1
|
He D, Zhao S, Wang F, Wu B, Wei F, Zhao Y, Wei X, Ren H, Zhang M, Fan Y, Zhang J, Yu S, Tang Y, Diao Y. H9N2 avian influenza virus diagnostics utilizing specific high-sensitivity enzymatic molecular system termed RPA-based CRISPR-Cas13a. Int J Biol Macromol 2025; 301:140474. [PMID: 39884612 DOI: 10.1016/j.ijbiomac.2025.140474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
H9N2 avian influenza virus (AIV), a major pathogen causing respiratory infections in poultry, poses a significant threat to the poultry industry and human health. Early detection and control of H9N2 infections are essential for minimizing economic losses and preventing potential zoonotic transmission. A novel CRISPR-Cas family member called CRISPR-Cas13a comprises the CRISPR RNA (crRNA) and Cas13a nuclease. Through the crRNA-based reprogramming of Cas13a, a platform for sensing RNAs specifically is available. In this study, we developed a RPA-based CRISPR-Cas13a diagnostic method for rapid detection of the H9N2 AIV. The results demonstrated that at a limit of 10 copies/μL and 102 copies/μL could be detected within 50 min, by fluorescence detection and lateral flow strip, respectively, offering a highly sensitive method for H9N2 detection. This method exhibited excellent specificity, distinguishing H9N2 from other pathogens. Furthermore, the RPA-Cas13a-based detection system was tested on clinical samples, showing comparable performance to RT-qPCR. The detection results were visualized using either lateral flow assays or fluorescence, making it a suitable tool for on-site, field-deployable diagnostics. In a word, this RPA-Cas13a diagnostic approach offers high reliability, sensitivity, and specificity, with promising potential for rapidly detecting H9N2 and other viral pathogens in clinical and food safety applications.
Collapse
Affiliation(s)
- Dalin He
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Saisai Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Fangfang Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Feng Wei
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Xinhui Wei
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Hui Ren
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Meijuan Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Yaru Fan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Jiahao Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Shumin Yu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Yi Tang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 10091, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong Province, China.
| |
Collapse
|
2
|
Wang YH, Chen JJ, Ma J, Owen JE, Wang GL, Yu LJ, Shan CX, Tian Y, Lv CL, Wang T, Zhang Y, Lin SH, Zhao XJ, Zhang S, Wei WQ, Zhang YY, Tang T, Li XL, Jiang T, Li J, Zhang XA, Hong F, Hay SI, Sun YS, Liu W, Fang LQ. Early-warning signals and the role of H9N2 in the spillover of avian influenza viruses. MED 2025:100639. [PMID: 40139184 DOI: 10.1016/j.medj.2025.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The spillover of avian influenza viruses (AIVs) presents a significant global public health threat, leading to unpredictable and recurring pandemics. Current pandemic assessment tools suffer from deficiencies in terms of timeliness, capability for automation, and ability to generate risk estimates for multiple subtypes in the absence of documented human cases. METHODS To address these challenges, we created an integrated database encompassing global AIV-related data from 1981 to 2022. This database enabled us to estimate the rapid expansion of spatial range and host diversity for specific AIV subtypes, alongside their increasing prevalence in hosts that have close contact with humans. These factors were used as early-warning signals for potential AIV spillover. We analyzed spillover patterns of AIVs using machine learning models, spatial Durbin models, and phylogenetic analysis. FINDINGS Our results indicate a high potential for future spillover by subtypes H3N1, H4N6, H5N2, H5N3, H6N2, and H11N9. Additionally, we identified a significant risk for re-emergence by subtypes H5N1, H5N6, H5N8, and H9N2. Furthermore, our analysis highlighted 12 key strains of H9N2 as internal genetic donors for human adaptation in AIVs, demonstrating the crucial role of H9N2 in facilitating AIV spillover. CONCLUSIONS These findings provide a foundation for rapidly identifying high-risk subtypes, thus optimizing resource allocation in vaccine manufacture. They also underscore the potential significance of reducing the prevalence of H9N2 as a complementary strategy to mitigate chances of AIV spillovers. FUNDING National Key Research and Development Program of China.
Collapse
Affiliation(s)
- Yan-He Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; The 968(th) Hospital of Joint Logistics Support Force of PLA, Jinzhou, Liaoning 121001, P.R. China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jun Ma
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Jonathan E Owen
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Lin-Jie Yu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Chun-Xi Shan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Yao Tian
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Tao Wang
- The 949(th) Hospital of Chinese PLA, Altay, Xinjiang 836500, P.R. China
| | - Yan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Sheng-Hong Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Wang-Qian Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan-Yuan Zhang
- The 926(th) Hospital of Joint Logistics Support Force of PLA, Kaiyuan, Yunnan 661606, P.R. China
| | - Tian Tang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Xin-Lou Li
- Department of Medical Research, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental Protection, PLA Strategic Support Force Medical Center, Beijing 100101, P.R. China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Feng Hong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121, USA.
| | - Yan-Song Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China.
| |
Collapse
|
3
|
Daidoji T, Sadakane H, Garan K, Kawashita N, Arai Y, Watanabe Y, Nakaya T. The host tropism of current zoonotic H7N9 viruses depends mainly on an acid-labile hemagglutinin with a single amino acid mutation in the stalk region. PLoS Pathog 2024; 20:e1012427. [PMID: 39436936 PMCID: PMC11495601 DOI: 10.1371/journal.ppat.1012427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/15/2024] [Indexed: 10/25/2024] Open
Abstract
The incidence of human infection by zoonotic avian influenza viruses, especially H5N1 and H7N9 viruses, has increased. Current zoonotic H7N9 avian influenza viruses (identified since 2013) emerged during reassortment of viruses belonging to different subtypes. Despite analyses of their genetic background, we do not know why current H7N9 viruses are zoonotic. Therefore, there is a need to identify the factor(s) responsible for the extended host tropism that enables these viruses to infect humans as well as birds. To identify H7N9-specific amino acids that confer zoonotic properties on H7N9 viruses, we performed multiple alignment of the hemagglutinin (HA) amino acid sequences of A/Shanghai/1/2013 (H7N9) and A/duck/Zhejiang/12/2011(H7N3) (a putative, non- or less zoonotic HA donor to the zoonotic H7N9 virus). We also analyze the function of an H7N9 HA-specific amino acid with respect to HA acid stability, and evaluated the effect of acid stability on viral infectivity and virulence in a mouse model. HA2-116D, preserved in current zoonotic H7N9 viruses, was crucial for loss of HA acid stability. The acid-labile HA protein in H7 viruses played an important role in infection of human airway epithelial cells; HA2-116D contributed to infection and replication of H7 viruses. Finally, HA2-116D served as a H7 virulence factor in mice. These results suggest that acid-labile HA harboring HA2-116D confers zoonotic characteristics on H7N9 virus and that future novel zoonotic avian viruses could emerge from non-zoonotic H7 viruses via acquisition of mutations that remove HA acid stability.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Sadakane
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Garan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Madani R, Hezarosi M, Golchinfar F. Unveiling Indirect ELISA Test against Nucleoprotein of H9N2 Comparing With Hemagglutination Inhibition Test. ARCHIVES OF RAZI INSTITUTE 2024; 79:889-896. [PMID: 40256573 PMCID: PMC12004048 DOI: 10.32592/ari.2024.79.4.889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 04/22/2025]
Abstract
Influenza is an acute and highly contagious respiratory disease caused by an RNA virus belonging to the Orthomyxoviridae family. The virus has the capacity to infect both birds and mammals. Avian influenza is an infection or a syndrome caused by type A influenza viruses. The reservoir of this disease is defined as aquatic and migratory birds, and there is a possibility of this disease occurring in any region. Influenza can be transmitted through contact with contaminated surfaces. Some strains, such as the Asian H9N2 strain, have been observed to cause respiratory diseases in people in Asia. Therefore, this study aims to diagnose the disease in infected poultry with greater speed and ease by screening them with nucleoprotein of H9N2, thus preventing outbreaks. An indirect ELISA test was developed using the nucleoprotein of the H9N2 A/Chicken/Iran/259/2014 virus, with a molecular weight of 60 kilodaltons, which was separated from the virus by the electroelution method with the use of the monoclonal antibody against nucleoprotein serving as the standard. Subsequently, the results of the indirect ELISA test and the hemagglutination inhibition tests were compared using 300 serum samples from birds. The findings of this study illustrated the correlation between the indirect ELISA test and the hemagglutination inhibition test when analyzed together. A Spearman's correlation coefficient indicated that there was a significant and strong positive relationship between the two variables (ρ =0.901, p < .001, N = 300). The indirect ELISA test showed a sensitivity of 90% and a specificity of 92%. Since the disease with mild symptoms can make the diagnosis difficult, we need to control and quickly identify the avian influenza virus. Our indirect Elisa test could help detect a wide range of strains by utilizing a conserved antigen as well as being able to be used for screening more suspected samples in a time efficient manner as compared to the golden standard test, hemagglutination inhibition.
Collapse
Affiliation(s)
- R Madani
- Department of Proteomics and Biochemistry, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - M Hezarosi
- Department of Proteomics and Biochemistry, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - F Golchinfar
- Department of Proteomics and Biochemistry, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
5
|
Raj S, Alizadeh M, Matsuyama-Kato A, Boodhoo N, Denis MS, Nagy É, Mubareka S, Karimi K, Behboudi S, Sharif S. Efficacy of an inactivated influenza vaccine adjuvanted with Toll-like receptor ligands against transmission of H9N2 avian influenza virus in chickens. Vet Immunol Immunopathol 2024; 268:110715. [PMID: 38219434 DOI: 10.1016/j.vetimm.2024.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Avian influenza viruses (AIV), including the H9N2 subtype, pose a major threat to the poultry industry as well as to human health. Although vaccination provides a protective control measure, its effect on transmission remains uncertain in chickens. The objective of the present study was to investigate the efficacy of beta-propiolactone (BPL) whole inactivated H9N2 virus (WIV) vaccine either alone or in combination with CpG ODN 2007 (CpG), poly(I:C) or AddaVax™ (ADD) to prevent H9N2 AIV transmission in chickens. The seeder chickens (trial 1) and recipient chickens (trial 2) were vaccinated twice with different vaccine formulations. Ten days after secondary vaccination, seeder chickens were infected with H9N2 AIV (trial 1) and co-housed with healthy recipient chickens. In trial 2, the recipient chickens were vaccinated and then exposed to H9N2 AIV-infected seeder chickens. Our results demonstrated that BPL+ CpG and BPL+ poly(I:C) treated chickens exhibited reduced oral and cloacal shedding in both trials post-exposure (PE). The number of H9N2 AIV+ recipient chickens in the BPL+ CpG group (trial 1) was lower than in other vaccinated groups, and the reduction was higher in BPL+ CpG recipient chickens in trial 2. BPL+ CpG vaccinated chickens demonstrated enhanced systemic antibody responses with high IgM and IgY titers with higher rates of seroprotection by day 21 post-primary vaccination (ppv). Additionally, the induction of IFN-γ expression and production was higher in the BPL+ CpG treated chickens. Interleukin (IL)- 2 expression was upregulated in both BPL+ CpG and BPL+ poly(I:C) groups at 12 and 24 hr post-stimulation.
