable part of the phase diagram which lies very close to the equilibrium-bridging phase boundary. Implications for phase transitions on other types of patterned surface are considered.
Collapse
Affiliation(s)
- Alexandr Malijevský
- Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 165 02, Czech Republic
| | - Andrew O Parry
- Department of Mathematics, Imperial College London, London SW7 2BZ, United Kingdom
| | - Martin Pospíšil
- Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 165 02, Czech Republic
| |
Collapse
|
26
|
Emulsions in porous media: From single droplet behavior to applications for oil recovery. Adv Colloid Interface Sci 2018; 256:305-325. [PMID: 29622270 DOI: 10.1016/j.cis.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
Emulsions are suspensions of droplets ubiquitous in oil recovery from underground reservoirs. Oil is typically trapped in geological porous media where emulsions are either formed in situ or injected to elicit oil mobilization and thus enhance the amount of oil recovered. Here, we briefly review basic concepts on geometrical and wetting features of porous media, including thin film stability and fluids penetration modes, which are more relevant for oil recovery and oil-contaminated aquifers. Then, we focus on the description of emulsion flow in porous media spanning from the behaviour of single droplets to the collective flow of a suspension of droplets, including the effect of bulk and interfacial rheology, hydrodynamic and physico-chemical interactions. Finally, we describe the particular case of emulsions used in underground porous media for enhanced oil recovery, thereby discussing some perspectives of future work. Although focused on oil recovery related topics, most of the insights we provide are useful towards remediation of oil-contaminated aquifers and for a basic understanding of emulsion flow in any kind of porous media, such as biological tissues.
Collapse
|
27
|
Encarnación
Escobar JM, Dietrich E, Arscott S, Zandvliet HJW, Zhang X, Lohse D. Zipping-Depinning: Dissolution of Droplets on Micropatterned Concentric Rings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5396-5402. [PMID: 29652156 PMCID: PMC5956284 DOI: 10.1021/acs.langmuir.8b00256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Indexed: 05/30/2023]
Abstract
The control of the surface wettability is of great interest for technological applications as well as for the fundamental understanding of surface phenomena. In this article, we describe the dissolution behavior of droplets wetting a micropatterned surface consisting of smooth concentric circular grooves. In the experiments, a droplet of alcohol (1-pentanol) is placed onto water-immersed micropatterns. When the drops dissolve, the dynamics of the receding contact line occurs in two different modes. In addition to the stick-jump mode with jumps from one ring to the next inner one, our study reveals a second dissolution mode, which we refer to as zipping-depinning. The velocity of the zipping-depinning fronts is governed by the dissolution rate. At the early stage of the droplet dissolution, our experimental results are in good agreement with the theoretical predictions by Debuisson et al. [ Appl. Phys. Lett. 2011 , 99 , 184101 ]. With an extended model, we can accurately describe the dissolution dynamics in both stick-jump and zipping-depinning modes.