Collapse
Affiliation(s)
- Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Myles St Denis
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NE, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
6
|
Ma L, Zheng H, Ke X, Gui R, Yao Z, Xiong J, Chen Q. Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication. Virol Sin 2024; 39:56-70. [PMID: 37967718 PMCID: PMC10877434 DOI: 10.1016/j.virs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Avian H9N2 viruses have wide host range among the influenza A viruses. However, knowledge of H9N2 mammalian adaptation is limited. To explore the molecular basis of the adaptation to mammals, we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018 (3W3) in mice and identified six mutations in the hemagglutinin (HA) and polymerase acidic (PA) proteins. Mutations L226Q, T511I, and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice; notably, HA-L226Q was the key determinant. Mutations T97I, I545V, and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo. PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly. Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation. Furthermore, the double- and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q. Notably, any combination of PA mutations, along with double-point HA mutations, resulted in antagonistic effect on viral replication. We also observed antagonism in viral replication between PA-545V and PA-97I, as well as between HA-528V and PA-545V. Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication, which may contribute to the H9N2 virus adaptation to mice and mammalian cells. These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabin Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiasong Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
7
|
Golgol E, Mayahi M, Boroomand Z, Shoshtari A. Effect of Vaccination on Distribution and Immune Response of Avian Influenza Virus H9N2 in Coturnix coturnix. ARCHIVES OF RAZI INSTITUTE 2023; 78:1746-1752. [PMID: 38828164 PMCID: PMC11139399 DOI: 10.32592/ari.2023.78.6.1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/03/2023] [Indexed: 06/05/2024]
Abstract
Influenza viruses can multiply in quails and be transmitted to other animal species. As vaccination reduces virus shedding in chickens, the effect of the killed H9N2 avian influenza virus (AIV) on tissue distribution and virus shedding was evaluated in quails. One hundred 20-day-old quails were divided into six equal groups, kept in separate pens, and fed ad libitum. Before vaccination, blood samples were randomly collected from the wing veins. Four groups were vaccinated with the inactivated H9N2 Razi Institute vaccine at 21 days subcutaneously at the back of neck. Three weeks later, two groups were re-vaccinated. Two weeks later, at the age of 56 days, three groups were challenged with 100 μL of allantoic fluid containing 105 EID50 H9N2 through the oculonasal route. Blood samples were collected from quails at 42, 56, 63, and 70 days from each group to determine AIV antibodies by the hemagglutination inhibition test. Three quails were randomly selected and euthanized from each group on days 1, 3, and 6 post-inoculation (PI). Tissue samples were collected, and the RT-PCR test was performed. No clinical signs or gross lesions existed in any of the groups during the experiment. However, the virus was detected in different tissues on the first, third, and sixth days after the challenge in unvaccinated challenged birds. Virus detection was significantly more frequent in the quails vaccinated once and challenged than in the twice-vaccinated challenged group (P≤0.05). On the third day of PI, the virus was detected in some organs of the challenged groups. On the sixth day of PI, the virus was detected only in the lungs of two unvaccinated and once-vaccinated challenged birds. It was concluded that the vaccination of quails against AIV H9 is necessary to protect them from clinical signs, as well as respiratory tract and intestine replication. Two-time vaccination significantly protects the respiratory and intestine tracts, compared to one-time vaccination (P≤0.05).
Collapse
Affiliation(s)
- E Golgol
- DVSc. Candidate in Avian Health and Diseases, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - M Mayahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz
| | - Z Boroomand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz
| | - A Shoshtari
- Department of Avian Diseases, Razi Vaccine and Serum Research Institute, Karaj, Iran
| |
Collapse
|
8
|
Islam A, Amin E, Munro S, Hossain ME, Islam S, Hassan MM, Al Mamun A, Samad MA, Shirin T, Rahman MZ, Epstein JH. Potential risk zones and climatic factors influencing the occurrence and persistence of avian influenza viruses in the environment of live bird markets in Bangladesh. One Health 2023; 17:100644. [PMID: 38024265 PMCID: PMC10665157 DOI: 10.1016/j.onehlt.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Live bird markets (LBMs) are critical for poultry trade in many developing countries that are regarded as hotspots for the prevalence and contamination of avian influenza viruses (AIV). Therefore, we conducted weekly longitudinal environmental surveillance in LBMs to determine annual cyclic patterns of AIV subtypes, environmental risk zones, and the role of climatic factors on the AIV presence and persistence in the environment of LBM in Bangladesh. From January 2018 to March 2020, we collected weekly fecal and offal swab samples from each LBM and tested using rRT-PCR for the M gene and subtyped for H5, H7, and H9. We used Generalized Estimating Equations (GEE) approaches to account for repeated observations over time to correlate the AIV prevalence and potential risk factors and the negative binomial and Poisson model to investigate the role of climatic factors on environmental contamination of AIV at the LBM. Over the study period, 37.8% of samples tested AIV positive, 18.8% for A/H5, and A/H9 was, for 15.4%. We found the circulation of H5, H9, and co-circulation of H5 and H9 in the environmental surfaces year-round. The Generalized Estimating Equations (GEE) model reveals a distinct seasonal pattern in transmitting AIV and H5. Specifically, certain summer months exhibited a substantial reduction of risk up to 70-90% and 93-94% for AIV and H5 contamination, respectively. The slaughtering zone showed a significantly higher risk of contamination with H5, with a three-fold increase in risk compared to bird-holding zones. From the negative binomial model, we found that climatic factors like temperature and relative humidity were also significantly associated with weekly AIV circulation. An increase in temperature and relative humidity decreases the risk of AIV circulation. Our study underscores the significance of longitudinal environmental surveillance for identifying potential risk zones to detect H5 and H9 virus co-circulation and seasonal transmission, as well as the imperative for immediate interventions to reduce AIV at LBMs in Bangladesh. We recommend adopting a One Health approach to integrated AIV surveillance across animal, human, and environmental interfaces in order to prevent the epidemic and pandemic of AIV.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY 10018, USA
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Emama Amin
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | | | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR), Bangladesh
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, QLD 4343, Australia
| | - Abdullah Al Mamun
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR), Bangladesh
| | | |
Collapse
|
9
|
Arbani O, Ducatez MF, Mahmoudi S, Salamat F, Khayi S, Mouahid M, Selim KM, Kichou F, Ouchhour I, El Houadfi M, Fellahi S. Low Pathogenic Avian Influenza H9N2 Viruses in Morocco: Antigenic and Molecular Evolution from 2021 to 2023. Viruses 2023; 15:2355. [PMID: 38140596 PMCID: PMC10747644 DOI: 10.3390/v15122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza viruses pose significant threats to both the poultry industry and public health worldwide. Among them, the H9N2 subtype has gained substantial attention due to its high prevalence, especially in Asia, the Middle East, and Africa; its ability to reassort with other influenza viruses; and its potential to infect humans. This study presents a comprehensive phylogenetic and molecular analysis of H9N2 avian influenza viruses circulating in Morocco from 2021 to 2023. Through an active epidemiological survey, a total of 1140 samples (trachea and lungs) and oropharyngeal swabs pooled into 283 pools, collected from 205 farms located in 7 regions of Morocco known for having a high density of poultry farms, were analyzed. Various poultry farms were investigated (159 broiler farms, 24 layer farms, 10 breeder farms, and 12 turkey breeder farms). A total of 21 AI H9N2 strains were isolated, and in order to understand the molecular evolution of the H9N2 avian influenza virus, their genetic sequences were determined using the Sanger sequencing technique. Phylogenetic analysis was performed using a dataset comprising global H9N2 sequences to determine the genetic relatedness and evolutionary dynamics of the Moroccan strains. The results revealed the continued circulation and diversification of H9N2 avian influenza viruses in Morocco during the study period. Real-time RT-PCR showed a positivity rate of 35.6% (73/205), with cycle threshold values ranging from 19.2 to 34.9. The phylogenetic analysis indicated that all Moroccan strains belonged to a G1-like lineage and regrouped into two distinct clusters. Our newly detected isolates aggregated distinctly from the genotypes previously isolated in Morocco, North and West Africa, and the Middle East. This indicats the potential of virus evolution resulting from both national circulation and cross-border transmission. A high genetic diversity at both nucleotide and amino-acid levels was observed among all the strains isolated in this study, as compared to H9N2 strains isolated in Morocco since 2016, which suggests the co-circulation of genetically diverse H9N2 variants. Newly discovered mutations were detected in hemagglutinin positions 226, 227, and 193 (H3 numbering), which highlights the genetic evolution of the H9N2 AIVs. These findings contribute to our understanding of the evolution and epidemiology of H9N2 in the region and provide valuable insights for the development of effective prevention and control strategies against this emerging avian influenza subtype.
Collapse
Affiliation(s)
- Oumayma Arbani
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Mariette F. Ducatez
- Laboratoire Interactions Hôtes-Agents Pathogènes (IHAP), Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
| | - Salma Mahmoudi
- Laboratory of Microbiology and Molecular Biology, Department of Biology, Faculty of Sciences, Mohamed V University in Rabat, 4 Avenue Ibn Battouta, Rabat 10106, Morocco;
| | - Faiçal Salamat
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Slimane Khayi
- Biotechnology Research Unit, CRRA-Rabat, National Institute of Agricultural Research, Rabat 10101, Morocco;
| | | | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Agriculture Research Center, Animal Health Research Institute, Giza 12618, Egypt;
| | - Faouzi Kichou
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Ikram Ouchhour
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Mohammed El Houadfi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| |
Collapse
|
10
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
11
|
Wang Z, Li H, Li Y, Wu Z, Ai H, Zhang M, Rong L, Blinov ML, Tong Q, Liu L, Sun H, Pu J, Feng W, Liu J, Sun Y. Mixed selling of different poultry species facilitates emergence of public-health-threating avian influenza viruses. Emerg Microbes Infect 2023; 12:2214255. [PMID: 37191631 DOI: 10.1080/22221751.2023.2214255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Live poultry markets (LPMs) are regarded as hubs for avian influenza virus (AIV) transmission in poultry and are a major risk factor in human AIV infections. We performed an AIV surveillance study at a wholesale LPM, where different poultry species were sold in separate stalls, and nine retail LPMs, which received poultry from the wholesale LPM but where different poultry species were sold in one stall, in Guangdong province from 2017 to 2019. A higher AIV isolation rate was observed at the retail LPMs than the wholesale LPM. H9N2 was the dominant AIV subtype and was mainly present in chickens and quails. The genetic diversity of H9N2 viruses was greater at the retail LPMs, where a complex system of two-way transmission between different poultry species had formed. The isolated H9N2 viruses could be classed into four genotypes: G57 and the three novel genotypes, NG164, NG165, and NG166. The H9N2 AIVs isolated from chickens and quails at the wholesale LPM only belonged to the G57 and NG164 genotypes, respectively. However, the G57, NG164, and NG165 genotypes were identified in both chickens and quails at the retail LPMs. We found that the replication and transmission of the NG165 genotype were more adaptive to both poultry and mammalian models than those of its precursor genotype, NG164. Our findings revealed that mixed poultry selling at retail LPMs has increased the genetic diversity of AIVs, which might facilitate the emergence of novel viruses that threaten public health.
Collapse
Affiliation(s)
- Zhen Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- State Key Laboratories of Agrobiotechnology, and Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hongkui Li
- Liaoning Agricultural Development Service Center, Shenyang, People's Republic of China
| | - Yuhan Li
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zhuanli Wu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Hui Ai
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Litao Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Wenhai Feng
- State Key Laboratories of Agrobiotechnology, and Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Wasberg A, Faria IR, Bergholm J, Petric PP, Mostafa A, Pleschka S, Schwemmle M, Lundkvist Å, Ellström P, Naguib MM. Assessing compatibility and viral fitness between poultry-adapted H9N2 and wild bird-derived neuraminidases. Sci Rep 2023; 13:4476. [PMID: 36934147 PMCID: PMC10024770 DOI: 10.1038/s41598-023-31653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Exchange of viral segments between one or more influenza virus subtypes can contribute to a shift in virulence and adaptation to new hosts. Among several influenza subtypes, H9N2 is widely circulating in poultry populations worldwide and has the ability to infect humans. Here, we studied the reassortant compatibility between chicken H9N2 with N1-N9 gene segments of wild bird origin, either with an intact or truncated stalk. Naturally occurring amino acid deletions in the NA stalk of the influenza virus can lead to increased virulence in both mallard ducks and chickens. Our findings show extended genetic compatibility between chicken H9Nx gene segments and the wild-bird NA with and without 20 amino acid stalk deletion. Replication kinetics in avian, mammalian and human cell lines revealed that parental chH9N2 and rH9N6 viruses with intact NA-stalk replicated significantly better in avian DF1 cells compared to human A549 cells. After introducing a stalk deletion, an enhanced preference for replication in mammalian and human cell lines could be observed for rH9N2Δ(H6), rH9N6Δ and rH9N9Δ compared to the parental chH9N2 virus. This highlights the potential emergence of novel viruses with variable phenotypic traits, warranting the continuous monitoring of H9N2 and co-circulating subtypes in avian hosts.
Collapse
Affiliation(s)
- Anishia Wasberg
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Inês R Faria
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Julia Bergholm
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF),partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Larbi I, Ghedira K, Arbi M, Butcher GD, Rego N, Naya H, Tougorti H, Lachhab J, Behi IE, Nsiri J, Ghram A. Phylogenetic analysis and assessment of the pathogenic potential of the first H9N2 avian influenza viruses isolated from wild birds and Lagoon water in Tunisia. Virus Res 2022; 322:198929. [PMID: 36126884 DOI: 10.1016/j.virusres.2022.198929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
H9N2 avian influenza virus (AIV) has been isolated from various species of wild birds and domestic poultry worldwide. It has been reported since the late 1990s, that H9N2 AIV has infected humans as reported in some Asian and North African countries. This subtype has already been circulating and constituting a serious threat to the poultry industry in Tunisia back in 2009. To investigate zoonotic potential and pathogenicity of H9N2 AIV in chickens and mice in Tunisia, five strains have been isolated during the period from 2014 to 2018. Samples were withdrawn from several wild bird species and environment (Lagoon water) of Maamoura and Korba Lagoons as well as Kuriat Island. Phylogenetic analyzes demonstrated that the isolated H9N2 strains belonged to the G1-like sublineage and were close to AIV H9N2 poultry viruses from North Africa, West Africa and the Middle East. All strains carried in their hemagglutinin the residue 226 L, which is an important marker for avian-to-human viral transmission. The hemagglutinin cleavage site has several motifs: PSKSSR/G, PARSSR/G and HARSSR/G. The neuraminidase showed S372A and R403W substitutions that have been previously detected in H3N2 and H2N2 viruses that were reported in human pandemics. Many mutations associated with mammalian infections have been detected in internal proteins. Pathogenicity evaluation in chickens showed that GF/14 replicates effectively in the lungs, tracheas, spleens, kidneys and brains and that it was transmitted among contact chickens. However, GHG/18 replicates poorly in chickens and has not an efficient transmission in contact chickens. GF/14 and GHG/18 could not kill mice though they replicated in their respiratory tract and caused a significant body weight loss (p < 0.05). This study highlights the importance of H9N2 AIV monitoring in both migratory birds and the environment to prevent virus transmission to humans.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay; Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
14
|
Ren W, Pei S, Jiang W, Zhao M, Jiang L, Liu H, Yi Y, Hui M, Li J. A replication-deficient H9N2 influenza virus carrying H5 hemagglutinin conferred protection against H9N2 and H5N1 influenza viruses in mice. Front Microbiol 2022; 13:1042916. [PMID: 36458187 PMCID: PMC9705590 DOI: 10.3389/fmicb.2022.1042916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 05/07/2024] Open
Abstract
H5N1 and H9N2 influenza viruses have been reported to cause human infections and are believed to have pandemic potential. The vaccine is an effective tool to prevent influenza virus infection. However, inactivated influenza vaccines sometimes result in low antigenicity as result leads to generating of incomplete immune protection in the form of low cellular and humoral immunity. While the low temperature adapted, traditional live attenuated influenza vaccine (LAIV) is associated with the potential risk to revert to a virulent phenotype, there appears an essential need for an alternative potent methodology to design and develop influenza vaccines with substantial safety and efficacy which may confer solid protection against H9N2 or H5N1 influenza virus infections. In the present study, a replication-deficient recombinant influenza virus, WM01ma-HA(H5), expressing hemagglutinin (HA) of both H9N2 and H5N1 subtypes was developed. The chimeric gene segment expressing HA(H5), was designed using the sequence of an open reading frame (ORF) of HA adopted from A/wild duck/Hunan/021/2005(H5N1)(HN021ma) which was flanked by the NA packaging signals of mouse-adapted strain A/Mink/Shandong/WM01/2014(H9N2)(WM01ma). Due to the absence of ORF of structural protein NA, the replication of this engineered H9N2 influenza viruses WM01ma-HA(H5) was hampered in vitro and in vivo but was well competent in MDCK cells stably expressing the NA protein of WM01ma. Intranasal vaccination of mice with WM01ma-HA(H5) stimulated robust immune response without any clinical signs and conferred complete protection from infection by H5N1 or H9N2 subtype influenza viruses.
Collapse
Affiliation(s)
- Weigang Ren
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuli Pei
- Henan Vocational College of Agriculture, Zhongmu, China
| | - Wenming Jiang
- Laboratory of Surveillance for Avian Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Meixia Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Le Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Honggang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yongxiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Mizhou Hui
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Junwei Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| |
Collapse
|
15
|
Rehman S, Effendi MH, Shehzad A, Rahman A, Rahmahani J, Witaningrum AM, Bilal M. Prevalence and associated risk factors of avian influenza A virus subtypes H5N1 and H9N2 in LBMs of East Java province, Indonesia: a cross-sectional study. PeerJ 2022. [DOI: 10.7717/peerj.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Avian influenza A virus subtypes H5N1 and H9N2 are contagious zoonotic diseases that are circulating in Indonesia and have raised increasing concern about their potential impacts on poultry and public health. A cross-sectional study was carried out to investigate the prevalence and associated risk factors of avian influenza A virus subtypes H5N1 and H9N2 among poultry in the live bird markets of four cities in East Java province, Indonesia.
Methods
A total of 600 tracheal and cloacal swabs (267 from backyards, 179 from broilers, and 154 from layers) from healthy birds were collected. The samples were inoculated into specific pathogenic-free embryonated eggs at 9-day-old via the allantoic cavity. qRT-PCR was used for further identification of avian influenza.
Results
The overall prevalence of circulating influenza A virus subtypes H5N1 and H9N2 was 3.8% (23/600, 95%CI [0.0229–0.0537]). Prevalence was higher in backyards at 5.99% (16/267) followed by broilers (2.23% (4/179)) and layers (1.68% (3/154)). The final multivariable model revealed five risk factors for H9N2 infections: presence of ducks (p = 0.003, OR = 38.2), turkeys (p = 0.017 OR = 0.032), and pheasants in the stall (p = 0.04, OR = 18.422), dry (p = 0.006) and rainy season (p < 0.001), and household birds (p = 0.002) and seven factors for H5N1 infections including: observing rodents (p = 0.036, OR = 0.005), stray dogs access (p = 0.004 OR ≤ 0.001), presence of turkeys (p = 0.03 OR = 0.007), chukars/partridges (p = 0.024 OR = 2500), and peafowls in the stalls (p = 0.0043 OR ≤ 0.001), rainy season (p = 0.001) and birds from the household sources (p = 0.002) in the live bird markets.
Conclusions
The findings of the current study illustrate the recurring infection and presence of both avian influenza viruses and associated risk factors in the surveyed marketplaces. Effective protective measures and mitigation strategies for risks outlined in this study could help to reduce the burden of H5N1 and H9N2 AI subtypes into the live bird markets of Indonesia.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
- Department of Epidemiology and Public Health, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Attaur Rahman
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, SAR
| | - Jola Rahmahani
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Muhammad Bilal
- Department of Epidemiology and Public Health, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
16
|
Influenza A Virus Agnostic Receptor Tropism Revealed Using a Novel Biological System with Terminal Sialic Acid Knockout Cells. J Virol 2022; 96:e0041622. [PMID: 35862707 PMCID: PMC9364805 DOI: 10.1128/jvi.00416-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Avian or human influenza A viruses bind preferentially to avian- or human-type sialic acid receptors, respectively, indicating that receptor tropism is an important factor for determining the viral host range. However, there are currently no reliable methods for analyzing receptor tropism biologically under physiological conditions. In this study, we established a novel system using MDCK cells with avian- or human-type sialic acid receptors and with both sialic acid receptors knocked out (KO). When we examined the replication of human and avian influenza viruses in these KO cells, we observed unique viral receptor tropism that could not be detected using a conventional solid-phase sialylglycan binding assay, which directly assesses physical binding between the virus and sialic acids. Furthermore, we serially passaged an engineered avian-derived H4N5 influenza virus, whose PB2 gene was deleted, in avian-type receptor KO cells stably expressing PB2 to select a mutant with enhanced replication in KO cells; however, its binding to human-type sialylglycan was undetectable using the solid-phase binding assay. These data indicate that a panel of sialic acid receptor KO cells could be a useful tool for determining the biological receptor tropism of influenza A viruses. Moreover, the PB2KO virus experimental system could help to safely and efficiently identify the mutations required for avian influenza viruses to adapt to human cells that could trigger a new influenza pandemic. IMPORTANCE The acquisition of mutations that allow avian influenza A virus hemagglutinins to recognize human-type receptors is mandatory for the transmission of avian viruses to humans, which could lead to a pandemic. In this study, we established a novel system using a set of genetically engineered MDCK cells with knocked out sialic acid receptors to biologically evaluate the receptor tropism for influenza A viruses. Using this system, we observed unique receptor tropism in several virus strains that was undetectable using conventional solid-phase binding assays that measure physical binding between the virus and artificially synthesized sialylglycans. This study contributes to elucidation of the relationship between the physical binding of virus and receptor and viral infectivity. Furthermore, the system using sialic acid knockout cells could provide a useful tool to explore the sialic acid-independent entry mechanism. In addition, our system could be safely used to identify mutations that could acquire human-type receptor tropism.
Collapse
|
17
|
El Sayes M, Kandeil A, Moatasim Y, El Taweel A, Rubrum A, Kutkat O, Kamel MN, Badra R, Barakat AB, McKenzie PP, El-Shesheny R, Webby RJ, Kayali G, Ali MA. Insights into Genetic Characteristics and Virological Features of Endemic Avian Influenza A (H9N2) Viruses in Egypt from 2017-2021. Viruses 2022; 14:1484. [PMID: 35891464 PMCID: PMC9321558 DOI: 10.3390/v14071484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
From 2010 to 2013, genotype I avian influenza A(H9N2) viruses of the G1-lineage were isolated from several poultry species in Egypt. In 2014, novel reassortant H9N2 viruses were detected in pigeons designated as genotype II. To monitor the subsequent genetic evolution of Egyptian A(H9N2) viruses, we characterized the full genomes of 173 viruses isolated through active surveillance from 2017 to 2022. In addition, we compared the virological characteristics and pathogenicity of representative viruses. Phylogenetic analysis of the HA indicated that all studied sequences from 2017-2021 were grouped into G1-like H9N2 viruses previously detected in Egypt. Phylogenetic analysis indicated that the Egyptian A(H9N2) viruses had undergone further reassortment, inheriting four genes (PB2, PB1, PA, NS) from genotype II, with their remaining segments deriving from genotype I viruses (these viruses designated as genotype III). Studying the virological features of the two most dominant genotypes (I and III) of Egyptian H9N2 viruses in vitro and in vivo indicated that both replicated well in mammalian cells, but did not show any clinical signs in chickens, ducks, and mice. Monitoring avian influenza viruses through surveillance programs and understanding the genetic and antigenic characteristics of circulating H9N2 viruses are essential for risk assessment and influenza pandemic preparedness.