Collapse
Affiliation(s)
- José M. Encarnación
Escobar
- Department
of Physics of Fluids and Department of Physics of Interfaces
and Nanomaterials, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Erik Dietrich
- Department
of Physics of Fluids and Department of Physics of Interfaces
and Nanomaterials, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Steve Arscott
- Institut
d’Electronique, de Microélectronique et de Nanotechnologie,
CNRS, The University of Lille, Villeneuve d’Ascq 59652, France
| | - Harold J. W. Zandvliet
- Department
of Physics of Fluids and Department of Physics of Interfaces
and Nanomaterials, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Xuehua Zhang
- Department
of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Detlef Lohse
- Department
of Physics of Fluids and Department of Physics of Interfaces
and Nanomaterials, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
- Max
Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany
| |
Collapse
|
28
|
Tinti A, Giacomello A, Casciola CM. Vapor nucleation paths in lyophobic nanopores. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:52. [PMID: 29675633 DOI: 10.1140/epje/i2018-11658-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
In recent years, technologies revolving around the use of lyophobic nanopores gained considerable attention in both fundamental and applied research. Owing to the enormous internal surface area, heterogeneous lyophobic systems (HLS), constituted by a nanoporous lyophobic material and a non-wetting liquid, are promising candidates for the efficient storage or dissipation of mechanical energy. These diverse applications both rely on the forced intrusion and extrusion of the non-wetting liquid inside the pores; the behavior of HLS for storage or dissipation depends on the hysteresis between these two processes, which, in turn, are determined by the microscopic details of the system. It is easy to understand that molecular simulations provide an unmatched tool for understanding phenomena at these scales. In this contribution we use advanced atomistic simulation techniques in order to study the nucleation of vapor bubbles inside lyophobic mesopores. The use of the string method in collective variables allows us to overcome the computational challenges associated with the activated nature of the phenomenon, rendering a detailed picture of nucleation in confinement. In particular, this rare event method efficiently searches for the most probable nucleation path(s) in otherwise intractable, high-dimensional free-energy landscapes. Results reveal the existence of several independent nucleation paths associated with different free-energy barriers. In particular, there is a family of asymmetric transition paths, in which a bubble forms at one of the walls; the other family involves the formation of axisymmetric bubbles with an annulus shape. The computed free-energy profiles reveal that the asymmetric path is significantly more probable than the symmetric one, while the exact position where the asymmetric bubble forms is less relevant for the free energetics of the process. A comparison of the atomistic results with continuum models is also presented, showing how, for simple liquids in mesoporous materials of characteristic size of ca. 4nm, the nanoscale effects reported for smaller pores have a minor role. The atomistic estimates for the nucleation free-energy barrier are in qualitative accord with those that can be obtained using a macroscopic, capillary-based nucleation theory.
Collapse
Affiliation(s)
- Antonio Tinti
- Max-Planck Institut für Intelligente Systeme, 70569, Stuttgart, Germany.
- Sapienza Università di Roma, 00184, Rome, Italy.
| | | | | |
Collapse
|
29
|
Iliev S, Pesheva N, Iliev P. Contact angle hysteresis on doubly periodic smooth rough surfaces in Wenzel's regime: The role of the contact line depinning mechanism. Phys Rev E 2018; 97:042801. [PMID: 29758646 DOI: 10.1103/physreve.97.042801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 06/08/2023]
Abstract
We report here on the contact angle hysteresis, appearing when a liquid meniscus is in contact with doubly sinusoidal wavelike patterned surfaces in Wenzel's wetting regime. Using the full capillary model we obtain numerically the contact angle hysteresis as a function of the surface roughness factor and the equilibrium contact angle for a block case and a kink case contact line depinning mechanism. We find that the dependencies of the contact angle hysteresis on the surface roughness factor are different for the different contact line depinning mechanisms. These dependencies are different also for the two types of rough surfaces we studied. The relations between advancing, receding, and equilibrium contact angles are investigated. A comparison with the existing asymptotical, numerical, and experimental results is carried out.
Collapse
Affiliation(s)
- Stanimir Iliev
- Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 4, 1113 Sofia, Bulgaria
| | - Nina Pesheva
- Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 4, 1113 Sofia, Bulgaria
| | - Pavel Iliev
- Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 4, 1113 Sofia, Bulgaria
- ETH Zurich, Computational Physics for Engineering Materials, CH-8093 Zurich, Switzerland
| |
Collapse
|
30
|
Perrin H, Lhermerout R, Davitt K, Rolley E, Andreotti B. Thermally activated motion of a contact line over defects. SOFT MATTER 2018; 14:1581-1595. [PMID: 29411839 DOI: 10.1039/c7sm02211e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
At the nanometer scale, the motion of a contact line separating a dry from a wet region is limited by the presence of surface heterogeneities that pin it. Here we revisit the seminal model proposed by Joanny and de Gennes to include the influence of thermal noise and viscosity using a Langevin model with two degrees of freedom: the average position of the contact line and its distortion. We identify the conditions under which the dynamics in a velocity-driven experiment can in fact be described by a constant forcing at small scale. We then relate the asymptotic properties of the relation between force and contact line velocity to the properties of the defects. In particular, we show that Kramers' approximation misses the strong asymmetry between advancing and receding directions. Finally, we show how to use the model to fit experimental data and extract the salient features of the surface energy landscape.