Collapse
Affiliation(s)
- Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (P.P.M.)
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (P.P.M.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
| | - Rebecca Badra
- Human Link, Dubai 3O-01-BA380, United Arab Emirates;
| | - Ahmed B. Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Pamela P. McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (P.P.M.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (P.P.M.)
| | - Ghazi Kayali
- Human Link, Dubai 3O-01-BA380, United Arab Emirates;
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (M.E.S.); (Y.M.); (A.E.T.); (O.K.); (M.N.K.); (R.E.-S.); (M.A.A.)
| |
Collapse
|
18
|
Muralidharan A, Gravel C, Harris G, Hashem AM, Zhang W, Safronetz D, Van Domselaar G, Krammer F, Sauve S, Rosu-Myles M, Wang L, Chen W, Li X. Universal antibody targeting the highly conserved fusion peptide provides cross-protection in mice. Hum Vaccin Immunother 2022; 18:2083428. [PMID: 35724343 PMCID: PMC9621047 DOI: 10.1080/21645515.2022.2083428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Influenza is a major public health concern causing millions of hospitalizations every year. The current vaccines need annual updating based on prediction of likely strains in the upcoming season. However, mismatches between vaccines and the actual circulating viruses can occur, reducing vaccine effectiveness significantly because of the remarkably high rate of mutation in the viral glycoprotein, hemagglutinin (HA). Clearly, it would be of great interest to determine the potential role of universally conserved epitopes in inducing protective immunity. Here, an antibody against the 14-aa fusion peptide sequence at the N-terminus of the HA2 subunit (Uni-1) was investigated for its ability to elicit antibody-dependent cellular cytotoxicity (ADCC) in vitro and cross-protection against lethal infection in animals. Uni-1, known to neutralize influenza type A (IAV) in vitro, was found to induce strong ADCC against diverse influenza viruses, including human and avian IAVs and both lineages of type B (IBV). The ADCC effects against human IAVs by Uni-1 was comparable to ADCC induced by well-characterized antibodies, F10 and FI6V3. Importantly, mice treated with Uni-1 were protected against lethal challenge of IAV and IBV. These results revealed the versatile effector functions of this universal antibody against markedly diverse strains of both IAV and IBV. The fusion peptide is the only universally conserved epitope in both IAV and IBV Mono-specific universal antibody induces strong ADCC against human and avian IAV Mono-specific universal antibody induces strong ADCC against IBV from both genetic lineages of IBV The antibody has bi-functional effector functions against several influenza viruses
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Greg Harris
- Human Health Therapeutics (HHT) Research Center, National Research Council of Canada, Ottawa, Canada
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wanyue Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Wangxue Chen
- Human Health Therapeutics (HHT) Research Center, National Research Council of Canada, Ottawa, Canada
| | - Xuguang Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| |
Collapse
|
19
|
The relationship among avian influenza, gut microbiota and chicken immunity: An updated overview. Poult Sci 2022; 101:102021. [PMID: 35939896 PMCID: PMC9386105 DOI: 10.1016/j.psj.2022.102021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
The alimentary tract in chickens plays a crucial role in immune cell formation and immune challenges, which regulate intestinal flora and sustain extra-intestinal immunity. The interaction between pathogenic microorganisms and the host commensal microbiota as well as the variety and integrity of gut microbiota play a vital role in health and disease conditions. Thus, several studies have highlighted the importance of gut microbiota in developing immunity against viral infections in chickens. The gut microbiota (such as different species of Lactobacillus, Blautia Bifidobacterium, Faecalibacterium, Clostridium XlVa, and members of firmicutes) encounters different pathogens through different mechanisms. The digestive tract is a highly reactive environment, and infectious microorganisms can disturb its homeostasis, resulting in dysbiosis and mucosal infections. Avian influenza viruses (AIV) are highly infectious zoonotic viruses that lead to severe economic losses and pose a threat to the poultry industry worldwide. AIV is a challenging virus that affects gut integrity, disrupts microbial homeostasis and induces inflammatory damage in the intestinal mucosa. H9N2 AIV infection elevates the expression of proinflammatory cytokines, such as interferon (IFN-γ and IFNα) and interleukins (IL-17A and IL-22), and increases the proliferation of members of proteobacteria, particularly Escherichia coli. On the contrary, it decreases the proliferation of certain beneficial bacteria, such as Enterococcus, Lactobacillus and other probiotic microorganisms. In addition, H9N2 AIV decreases the expression of primary gel-forming mucin, endogenous trefoil factor family peptides and tight junction proteins (ZO-1, claudin 3, and occludin), resulting in severe intestinal damage. This review highlights the relationship among AIV, gut microbiota and immunity in chicken.
Collapse
|
20
|
Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, Bilal M, Elziyad Purnama MT. Emerging threat and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Res 2022; 11:548. [PMID: 35844820 PMCID: PMC9253659 DOI: 10.12688/f1000research.118669.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 09/05/2024] Open
Abstract
Avian influenza virus subtype H9N2 was first documented in Indonesia in 2017. It has become prevalent in chickens in many provinces of Indonesia as a result of reassortment in live bird markets. Low pathogenic avian influenza subtype H9N2 virus-infected poultry provides a new direction for influenza virus. According to the latest research, the Indonesian H9N2 viruses may have developed through antigenic drift into new genotype, posing a significant hazard to poultry and public health. The latest proof of interspecies transmission proposes that, the next human pandemic variant will be avian influenza virus subtype H9N2. Manipulation and elimination of H9N2 viruses in Indonesia, constant surveillance of viral mutation, and vaccines updates are required to achieve effectiveness. The current review examines should be investigates/assesses/report on the development and evolution of newly identified H9N2 viruses in Indonesia and their vaccination strategy.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Khadija Batool
- Medicine, Service Institute of Medical Sciences, Lahore,, Punjab, 40050, Pakistan
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Bilal
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
21
|
Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, Bilal M, Elziyad Purnama MT. Emerging threats and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Res 2022; 11:548. [PMID: 35844820 PMCID: PMC9253659 DOI: 10.12688/f1000research.118669.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Avian influenza virus subtype H9N2 was first documented in Indonesia in 2017. It has become prevalent in chickens in many provinces of Indonesia as a result of reassortment in live bird markets. Low pathogenic avian influenza subtype H9N2 virus-infected poultry provides a new direction for the influenza virus. According to the latest research, the Indonesian H9N2 viruses may have developed through antigenic drift into a new genotype, posing a significant hazard to poultry and public health. The latest proof of interspecies transmission proposes that the next human pandemic variant will be the avian influenza virus subtype H9N2. Manipulation and elimination of H9N2 viruses in Indonesia, constant surveillance of viral mutation, and vaccine updates are required to achieve effectiveness. The current review examines should be investigates/assesses/report on the development and evolution of newly identified H9N2 viruses in Indonesia and their vaccination strategy.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Khadija Batool
- Medicine, Service Institute of Medical Sciences, Lahore,, Punjab, 40050, Pakistan
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Bilal
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
22
|
Murakami J, Shibata A, Neumann G, Imai M, Watanabe T, Kawaoka Y. Characterization of H9N2 Avian Influenza Viruses Isolated from Poultry Products in a Mouse Model. Viruses 2022; 14:v14040728. [PMID: 35458458 PMCID: PMC9032349 DOI: 10.3390/v14040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Low pathogenic H9N2 avian influenza viruses have spread in wild birds and poultry worldwide. Recently, the number of human cases of H9N2 virus infection has increased in China and other countries, heightening pandemic concerns. In Japan, H9N2 viruses are not yet enzootic; however, avian influenza viruses, including H5N1, H7N9, H5N6, and H9N2, have been repeatedly detected in raw poultry meat carried by international flight passengers from Asian countries to Japan. Although H9N2 virus-contaminated poultry products intercepted by the animal quarantine service at the Japan border have been characterized in chickens and ducks, the biological properties of those H9N2 viruses in mammals remain unclear. Here, we characterized the biological features of two H9N2 virus isolates [A/chicken/Japan/AQ-HE28-50/2016 (Ck/HE28-50) and A/chicken/Japan/AQ-HE28-57/2016 (Ck/HE28-57)] in a mouse model. We found that these H9N2 viruses replicate well in the respiratory tract of infected mice without adaptation, and that Ck/HE28-57 caused body weight loss in the infected mice. Our results indicate that H9N2 avian influenza viruses isolated from raw chicken meat products illegally brought to Japan can potentially infect and cause disease in mammals.
Collapse
Affiliation(s)
- Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
| | - Akihiro Shibata
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname 479-0881, Japan;
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA;
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Tokiko Watanabe
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Center for Infectious Disease and Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
- Correspondence: (T.W.); (Y.K.)
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA;
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Correspondence: (T.W.); (Y.K.)
| |
Collapse
|
23
|
Sikht FZ, Ducatez M, Touzani CD, Rubrum A, Webby R, El Houadfi M, Tligui NS, Camus C, Fellahi S. Avian Influenza a H9N2 Viruses in Morocco, 2018–2019. Viruses 2022; 14:v14030529. [PMID: 35336936 PMCID: PMC8954086 DOI: 10.3390/v14030529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Low pathogenic H9N2 avian influenza (LPAI H9N2) is considered one of the most important diseases found in poultry (broiler, laying hens, breeding chickens, and turkeys). This infection causes considerable economic losses. The objective of this work was to monitor and assess the presence of avian influenza virus (AIV) H9N2 in eight different regions of Morocco using real-time RT-PCR, and to assess the phylogenetic and molecular evolution of the H9N2 viruses between 2016 and 2019. Field samples were collected from 108 farms suspected of being infected with LPAI H9N2 virus. Samples were analyzed using H9N2-specific real-time RT-PCR. Highly positive samples were subjected to virus isolation and seven isolates were fully sequenced. Low pathogenic H9N2 avian influenza virus was introduced in Morocco in 2016. We show that in 2018–2019, the virus was still present irrespective of vaccination status. Phylogenetic and molecular analyses showed mutations related to virulence, although our viruses were related to 2016 Moroccan viruses and grouped in the G1 lineage. Specific amino acid substitutions were identified in Moroccan H9N2 viruses that are believed to lead to increased resistance to antiviral drugs.
Collapse
Affiliation(s)
- Fatima-Zohra Sikht
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
| | | | - Charifa Drissi Touzani
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Mohammed El Houadfi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Nour-Said Tligui
- Anatomo-Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco;
| | - Christelle Camus
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
- Correspondence: ; Tel.: +33-5-61-19-38-80
| | - Siham Fellahi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| |
Collapse
|
24
|
Amirgazin A, Shevtsov A, Karibayev T, Berdikulov M, Kozhakhmetova T, Syzdykova L, Ramankulov Y, Shustov AV. Highly pathogenic avian influenza virus of the A/H5N8 subtype, clade 2.3.4.4b, caused outbreaks in Kazakhstan in 2020. PeerJ 2022; 10:e13038. [PMID: 35256921 PMCID: PMC8898005 DOI: 10.7717/peerj.13038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background Large poultry die-offs happened in Kazakhstan during autumn of 2020. The birds' disease appeared to be avian influenza. Northern Kazakhstan was hit first and then the disease propagated across the country affecting eleven provinces. This study reports the results of full-genome sequencing of viruses collected during the outbreaks and investigation of their relationship to avian influenza virus isolates in the contemporary circulation in Eurasia. Methods Samples were collected from diseased birds during the 2020 outbreaks in Kazakhstan. Initial virus detection and subtyping was done using RT-PCR. Ten samples collected during expeditions to Northern and Southern Kazakhstan were used for full-genome sequencing of avian influenza viruses. Phylogenetic analysis was used to compare viruses from Kazakhstan to viral isolates from other world regions. Results Phylogenetic trees for hemagglutinin and neuraminidase show that viruses from Kazakhstan belong to the A/H5N8 subtype and to the hemagglutinin H5 clade 2.3.4.4b. Deduced hemagglutinin amino acid sequences in all Kazakhstan's viruses in this study contain the polybasic cleavage site (KRRKR-G) indicative of the highly pathogenic phenotype. Building phylogenetic trees with the Bayesian phylogenetics results in higher statistical support for clusters than using distance methods. The Kazakhstan's viruses cluster with isolates from Southern Russia, the Russian Caucasus, the Ural region, and southwestern Siberia. Other closely related prototypes are from Eastern Europe. The Central Asia Migratory Flyway passes over Kazakhstan and birds have intermediate stops in Northern Kazakhstan. It is postulated that the A/H5N8 subtype was introduced with migrating birds. Conclusion The findings confirm the introduction of the highly pathogenic avian influenza viruses of the A/Goose/Guangdong/96 (Gs/GD) H5 lineage in Kazakhstan. This virus poses a tangible threat to public health. Considering the results of this study, it looks justifiable to undertake measures in preparation, such as install sentinel surveillance for human cases of avian influenza in the largest pulmonary units, develop a human A/H5N8 vaccine and human diagnostics capable of HPAI discrimination.
Collapse
Affiliation(s)
- Asylulan Amirgazin
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan
| | - Alexandr Shevtsov
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan
| | - Talgat Karibayev
- National Reference Veterinary Center, Nur-Sultan, Akmola Region, Kazakhstan
| | - Maxat Berdikulov
- National Reference Veterinary Center, Nur-Sultan, Akmola Region, Kazakhstan
| | | | - Laura Syzdykova
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Akmola Region, Kazakhstan
| | | |
Collapse
|
25
|
Warrier S, Mohana Sundaram S, Varier L, Balasubramanian A. Stalling SARS-CoV2 infection with stem cells: can regenerating perinatal tissue mesenchymal stem cells offer a multi-tiered therapeutic approach to COVID-19? Placenta 2021; 117:161-168. [PMID: 34915433 PMCID: PMC8647345 DOI: 10.1016/j.placenta.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/23/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
The emergence of COVID-19 has created a major health crisis across the globe. Invasion of SARS-CoV-2 into the lungs causes acute respiratory distress syndrome (ARDS) that result in the damage of lung alveolar epithelial cells. Currently, there is no standard treatment available to treat the disease and the resultant lung scarring is irreversible even after recovery. This has prompted researchers across the globe to focus on developing new therapeutics and vaccines for the treatment and prevention of COVID-19. Mesenchymal stem cells (MSCs) have emerged as an efficient drug screening platform and MSC-derived organoids has found applications in disease modeling and drug discovery. Perinatal tissue derived MSC based cell therapies have been explored in the treatment of various disease conditions including ARDS because of their enhanced regenerative and immunomodulatory properties. The multi-utility properties of MSCs have been described in this review wherein we discuss the potential use of MSC-derived lung organoids in screening of novel therapeutic compounds for COVID-19 and also in disease modeling to better understand the pathogenesis of the disease. This article also summarizes the rationale behind the development of MSC-based cell- and cell-free therapies and vaccines for COVID-19 with a focus on the current progress in this area. With the pandemic raging, an important necessity is to develop novel treatment strategies which will not only alleviate the disease symptoms but also avoid any off-target effects which could further increase post infection sequelae. Naturally occurring mesenchymal stem cells could be the magic bullet which fulfil these criteria.
Collapse
Affiliation(s)
- Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India.
| | - S Mohana Sundaram
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India
| | | | | |
Collapse
|
26
|
Ripa RN, Sealy JE, Raghwani J, Das T, Barua H, Masuduzzaman M, Saifuddin A, Huq MR, Uddin MI, Iqbal M, Brown I, Lewis NS, Pfeiffer D, Fournie G, Biswas PK. Molecular epidemiology and pathogenicity of H5N1 and H9N2 avian influenza viruses in clinically affected chickens on farms in Bangladesh. Emerg Microbes Infect 2021; 10:2223-2234. [PMID: 34753400 PMCID: PMC8635652 DOI: 10.1080/22221751.2021.2004865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian influenza virus (AIV) subtypes H5N1 and H9N2 co-circulate in poultry in Bangladesh, causing significant bird morbidity and mortality. Despite their importance to the poultry value chain, the role of farms in spreading and maintaining AIV infections remains poorly understood in most disease-endemic settings. To address this crucial gap in our knowledge, we conducted a cross-sectional study between 2017 and 2019 in the Chattogram Division of Bangladesh in clinically affected and dead chickens in farms with suspected AIV infection. Viral prevalence of each subtype was approximately 10% among farms for which veterinary advice was sought, indicating a high level of virus circulation in chicken farms despite the low number of reported outbreaks. The level of co-circulation of both subtypes on farms was high, with our study suggesting that in the field, the co-circulation of H5N1 and H9N2 can modulate disease severity, which could facilitate an underestimated level of AIV transmission in the poultry value chain. Finally, using newly generated whole-genome sequences, we investigate the evolutionary history of a small subset of H5N1 and H9N2 viruses. Our analyses revealed that for both subtypes, the sampled viruses were genetically most closely related to other viruses isolated in Bangladesh and represented multiple independent incursions. However, due to lack of longitudinal surveillance in this region, it is difficult to ascertain whether these viruses emerged from endemic strains circulating in Bangladesh or from neighbouring countries. We also show that amino acids at putative antigenic residues underwent a distinct replacement during 2012 which coincides with the use of H5N1 vaccines.
Collapse
Affiliation(s)
- Ripatun Nahar Ripa
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joshua E Sealy
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | | | - Tridip Das
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Himel Barua
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Masuduzzaman
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Akm Saifuddin
- Department of Physiology, Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Reajul Huq
- District Livestock Office, Chattogram, Department of Livestock Services, Bangladesh
| | - Mohammad Inkeyas Uddin
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Munir Iqbal
- Avian influenza viruses group, the Pirbright institute, Ash road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Ian Brown
- Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Nicola S Lewis
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom.,Animal and Plant Health Agency-Weybridge, Woodham lane, Addlestone, KT15 3NB, United Kingdom
| | - Dirk Pfeiffer
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, China
| | - Guillaume Fournie
- The Royal Veterinary College, Hawkshead lane, Brookmans park, Hatfield, AL9 7TA, United Kingdom
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
27
|
Wang F, Wan Z, Wu J, Wang Y, Fu H, Shao H, Qian K, Gao W, Ye J, Qin A. A Cross-Reactive Monoclonal Antibody Against Neuraminidases of Both H9N2 and H3N2 Influenza Viruses Shows Protection in Mice Challenging Models. Front Microbiol 2021; 12:730449. [PMID: 34646249 PMCID: PMC8503672 DOI: 10.3389/fmicb.2021.730449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Neuraminidases (NAs) of H9N2 avian influenza virus (AIV) and H3N2 human seasonal influenza virus (HSIV) share similar antigenic structures. However, there are few reports on epitopes shared by these two NAs. We previously reported a monoclonal antibody (mAb) 1G8 against the NA of H9N2 AIV with neuraminidase inhibition (NI) ability. In this study, 1G8 was shown to cross-react with and inhibit the NA of H3N2 HSIV. In a passive transfer experiment, 1G8 provided protection to mice challenged with rescued H1N2 viruses carrying H9N2 NA or H3N2 NA. Mutation at amino acid position 199 was also selected and proved to be crucial for H3N2 HSIV to escape from mAb 1G8. Moreover, we found that residue 199 contributed to inducing broad protective antibodies without the influence of the N-linked glycosylation at amino acid position 200 in NAs. Residues as residue 199, which are not shielded by glycosylation modification, would form ideal epitopes for developing universal vaccine and protective antibodies.
Collapse
Affiliation(s)
- Fei Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhimin Wan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jinsen Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yajuan Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Fu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wei Gao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Park SJ, Kang YM, Cho HK, Kim DY, Kim S, Bae Y, Kim J, Kim G, Lee YJ, Kang HM. Cross-protective efficacy of inactivated whole influenza vaccines against Korean Y280 and Y439 lineage H9N2 viruses in mice. Vaccine 2021; 39:6213-6220. [PMID: 34556363 DOI: 10.1016/j.vaccine.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Since June 2020, the Y280 lineage H9N2 virus, which is distinct from the previously endemic Y439 lineage, has been circulating in poultry in Korea. In this study, we developed two whole inactivated vaccines, rgHS314 and vac564, against the Y280 and Y439 lineages, respectively, and evaluated their immunogenicity and protective efficacy against homologous or heterologous viral challenge in mice. Serum neutralizing antibody titers in the rgHS314-vaccinated group were higher (68 ± 8.4 10log2) than in the vac564-vaccinated group (18 ± 8.4 10log2). In homologous challenge, rgHS314 conferred 100% protection, with no severe clinical signs, no body weight loss, and no viral replication in any tissues tested except the nasal turbinate. Viral replication in the lungs at 1, 3, 5, and 7 days post-infection (dpi) was significantly lower than in the sham group (p < 0.01). By contrast, all mice in the sham group were dead by 8 dpi with severe clinical signs and weight loss. Likewise, vac564 conferred 100% protection with no weight loss and with significantly lower viral replication in the lung than in the sham group at 3 dpi (p < 0.01). However, both vaccines showed partial protection in heterologous challenge. Our results suggest that both the rgHS314 and vac564 vaccines could be candidate vaccines for further evaluation in humans.
Collapse
Affiliation(s)
- Seo-Jeong Park
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yong-Myung Kang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Kyu Cho
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Do-Young Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Sungyeop Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Youchan Bae
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jongho Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Gyeongyeob Kim
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| |
Collapse
|
29
|
Zhang RR, Yang X, Shi CW, Yu LJ, Lian YB, Huang HB, Wang JZ, Jiang YL, Cao X, Zeng Y, Yang GL, Yang WT, Wang CF. Improved pathogenicity of H9N2 subtype of avian influenza virus induced by mutations occurred after serial adaptations in mice. Microb Pathog 2021; 160:105204. [PMID: 34562554 DOI: 10.1016/j.micpath.2021.105204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023]
Abstract
H9N2 subtype, a low pathogenic avian influenza virus, is emerging as a major causative agent circulating poultry workplaces across China and other Asian countries. Increasing case number of interspecies transmissions to mammals reported recently provoked a great concern about its risks inducing global pandemics. In an attempt to understand the underlying mechanism of how the H9N2 virus disrupts the interspecies segregation to transmit to mammals. A mutant H9N2 strain was obtained by passaging the wildtype H9N2 A/chicken/Hong Kong/G9/1997 eight times from lung to lung in BALB/c mice. Our finding revealed that mice manifested severe clinical symptoms including losses of body weight, pathological damages in pulmonary sites and all died within two weeks after infected with the mutated H9N2, whereas all mice survived upon infected with wildtype strain in comparison, which suggested increased pathogenicity of the mutant strain. In addition, mice showed enhanced levels of proinflammatory cytokines in sera, including IL-6, TNF-α and IL-1β compared to those subjected to wildtype viral infections. Sequence analysis showed that five amino acid substitutions occurred at PB2627, HA87, HA234, NP387 and M156, and a deletion mutation happened in the M gene (M157). Of these mutations, PB2 E627K played key roles in modulating lethality in mice. Taken together, the mutant H9N2 strain obtained by serial passaging of its wildtype in mice significantly increased its virulence leading to death of mice, which might be associated the accumulated mutations occurred on its genome.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ling-Jiao Yu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Bing Lian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
30
|
Cáceres CJ, Rajao DS, Perez DR. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021; 13:v13101919. [PMID: 34696349 PMCID: PMC8540072 DOI: 10.3390/v13101919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.