Collapse
Affiliation(s)
- Hugo Perrin
- Laboratoire de Physique Statistique (LPS), UMR 8550 CNRS, ENS, Univ. Paris Diderot, Sorbonne Université, 24 rue Lhomond, 75005, Paris, France.
| | | | | | | | | |
Collapse
|
31
|
Lei L, Li J, Yu H, Bao L, Peng S, Zhang X. Formation, growth and applications of femtoliter droplets on a microlens. Phys Chem Chem Phys 2018; 20:4226-4237. [PMID: 29364296 DOI: 10.1039/c7cp06861a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Formation and growth of femtoliter droplets on surface microstructures are important in many fundamental and practical interfacial processes, such as water collection, vapour condensation in cooling devices, drop self-removal on anti-icing surfaces and fabrication of droplet-templated functional microstructures. In this work, we experimentally and theoretically investigate the growth of femtoliter oil-like liquid on the microlens surrounded by a hydrophilic planar area. The droplets were produced by solvent exchange, a process where the droplets nucleate and grow from an oversaturation created by displacing a good solvent by a poor solvent of the droplet liquid. Our results showed that the droplet fully coats the lens surface and the contact angle of the droplet relative to the flat surface is finely tuned over a large range by the droplet volume. The growth of the droplet on a microlens is largely described by the constant contact radius model. To demonstrate the new opportunities provided by the controlled formation of the droplet situated on a microlens, we will show a simple and effective approach for production of arrays of composite microlenses consisting of two types of polymers with different refractive indices. A high curvature of the composite microlens results in desirable diffraction patterns with potential application for enhanced light harvesting. Moreover, we demonstrate that extraction of traces of a hydrophobic solute from the flow is much faster as the droplet is lifted up from the channel wall by the microlens, promising a time effective in situ detection process in narrow channels.
Collapse
Affiliation(s)
- Lei Lei
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu Province 221000, China
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Molecular springs, constituted by nanoporous materials immersed in a nonwetting liquid, are compact, economical, and efficient means of storing energy, owing to their enormous surface area. Surface energy is accumulated during liquid intrusion inside the pores and released by decreasing liquid pressure and thus triggering confined cavitation. State-of-the-art atomistic simulations shed light on the intrusion and extrusion of water in hydrophobic nanopores, revealing conspicuous deviations from macroscopic theories, which include accelerated cavitation, increased intrusion pressure, and reversible intrusion and extrusion processes. Understanding these nanoscale phenomena is the key to a better design of molecular springs as it allows relating the characteristics of the materials to the overall properties of the devices, e.g., their operational pressure and efficiency. Heterogeneous systems composed of hydrophobic nanoporous materials and water are capable, depending on their characteristics, of efficiently dissipating (dampers) or storing (“molecular springs”) energy. However, it is difficult to predict their properties based on macroscopic theories—classical capillarity for intrusion and classical nucleation theory (CNT) for extrusion—because of the peculiar behavior of water in extreme confinement. Here we use advanced molecular dynamics techniques to shed light on these nonclassical effects, which are often difficult to investigate directly via experiments, owing to the reduced dimensions of the pores. The string method in collective variables is used to simulate, without artifacts, the microscopic mechanism of water intrusion and extrusion in the pores, which are thermally activated, rare events. Simulations reveal three important nonclassical effects: the nucleation free-energy barriers are reduced eightfold compared with CNT, the intrusion pressure is increased due to nanoscale confinement, and the intrusion/extrusion hysteresis is practically suppressed for pores with diameters below 1.2 nm. The frequency and size dependence of hysteresis exposed by the present simulations explains several experimental results on nanoporous materials. Understanding physical phenomena peculiar to nanoconfined water paves the way for a better design of nanoporous materials for energy applications; for instance, by decreasing the size of the nanopores alone, it is possible to change their behavior from dampers to molecular springs.