Collapse
|
31
|
Wang F, Wu J, Wang Y, Wan Z, Shao H, Qian K, Ye J, Qin A. Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus. Emerg Microbes Infect 2021; 10:210-219. [PMID: 33467981 PMCID: PMC7872579 DOI: 10.1080/22221751.2021.1879602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza A H9N2 virus causes economic loss to the poultry industry and has likely contributed to the genesis of H5N1 and H7N9 viruses. The neuraminidase (NA) of H9N2 virus, like haemagglutinin, is under antibody selective pressure and may undergo antigenic change; however, its antigenic structure remains to be elucidated. In this study, we used monoclonal antibodies (mAbs) to probe the H9N2 viral NA residues that are key for antibody binding/inhibition. These mAbs fell into three groups based on their binding/inhibition of the NA of H9N2 viruses isolated during 1999–2019: group I only bounded the NA of the early 2000 H9N2 viruses but possessed no neutralizing ability, group II bounded and inhibited the NA of H9N2 viruses isolated before 2012, and group III reacted with most or all tested H9N2 viruses. We showed that NA residue 356 is key for the recognition by group I mAbs, residues 344, 368, 369, and 400 are key for the binding/inhibition of NA by group II antibodies, whereas residues 248, 253, and the 125/296 combination are key for neutralizing antibodies in group III. Our findings highlighted NA antigenic change of the circulating H9N2 viruses, and provided data for a more complete picture of the antigenic structure of H9N2 viral NA.
Collapse
Affiliation(s)
- Fei Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China
| | - Jinsen Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China
| | - Yajuan Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China
| | - Zhimin Wan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Postnikova Y, Treshchalina A, Boravleva E, Gambaryan A, Ishmukhametov A, Matrosovich M, Fouchier RAM, Sadykova G, Prilipov A, Lomakina N. Diversity and Reassortment Rate of Influenza A Viruses in Wild Ducks and Gulls. Viruses 2021; 13:v13061010. [PMID: 34072256 PMCID: PMC8230314 DOI: 10.3390/v13061010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza A viruses (IAVs) evolve via point mutations and reassortment of viral gene segments. The patterns of reassortment in different host species differ considerably. We investigated the genetic diversity of IAVs in wild ducks and compared it with the viral diversity in gulls. The complete genomes of 38 IAVs of H1N1, H1N2, H3N1, H3N2, H3N6, H3N8, H4N6, H5N3, H6N2, H11N6, and H11N9 subtypes isolated from wild mallard ducks and gulls resting in a city pond in Moscow, Russia were sequenced. The analysis of phylogenetic trees showed that stable viral genotypes do not persist from year to year in ducks owing to frequent gene reassortment. For comparison, similar analyses were carried out using sequences of IAVs isolated in the same period from ducks and gulls in The Netherlands. Our results revealed a significant difference in diversity and rates of reassortment of IAVs in ducks and gulls.
Collapse
Affiliation(s)
- Yulia Postnikova
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Anastasia Treshchalina
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Elizaveta Boravleva
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
- Correspondence: ; Tel.: +7-985-136-3586
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, D-35043 Marburg, Germany;
| | - Ron A. M. Fouchier
- Department of Virology, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands;
| | - Galina Sadykova
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| | - Alexey Prilipov
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| | - Natalia Lomakina
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| |
Collapse
|
33
|
Adel A, Mosaad Z, Shalaby AG, Selim K, Samy M, Abdelmagid MA, Hagag NM, Arafa AS, Hassan WM, Shahien MA. Molecular evolution of the hemagglutinin gene and epidemiological insight into low-pathogenic avian influenza H9N2 viruses in Egypt. Res Vet Sci 2021; 136:540-549. [PMID: 33887563 DOI: 10.1016/j.rvsc.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Despite the low pathogenicity of the H9N2 avian influenza viruses, they can induce severe economic losses in various poultry sectors in conjunction with other factors. In Egypt, low-pathogenic avian influenza (LPAI) H9N2 became endemic in 2011 and has undergone continuous genetic evolution since then. The regular monitoring of the evolution of the virus is necessary to control its spread. During 2017-2020, there were 44 positive samples isolated, and these viruses were genetically sequenced to determine the hemagglutinin (HA) gene circulating in Egypt. The molecular analysis revealed at least nine changes in amino acid residues in comparison with the reference Egyptian strain from the original introduction in 2011 (A/qu/Egypt/113413v/2011), with a similarity of 95%-96%. Amino acid residues 180 and 216 are the most important residues in terms of positive selection pressure. Phylogenetically, the new Egyptian H9N2 viruses in 2017-2020 belonged to a new subcluster related to the strains that had been circulating since 2015. Comparative analysis of the HA gene of LPAI H9N2 viruses in Egypt from 2011 to 2020 supports a continuous evolution through the years with persistent markers.
Collapse
Affiliation(s)
- Amany Adel
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt.
| | - Zienab Mosaad
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Azhar G Shalaby
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Karim Selim
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mohamed Samy
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Naglaa M Hagag
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Abdel Satar Arafa
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Wafaa M Hassan
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Momtaz A Shahien
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
34
|
Zhang S, Yu J, He L, Gong L, Hou S, Zhu M, Wu J, Su B, Liu J, Wu G, He J. Molecular characteristics of the H9N2 avian influenza viruses in live poultry markets in Anhui Province, China, 2013 to 2018. Health Sci Rep 2021; 4:e230. [PMID: 33437876 PMCID: PMC7787659 DOI: 10.1002/hsr2.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/26/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND AIMS H9N2 subtype avian influenza virus (AIV) has low-pathogenicity but causes respiratory symptoms and drop in egg production in chicken with long-term virus shedding, resulting in great economic losses due to high mortality related to secondary infection with other pathogens. In recent years, H9N2 viruses have been posing a threat to public health, causing human infection in China. Compared to studies on other AIV subtypes, there are relatively few studies on the pathogenic mechanism of the H9N2 virus in mammals. H9N2 subtype AIV has been circulating worldwide in many avian species and transmitting with high efficiency in poultry. It can provide internal genes for other subtypes to produce new viruses, causing a pandemic risk. It is important to carry out long-term surveillance and pathogenic characteristics of the H9N2 virus. In this study, we conducted environmental surveillance of live poultry markets in Anhui province from 2013 to 2018, and 33 representative environmental isolates were selected and studied systematically. METHODS The genomic RNA of Anhui H9N2 isolates was subjected to RT-PCR amplification followed by sequencing analysis. RESULTS Thirty-three strains were isolated from the embryonated eggs of specific-pathogen-free chickens. Phylogenetic analysis indicated that h9.4.2.5-like H9N2 viruses were predominant during 2013-2018 and acquired multiple specific amino acid mutations that may have increased their affinity for mammals and enhanced their infectivity and transmissibility. Additionally, six internal genes of H9N2 clustered together with the novel human-lethal reassortant viruses, such as the low-pathogenicity H7N9, H10N8, and Anhui H5N6 viruses, and even HPAI H7N9. CONCLUSION Because H9N2 viruses may be the donors of internal genes that lead to the generation of novel reassortant viruses with enhanced pathogenicity in Anhui province, continuous environmental surveillance of live poultry markets, a key source of reassorted H9N2 and other avian influenza viruses, is of great importance.
Collapse
Affiliation(s)
- Shuxia Zhang
- National Institute for Viral Disease Control and PreventionChina Center for Disease Control and PreventionBeijingChina
| | - Jun‐Ling Yu
- Department of Microbiological Laboratory, Anhui Provincial Center for Disease Control and PreventionKey Laboratory for Medical and Health of the 13th Five‐Year Plan in Anhui ProvinceHefeiChina
| | - Lan He
- Department of Microbiological Laboratory, Anhui Provincial Center for Disease Control and PreventionKey Laboratory for Medical and Health of the 13th Five‐Year Plan in Anhui ProvinceHefeiChina
| | - Lei Gong
- Department of Acute Infectious Disease PreventionAnhui Provincial Center for Disease Control and PreventionHefeiChina
| | - Sai Hou
- Department of Acute Infectious Disease PreventionAnhui Provincial Center for Disease Control and PreventionHefeiChina
| | - Meng Zhu
- Department of Acute Infectious Disease PreventionAnhui Provincial Center for Disease Control and PreventionHefeiChina
| | - Jia‐Bing Wu
- Department of Acute Infectious Disease PreventionAnhui Provincial Center for Disease Control and PreventionHefeiChina
| | - Bin Su
- Department of Microbiological Laboratory, Anhui Provincial Center for Disease Control and PreventionKey Laboratory for Medical and Health of the 13th Five‐Year Plan in Anhui ProvinceHefeiChina
| | - Jia Liu
- National Institute for Viral Disease Control and PreventionChina Center for Disease Control and PreventionBeijingChina
| | - Guizhen Wu
- National Institute for Viral Disease Control and PreventionChina Center for Disease Control and PreventionBeijingChina
| | - Jun He
- Department of Microbiological Laboratory, Anhui Provincial Center for Disease Control and PreventionKey Laboratory for Medical and Health of the 13th Five‐Year Plan in Anhui ProvinceHefeiChina
| |
Collapse
|
35
|
Ma N, Li X, Jiang H, Dai Y, Xu G, Zhang Z. Influenza Virus Neuraminidase Engages CD83 and Promotes Pulmonary Injury. J Virol 2021; 95:e01753-20. [PMID: 33177200 PMCID: PMC7925101 DOI: 10.1128/jvi.01753-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. However, the mechanism by which influenza induces hypercytokinemia is not fully understood. In this study, we established a mouse-adapted H9N2 virus, MA01, to evaluate the innate immune response to influenza in the lung. MA01 infection caused high levels of cytokine release, enhanced pulmonary injury in mice, and upregulated CD83 protein in dendritic cells and macrophages in the lung. Influenza virus neuraminidase (NA) unmasked CD83 protein and contributed to high cytokine levels. Furthermore, we provide evidence that CD83 is a sialylated glycoprotein. Neuraminidase treatment enhanced lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW264.7 cells. Anti-CD83 treatment alleviated influenza virus-induced lung injury in mice. Our study indicates that influenza virus neuraminidase modulates CD83 status and contributes to the "cytokine storm," which may suggest a new approach to curb this immune injury.IMPORTANCE The massive release of circulating mediators of inflammation is responsible for lung injury during influenza A virus infection. This phenomenon is referred to as the "cytokine storm." However, the mechanism by which influenza induces the cytokine storm is not fully understood. In this study, we have shown that neuraminidase unmasked CD83 protein in the lung and contributed to high cytokine levels. Anti-CD83 treatment could diminish immune damage to lung tissue. The NA-CD83 axis may represent a target for an interruption of influenza-induced lung damage.
Collapse
Affiliation(s)
- Ning Ma
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingjie Li
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyu Jiang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulong Dai
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guofeng Xu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zongde Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
36
|
Zhou Y, Wu X, Yan D, Chen C, Liu X, Huang C, Fu X, Tian G, Ding C, Wu J, Xu J, Li L, Yang S. V292I mutation in PB2 polymerase induces increased effects of E627K on influenza H7N9 virus replication in cells. Virus Res 2021; 291:198186. [PMID: 33075446 DOI: 10.1016/j.virusres.2020.198186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/27/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022]
Abstract
Characterization of host adaptation markers among human isolates is important for recognizing the potential for cross-species transmission in avian influenza A viruses. Here, we studied two new potential adaptive mutations, V292I and D740A, in the PB2 protein that were identified by a multi-factor regression model. The study shows that the prevalence of the PB2-V292I mutation is increased in H7N9 influenza viruses isolated from both humans and birds over the past 6 years. The phylogenetic tree showed that influenza A/H7N9 has a lineage based on the strains containing PB2-292I. Polymerase complexes containing PB2-292I/627K derived from H7N9 exhibit increased polymerase activity. PB2-292I coupled with 627K also enhances viral transcription and replication in cells, whereas PB2-292I alone did not show the same effect in the H7N9 virus. However, PB2-740A only had a limited prevalence in 2013, and the change from D to A in PB2-740A may have a negative effect on the replication of the H7N9 virus in cells.
Collapse
Affiliation(s)
- Yuqing Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danying Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Can Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chenyang Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaofang Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guo Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
37
|
Sun H, Fei L, Zhu B, Shi M. Quick and improved immune responses to inactivated H9N2 avian influenza vaccine by purified active fraction of Albizia julibrissin saponins. BMC Vet Res 2020; 16:427. [PMID: 33160337 PMCID: PMC7648552 DOI: 10.1186/s12917-020-02648-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background H9N2 Low pathogenic avian influenza virus (LPAIV) raises public health concerns and its eradication in poultry becomes even more important in preventing influenza. AJSAF is a purified active saponin fraction from the stem bark of Albizzia julibrissin. In this study, AJSAF was evaluated for the adjuvant potentials on immune responses to inactivated H9N2 avian influenza virus vaccine (IH9V) in mice and chicken in comparison with commercially oil-adjuvant. Results AJSAF significantly induced faster and higher H9 subtype avian influenza virus antigen (H9–Ag)-specific IgG, IgG1, IgG2a and IgG2b antibody titers in mice and haemagglutination inhibition (HI) and IgY antibody levels in chicken immunized with IH9V. AJSAF also markedly promoted Con A-, LPS- and H9–Ag-stimulated splenocyte proliferation and natural killer cell activity. Furthermore, AJSAF significantly induced the production of both Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines, and up-regulated the mRNA expression levels of Th1 and Th2 cytokines and transcription factors in splenocytes from the IH9V-immunized mice. Although oil-formulated inactivated H9N2 avian influenza vaccine (CH9V) also elicited higher H9–Ag-specific IgG and IgG1 in mice and HI antibody titer in chicken, this robust humoral response was later produced. Moreover, serum IgG2a and IgG2b antibody titers in CH9V-immunized mice were significantly lower than those of IH9V alone group. Conclusions AJSAF could improve antigen-specific humoral and cellular immune responses, and simultaneously trigger a Th1/Th2 response to IH9V. AJSAF might be a safe and efficacious adjuvant candidate for H9N2 avian influenza vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02648-1.
Collapse
Affiliation(s)
- Hongxiang Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Liyan Fei
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Binnian Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Shi
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
38
|
Ma W. Swine influenza virus: Current status and challenge. Virus Res 2020; 288:198118. [PMID: 32798539 PMCID: PMC7587018 DOI: 10.1016/j.virusres.2020.198118] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Since swine influenza virus was first isolated in 1930, it has become endemic in pigs worldwide. Although large amount of swine influenza vaccines has been used in swine industry, swine influenza still cannot be efficiently controlled and has been an important economic disease for swine industry. The high diversity and varied distribution of different subtypes and genotypes of swine influenza viruses circulating in pigs globally is a major challenge to produce broadly effective vaccines and control disease. Importantly, swine influenza virus is able to cross species barrier to infect humans and even caused influenza pandemic in 2009. Herein, current status and challenge of swine influenza viruses is reviewed and discussed.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
39
|
Fallah Mehrabadi MH, Motamed N, Ghalyanchilangeroudi A, Tehrani F, Borhani Kia A. Avian Influenza (H9N2 Subtype) in Iranian Broiler Farms: A Cross-sectional Study. ARCHIVES OF RAZI INSTITUTE 2020; 75:359-366. [PMID: 33025776 DOI: 10.22092/ari.2019.123942.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 09/30/2022]
Abstract
The present study aimed to determine the seroprevalence of H9N2 influenza in broiler farms at the time of slaughter in Iran. A total of 747 birds were sampled from 74 Farms in 13 provinces within 2013-2016. The obtained sera were investigated using the hemagglutination inhibition (HI) test. Out of 74 sampled farms and 747 birds, 57 farms (77%) and 445 (59.57%) birds were reported to be seropositive. In 2013, 10 farms and 110 birds were sampled out of which three farms (29.6%) and 29 birds (30%) were seropositive. In 2014, 24 farms and 220 birds were sampled out of which 22 farms (91.6%) and 220 birds (86.6%) were positive in six provinces. In 2015, 30 farms and 278 birds were sampled out of which 5 farms (16%) and134 birds (48.2%) were positive in four provinces. Finally, in 2016, 7 farms (70%) out of 10 sampled farms and 62 birds (59%) out of 105 sampled birds were positive for H9N2 in eight provinces. The mean titer of units in 2013 was statistically lower, as compared to that in 2014 (p &lt;0.01). In addition, the proportion of positive serum units in 2013 was statistically lower, as compared to that in 2014 (p &lt;0.001). In general, the prevalence of H9N2 was high indicating the continuous circulation of the virus in Iran. Given the importance and impact of this virus on the poultry industry, people&rsquo;s livelihood, and public health, more epidemiological studies are needed to evaluate the effectiveness of the adopted measures and methods in controlling the H9N2 virus.
Collapse
Affiliation(s)
- M H Fallah Mehrabadi
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - N Motamed
- Department of Poultry vaccines Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.,Department of Poultry vaccines Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - A Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - F Tehrani
- Iranian Veterinary Organization, Tehran, Iran
| | | |
Collapse
|
40
|
Barberis A, Boudaoud A, Gorrill A, Loupias J, Ghram A, Lachheb J, Alloui N, Ducatez MF. Full-length genome sequences of the first H9N2 avian influenza viruses isolated in the Northeast of Algeria. Virol J 2020; 17:108. [PMID: 32680533 PMCID: PMC7366561 DOI: 10.1186/s12985-020-01377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background H9N2 avian influenza viruses (AIV) has a worldwide geographic distribution and affects poultry of different types of production. H9N2 AIV was first reported in the Northeast of Algeria in April 2017, following an outbreak associated with high mortality, in broiler flocks. In the present study, we report full-length genome sequences of AIV H9N2, and the detailed phylogeny and molecular genetic analyses. Methods Ten AIV H9N2 strains, collected in broiler flocks, were amplified in 9-day-old embryonated specific pathogen free (SPF) chicken eggs. Their full-length genomes were successfully sequenced and phylogenetic and molecular characterizations were conducted. Results Phylogenetic analysis showed that the isolates were monophyletic, grouped within the G-1 lineage and were very close to Moroccan and Algerian strains identified in 2016 and 2017, respectively. The low pathogenicity of the strains was confirmed by the sequence motif (335RSSR/GLF341) at the hemagglutinin (HA) cleavage site. An exclusive substitution (T197A) that had not been previously reported for H9N2 viruses; but, conserved in some pandemic H1N1 viruses, was observed. When compared to the G1-like H9N2 prototype, the studied strains showed one less glycosylation site in HA, but 2–3 additional ones in the stalk of the neuraminidase (NA). The HA protein harbored the substitution 234 L, suggesting binding preference to human-like receptors. The NA protein harbored S372A and R403W substitutions, previously detected in H9N2 from Asia and the Middle East, and especially in H2N2 and H3N2 strains that caused human pandemics. Different molecular markers associated with virulence and mammalian infections have been detected in the viral internal proteins. The matrix M2 protein possessed the S31N substitution associated with drug resistance. The non-structural 1 (NS1) protein showed the “GSEV” PDZ ligand (PL) C-terminal motif and no 80–84 deletion. Conclusion Characterized Algerian AIV isolates showed mutations that suggest increased zoonotic potential. Additional studies in animal models are required to investigate the pathogenicity of these H9N2 AIV strains. Monitoring their evolution in both migratory and domestic birds is crucial to prevent transmission to humans. Implementation of adequate biosecurity measures that limit the introduction and the propagation of AIV H9N2 in Algerian poultry farm is crucial.
Collapse
Affiliation(s)
- Abdelheq Barberis
- Centre de Recherche en Biotechnologie, Nouvelle Ville Ali Mendjeli, El Khroub, Algeria. .,LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria.
| | - Amine Boudaoud
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Angelina Gorrill
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Josianne Loupias
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Abdeljelil Ghram
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachheb
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Nadir Alloui
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France.
| |
Collapse
|
41
|
Immunization of turkeys with a DNA vaccine expressing the haemagglutinin gene of low pathogenic avian influenza virus subtype H9N2. J Virol Methods 2020; 284:113938. [PMID: 32663531 DOI: 10.1016/j.jviromet.2020.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 01/25/2023]
Abstract
Low pathogenic avian influenza H9N2 is still circulating in the Middle East causing respiratory manifestations and severe economic losses in poultry. In the present study, an H9 plasmid-based DNA vaccine targeting the HA gene of H9N2 A/CK/Egypt/SCU8/2014 was developed and evaluated in turkeys. The full length of HA was cloned into vector plasmids under the control of a cytomegalovirus promoter. The in-vitro expression of the recombinant HA was demonstrated in HeLa cells transfected with the plasmids pVAX1-H9 or pCR-H9 using western blot and Immunofluorescent assay (IFA). The efficacy of pVAX-H9 and pCR- H9, naked or saponin-adjuvanted, was evaluated in turkey poults at 3 weeks and challenged with A/CK/Egypt/SCU8/2014 (106 EID50/bird at 3 weeks post-vaccination. The efficacy was assesses based on virus shedding, oropharyngeal and cloacal, as well as seroconversion using haemagglutination inhibition (HI) test. All immunized birds showed high HI antibody titers (7-8 log2) at 3 weeks post-vaccination. None of the birds vaccinated with naked or saponin-adjuvanted pVAX-H9 or pCR-H9 showed any clinical signs. The pVAX-H9 and pCR-H9 alone did not prevent cloacal and oropharyngeal virus shedding, however, saponin-adjuvanted pVAX1-H9 and pCR-H9 prevented cloacal and oropharyngeal virus shedding at 3 and 5 days post challenge, respectively. In conclusion, DNA vaccination with pVAX1-H9 and pCR-H9 could protect turkey from the H9N2 virus, but vaccination regimes need to be improved.
Collapse
|
42
|
Arbi M, Souiai O, Rego N, Larbi I, Naya H, Ghram A, Houimel M. Historical origins and zoonotic potential of avian influenza virus H9N2 in Tunisia revealed by Bayesian analysis and molecular characterization. Arch Virol 2020; 165:1527-1540. [PMID: 32335769 DOI: 10.1007/s00705-020-04624-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.