Collapse
|
33
|
Wang A, Rogers WB, Manoharan VN. Effects of Contact-Line Pinning on the Adsorption of Nonspherical Colloids at Liquid Interfaces. PHYSICAL REVIEW LETTERS 2017; 119:108004. [PMID: 28949187 DOI: 10.1103/physrevlett.119.108004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 05/20/2023]
Abstract
The effects of contact-line pinning are well known in macroscopic systems but are only just beginning to be explored at the microscale in colloidal suspensions. We use digital holography to capture the fast three-dimensional dynamics of micrometer-sized ellipsoids breaching an oil-water interface. We find that the particle angle varies approximately linearly with the height, in contrast to results from simulations based on the minimization of the interfacial energy. Using a simple model of the motion of the contact line, we show that the observed coupling between translational and rotational degrees of freedom is likely due to contact-line pinning. We conclude that the dynamics of colloidal particles adsorbing to a liquid interface are not determined by the minimization of interfacial energy and viscous dissipation alone; contact-line pinning dictates both the time scale and pathway to equilibrium.
Collapse
Affiliation(s)
- Anna Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - W Benjamin Rogers
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
34
|
Giro R, Bryant PW, Engel M, Neumann RF, Steiner MB. Adsorption energy as a metric for wettability at the nanoscale. Sci Rep 2017; 7:46317. [PMID: 28397869 PMCID: PMC5387734 DOI: 10.1038/srep46317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/14/2017] [Indexed: 12/27/2022] Open
Abstract
Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included.
Collapse
Affiliation(s)
- Ronaldo Giro
- IBM Research, Av. Pasteur 138/146, CEP 22290-240, Rio de Janeiro, RJ, Brazil
| | - Peter W Bryant
- IBM Research, Av. Pasteur 138/146, CEP 22290-240, Rio de Janeiro, RJ, Brazil
| | - Michael Engel
- IBM Research, Av. Pasteur 138/146, CEP 22290-240, Rio de Janeiro, RJ, Brazil.,IBM Research, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, United States of America
| | - Rodrigo F Neumann
- IBM Research, Av. Pasteur 138/146, CEP 22290-240, Rio de Janeiro, RJ, Brazil
| | - Mathias B Steiner
- IBM Research, Av. Pasteur 138/146, CEP 22290-240, Rio de Janeiro, RJ, Brazil.,IBM Research, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, United States of America
| |
Collapse
|
35
|
Hughes AP, Thiele U, Archer AJ. Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory. J Chem Phys 2017; 146:064705. [DOI: 10.1063/1.4974832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
36
|
Peng S, Pinchasik BE, Hao H, Möhwald H, Zhang X. Morphological Transformation of Surface Femtodroplets upon Dissolution. J Phys Chem Lett 2017; 8:584-590. [PMID: 28080055 DOI: 10.1021/acs.jpclett.6b02861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Constructing controllable liquid patterns with high resolution and accuracy is of great importance in droplet depositions for a range of applications. Simple surface chemical micropatterns have been popularly used to regulate the shape of liquid droplets and the final structure of deposited materials. In this work, we study the morphological evolution of a dissolving femtoliter droplet pinned on multiple microdomains. On the basis of minimization of interfacial energy, the numerical simulations predict various symmetric droplet profiles in equilibrium at different liquid volumes. However, our experimental results show both symmetric and asymmetric shapes of droplets due to contact line pinning and symmetry breaking during droplet dissolution. Upon slow volume reduction, the deposited microdroplet arrays on one single type of simple surface prepatterns spontaneously morphed into a series of complex regular 3D shapes. The findings in this work offer insights into design and prepararion of the rich and complex morphology of liquid patterns via simple surface premicropatterns.
Collapse
Affiliation(s)
- Shuhua Peng
- Soft Matter & Interfaces Group, School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Bat-El Pinchasik
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research , Ackermannweg 10, 55128, Mainz, Germany
| | - Hao Hao
- Electrical and Computer Engineering, School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Helmuth Möhwald
- Emeritus Group of Interfaces, Max-Planck Institute of Colloids and Interfaces , Golm/Potsdam D14476, Germany
| | - Xuehua Zhang
- Soft Matter & Interfaces Group, School of Engineering, RMIT University , Melbourne, Victoria 3001, Australia
- Physics of Fluids Group, Department of Science and Engineering, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
37
|
Amabili M, Giacomello A, Meloni S, Casciola CM. Intrusion and extrusion of a liquid on nanostructured surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:014003. [PMID: 27830654 DOI: 10.1088/0953-8984/29/1/014003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Superhydrophobicity is connected to the presence of gas pockets within surface asperities. Upon increasing the pressure this 'suspended' state may collapse, causing the complete wetting of the rough surface. In order to quantitatively characterize this process on nanostructured surfaces, we perform rare-event atomistic simulations at different pressures and for several texture geometries. Such an approach allows us to identify for each pressure the stable and metastable states and the free energy barriers separating them. Results show that, by starting from the superhydrophobic state and increasing the pressure, the suspended state abruptly collapses at a critical intrusion pressure. If the pressure is subsequently decreased, the system remains trapped in the metastable state corresponding to the wet surface. The liquid can be extruded from the nanostructures only at very negative pressures, by reaching the critical extrusion pressure (spinodal for the confined liquid). The intrusion and extrusion curves form a hysteresis cycle determined by the large free energy barriers separating the suspended and wet states. These barriers, which grow very quickly for pressures departing from the intrusion/extrusion pressure, are shown to strongly depend on the texture geometry.
Collapse
Affiliation(s)
- M Amabili
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma 'La Sapienza', Rome, Italy
| | | | | | | |
Collapse
|
38
|
Belardinelli D, Sbragaglia M, Gross M, Andreotti B. Thermal fluctuations of an interface near a contact line. Phys Rev E 2016; 94:052803. [PMID: 27967049 DOI: 10.1103/physreve.94.052803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 11/07/2022]
Abstract
The effect of thermal fluctuations near a contact line of a liquid interface partially wetting an impenetrable substrate is studied analytically and numerically. Promoting both the interface profile and the contact line position to random variables, we explore the equilibrium properties of the corresponding fluctuating contact line problem based on an interfacial Hamiltonian involving a "contact" binding potential. To facilitate an analytical treatment, we consider the case of a one-dimensional interface. The effective boundary condition at the contact line is determined by a dimensionless parameter that encodes the relative importance of thermal energy and substrate energy at the microscopic scale. We find that this parameter controls the transition from a partial wetting to a pseudopartial wetting state, the latter being characterized by a thin prewetting film of fixed thickness. In the partial wetting regime, instead, the profile typically approaches the substrate via an exponentially thinning prewetting film. We show that, independently of the physics at the microscopic scale, Young's angle is recovered sufficiently far from the substrate. The fluctuations of the interface and of the contact line give rise to an effective disjoining pressure, exponentially decreasing with height. Fluctuations therefore provide a regularization of the singular contact forces occurring in the corresponding deterministic problem.
Collapse
Affiliation(s)
- D Belardinelli
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - M Sbragaglia
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - M Gross
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - B Andreotti
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI-CNRS, Université Paris-Diderot, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
39
|
Meloni S, Giacomello A, Casciola CM. Focus Article: Theoretical aspects of vapor/gas nucleation at structured surfaces. J Chem Phys 2016; 145:211802. [DOI: 10.1063/1.4964395] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Simone Meloni
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy
| | - Alberto Giacomello
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy
| |
Collapse
|
40
|
Peng S, Dević I, Tan H, Lohse D, Zhang X. How a Surface Nanodroplet Sits on the Rim of a Microcap. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5744-5754. [PMID: 27183892 DOI: 10.1021/acs.langmuir.6b01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The location and morphology of femtoliter nanodroplets that nucleate and grow on a microcap-decorated substrate in contact with a liquid phase were investigated. We experimentally examined four different wetting combinations of the flat area and the microcaps. The results show that depending on the relative wettability, the droplets sit either on the plain surface or on the top of the microcap or on the rim of the microcap. The contact angle and, for the last case, the radial positions of the nanodroplets relative to the microcap center were characterized, in reasonable agreement with our theoretical analysis, which is based on an interfacial energy minimization argument. However, the experimental data show considerable scatter around the theoretical equilibrium curves, reflecting pinning and thus nonequilibrium effects. We also provide the theoretical phase diagram in parameter space of the contact angles, revealing under which conditions the nanodroplet will nucleate on the rim of the microcap.
Collapse
Affiliation(s)
- Shuhua Peng
- Soft Matter and Interfaces Group, School of Engineering, RMIT University , Melbourne, VIC 3001, Australia
| | - Ivan Dević
- Physics of Fluids group, Department of Science and Engineering, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Huanshu Tan
- Physics of Fluids group, Department of Science and Engineering, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids group, Department of Science and Engineering, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
- Max Planck Institute for Dynamics and Self-Organization , 37077 Goettingen, Germany
| | - Xuehua Zhang
- Soft Matter and Interfaces Group, School of Engineering, RMIT University , Melbourne, VIC 3001, Australia
- Physics of Fluids group, Department of Science and Engineering, Mesa+ Institute, and J. M. Burgers Centre for Fluid Dynamics, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
41
|
Malijevský A, Parry AO. Influence of intermolecular forces at critical-point wedge filling. Phys Rev E 2016; 93:040801. [PMID: 27176242 DOI: 10.1103/physreve.93.040801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 11/07/2022]
Abstract
We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.
Collapse
Affiliation(s)
- Alexandr Malijevský
- Department of Physical Chemistry, Institute of Chemical Technology, Prague, 166 28 Praha 6, Czech Republic and Institute of Chemical Process Fundamentals, Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Andrew O Parry
- Department of Mathematics, Imperial College London, London SW7 2B7, United Kingdom
| |
Collapse
|
42
|
Perrin H, Lhermerout R, Davitt K, Rolley E, Andreotti B. Defects at the Nanoscale Impact Contact Line Motion at all Scales. PHYSICAL REVIEW LETTERS 2016; 116:184502. [PMID: 27203326 DOI: 10.1103/physrevlett.116.184502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Indexed: 06/05/2023]
Abstract
The contact angle of a liquid drop moving on a real solid surface depends on the speed and direction of motion of the three-phase contact line. Many experiments have demonstrated that pinning on surface defects, thermal activation and viscous dissipation impact contact line dynamics, but so far, efforts have failed to disentangle the role of each of these dissipation channels. Here, we propose a unifying multiscale approach that provides a single quantitative framework. We use this approach to successfully account for the dynamics measured in a classic dip-coating experiment performed over an unprecedentedly wide range of velocity. We show that the full contact line dynamics up to the liquid film entrainment threshold can be parametrized by the size, amplitude and density of nanometer-scale defects. This leads us to reinterpret the contact angle hysteresis as a dynamical crossover rather than a depinning transition.
Collapse
Affiliation(s)
- Hugo Perrin
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI -CNRS, Université Paris-Diderot, 10 rue Vauquelin, 75005 Paris, France
| | - Romain Lhermerout
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Kristina Davitt
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Etienne Rolley
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Bruno Andreotti
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 ESPCI -CNRS, Université Paris-Diderot, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|