Collapse
Affiliation(s)
- Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
- Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Av. Gral. Eugenio Garzón 780, 12900, Montevideo, Uruguay
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Mehdi Houimel
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia.
| |
Collapse
|
43
|
A Well-Defined H9N2 Avian Influenza Virus Genotype with High Adaption in Mammals was Prevalent in Chinese Poultry Between 2016 to 2019. Viruses 2020; 12:v12040432. [PMID: 32290398 PMCID: PMC7232211 DOI: 10.3390/v12040432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
H9N2 subtype avian influenza virus (AIV) is widely prevalent in poultry, and the virus is becoming adaptive to mammals, which poses pandemic importance. Here, BALB/c mice were employed as a model to evaluate the adaption in mammals of 21 field H9N2 viruses isolated from avian species between 2016 to 2019 in China. The replication capacity of the viruses was evaluated in the lungs of mice. The pathogenicity of the viruses were compared by weight loss and lung lesions from infected mice. The whole genomic sequences of the viruses were further characterized to define the associated phenotypes of the H9N2 viruses in vitro and in vivo. The results showed that most viruses could replicate well and cause lesions in the mouse lungs. The propagation capacity in MDCK cells and damage to respiratory tissues of the infected mice corresponded to relative viral titers in the mouse lungs. Further genome analysis showed that all of the H9N2 viruses belonged to the same genotype, G57, and contained a couple of amino acid substitutions or deletions that have been demonstrated as avian-human markers. Additionally, nine amino acids residues in seven viral proteins were found to be correlated with the replication phenotypes of the H9N2 viruses in mammals. The study demonstrated that a well-defined H9N2 AIV genotype with high adaption in mammals was prevalent in China in recent years. Further investigations on the role of the identified residues and continuous surveillance of newly identified mutations associated with host adaption should be strengthened to prevent any devastating human influenza pandemics.
Collapse
|
44
|
Youk SS, Lee DH, Jeong JH, Pantin-Jackwood MJ, Song CS, Swayne DE. Live bird markets as evolutionary epicentres of H9N2 low pathogenicity avian influenza viruses in Korea. Emerg Microbes Infect 2020; 9:616-627. [PMID: 32183621 PMCID: PMC7144223 DOI: 10.1080/22221751.2020.1738903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Live bird markets (LBMs) in Korea have been recognized as a reservoir, amplifier, and source of avian influenza viruses (AIVs); however, little was known about the role of LBMs in the epidemiology of AIVs in Korea until recently. Through 10 years of surveillance (2006–2016) we have isolated and sequenced H9N2 viruses in Korean LBMs. To understand how H9N2 evolves and spreads in Korea, a statistical Bayesian phylogenetic model was used. Phylogenetic analysis suggests that three separate introductions of progenitor gene pools, Korean domestic duck-origin and two wild aquatic bird-origin AIVs, contributed to the generation of the five genotypes of H9N2 viruses in Korea. Phylogenetic reconstruction of ecological states infer that the LBMs are where chickens become infected with the virus, with domestic ducks playing a major role in the transmission and evolution of the H9N2 viruses. Three increases in the genetic diversity of H9N2 viruses were observed and coincided with transitions in host species and the locations (domestic farm, LBM, slaughterhouse, and wild aquatic bird habitat) where the viruses were isolated, accompanying genetic reassortment. Following the introduction of a wild aquatic bird-origin AIVs in 2008, six genes of the Korean lineage H9N2 virus were replaced with genes originating from wild aquatic birds, and viruses with this new genotype became predominant in Korean LBMs.
Collapse
Affiliation(s)
- Sung-Su Youk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.,Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA.,Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Jei-Hyun Jeong
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Chang-Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| |
Collapse
|
45
|
Bhatta TR, Chamings A, Vibin J, Klaassen M, Alexandersen S. Detection of a Reassortant H9N2 Avian Influenza Virus with Intercontinental Gene Segments in a Resident Australian Chestnut Teal. Viruses 2020; 12:E88. [PMID: 31940999 PMCID: PMC7019556 DOI: 10.3390/v12010088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
The present study reports the genetic characterization of a low-pathogenicity H9N2 avian influenza virus, initially from a pool and subsequently from individual faecal samples collected from Chestnut teals (Anas castanea) in southeastern Australia. Phylogenetic analyses of six full gene segments and two partial gene segments obtained from next-generation sequencing showed that this avian influenza virus, A/Chestnut teal/Australia/CT08.18/12952/2018 (H9N2), was a typical, low-pathogenicity, Eurasian aquatic bird lineage H9N2 virus, albeit containing the North American lineage nucleoprotein (NP) gene segment detected previously in Australian wild birds. This is the first report of a H9N2 avian influenza virus in resident wild birds in Australia, and although not in itself a cause of concern, is a clear indication of spillover and likely reassortment of influenza viruses between migratory and resident birds, and an indication that any lineage could potentially be introduced in this way.
Collapse
Affiliation(s)
- Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Jessy Vibin
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Marcel Klaassen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- Centre for Integrative Ecology, Deakin University, Victoria 3220, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria 3220, Australia
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
- Barwon Health, University Hospital Geelong, Geelong, Victoria 3220, Australia
| |
Collapse
|
46
|
Infection of Human Tracheal Epithelial Cells by H5 Avian Influenza Virus Is Regulated by the Acid Stability of Hemagglutinin and the pH of Target Cell Endosomes. Viruses 2020; 12:v12010082. [PMID: 31936692 PMCID: PMC7019350 DOI: 10.3390/v12010082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 01/04/2023] Open
Abstract
Despite the possible relationships between tracheal infection and concomitant infection of the terminal part of the lower respiratory tract (bronchioles/alveoli), the behavior of avian influenza viruses (AIVs), such as H5N1, in the conducting airways is unclear. To examine the tropism of AIVs for cells lining the conducting airways of humans, we established human tracheal epithelial cell clones (HTEpC-Ts) and examined their susceptibility to infection by AIVs. The HTEpC-Ts showed differing susceptibility to H5N1 and non-zoonotic AIVs. Viral receptors expressed by HTEpC-Ts bound all viruses; however, the endosomal pH was associated with the overall susceptibility to infection by AIVs. Moreover, H5N1 hemagglutinin broadened viral tropism to include HTEpC-Ts, because it had a higher pH threshold for viral-cell membrane fusion. Thus, H5N1 viruses infect human tracheal epithelial cells as a result of their higher pH threshold for membrane fusion which may be one mechanism underlying H5N1 pathogenesis in human airway epithelia. Efficient replication of H5N1 in the conducting airways of humans may facilitate infection of the lower respiratory tract.
Collapse
|
47
|
Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs. Sci Rep 2019; 9:19734. [PMID: 31875046 PMCID: PMC6930279 DOI: 10.1038/s41598-019-56122-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022] Open
Abstract
H9N2 is the most prevalent low pathogenic avian influenza virus (LPAIV) in domestic poultry in the world. Two distinct H9N2 poultry lineages, G1-like (A/quail/Hong Kong/G1/97) and Y280-like (A/Duck/Hong Kong/Y280/1997) viruses, are usually associated with binding affinity for both α 2,3 and α 2,6 sialic acid receptors (avian and human receptors), raising concern whether these viruses possess pandemic potential. To explore the impact of mouse adaptation on the transmissibility of a Y280-like virus A/Chicken/Hubei/214/2017(H9N2) (abbreviated as WT), we performed serial lung-to-lung passages of the WT virus in mice. The mouse-adapted variant (MA) exhibited enhanced pathogenicity and advantaged transmissibility after passaging in mice. Sequence analysis of the complete genomes of the MA virus revealed a total of 16 amino acid substitutions. These mutations distributed across 7 segments including PB2, PB1, PA, NP, HA, NA and NS1 genes. Furthermore, we generated a panel of recombinant or mutant H9N2 viruses using reverse genetics technology and confirmed that the PB2 gene governing the increased pathogenicity and transmissibility. The combinations of 340 K and 588 V in PB2 were important in determining the altered features. Our findings elucidate the specific mutations in PB2 contribute to the phenotype differences and emphasize the importance of monitoring the identified amino acid substitutions due to their potential threat to human health.
Collapse
|
48
|
Kariithi HM, Welch CN, Ferreira HL, Pusch EA, Ateya LO, Binepal YS, Apopo AA, Dulu TD, Afonso CL, Suarez DL. Genetic characterization and pathogenesis of the first H9N2 low pathogenic avian influenza viruses isolated from chickens in Kenyan live bird markets. INFECTION GENETICS AND EVOLUTION 2019; 78:104074. [PMID: 31634645 DOI: 10.1016/j.meegid.2019.104074] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
Poultry production plays an important role in the economy and livelihoods of rural households in Kenya. As part of a surveillance program, avian influenza virus (AIV)-specific real-time RT-PCR (RRT-PCR) was used to screen 282 oropharyngeal swabs collected from chickens at six live bird markets (LBMs) and 33 backyard poultry farms in Kenya and 8 positive samples were detected. Virus was isolated in eggs from five samples, sequenced, and identified as H9N2 low pathogenic AIV (LPAIV) G1 lineage, with highest nucleotide sequence identity (98.6-99.9%) to a 2017 Ugandan H9N2 isolate. The H9N2 contained molecular markers for mammalian receptor specificity, implying their zoonotic potential. Virus pathogenesis and transmissibility was assessed by inoculating low and medium virus doses of a representative Kenyan H9N2 LPAIV isolate into experimental chickens and exposing them to naïve uninfected chickens at 2 -days post inoculation (dpi). Virus shedding was determined at 2/4/7 dpi and 2/5 days post placement (dpp), and seroconversion determined at 14 dpi/12 dpp. None of the directly-inoculated or contact birds exhibited any mortality or clinical disease signs. All directly-inoculated birds in the low dose group shed virus during the experiment, while only one contact bird shed virus at 2 dpp. Only two directly-inoculated birds that shed high virus titers seroconverted in that group. All birds in the medium dose group shed virus at 4/7 dpi and at 5 dpp, and they all seroconverted at 12/14 dpp. This is the first reported detection of H9N2 LPAIV from Kenya and it was shown to be infectious and transmissible in chickens by direct contact and represents a new disease threat to poultry and potentially to people.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya; Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Catharine N Welch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Helena L Ferreira
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; University of Sao Paulo, ZMV- FZEA, Pirassununga 13635900, Brazil.
| | - Elizabeth A Pusch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - Leonard O Ateya
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya.
| | - Yatinder S Binepal
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Road, Loresho, Nairobi, Kenya.
| | - Auleria A Apopo
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock, Fisheries and Irrigation, Private Bag-00625, Nairobi, Kenya.
| | - Thomas D Dulu
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock, Fisheries and Irrigation, Private Bag-00625, Nairobi, Kenya.
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - David L Suarez
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
49
|
RETRACTED ARTICLE: Emerging threat of H9N2 viruses in poultry of Pakistan and vaccination strategy. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2. Vaccine 2019; 37:6640-6647. [PMID: 31542262 DOI: 10.1016/j.vaccine.2019.09.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022]
Abstract
Variations in the composition of commensal gut microbiota have been reported to be major contributors to differences in responses to vaccination among individuals. In chickens, there is limited information on the role of gut microbiota in responses to vaccination. The current study studied the role of gut microbiota in cell- and antibody-mediated immune responses to vaccination with a whole inactivated avian influenza virus, subtype H9N2. A total of 166 one-day-old specific pathogen free layer chickens (SPF) were randomly assigned to treatments, where a combination of antibiotic depletion, and probiotics (a combination of five Lactobacillus species) or fecal microbial transplant (FMT) reconstitution were used to study the dynamics of cell- and antibody-mediated immune responses to primary and secondary vaccinations at days 15 and 29 of age, respectively. Overall, at days 7 and 14 post primary vaccination (p.p.v.), administration of probiotics to non-depleted chickens resulted in significantly higher mean hemagglutination (HI) titre compared to antibiotic treated chickens. Furthermore, at day 21 p.p.v., chickens treated with probiotics or FMT post-antibiotic treatment showed a significantly higher mean HI titre compared to non-depleted chickens treated with probiotics. At day 7 p.p.v., a significantly higher virus specific IgM and IgG titres were observed in non-depleted chickens administered with probiotics compared to antibiotic depleted chickens, and a significantly higher IgG titre was observed in chickens treated with FMT following antibiotic treatment compared to only antibiotic treatment. Analysis of interferon gamma expression in splenocytes to assess cell-mediated immune responses showed a significantly lower expression in antibiotic-treated chickens compared to non-depleted chickens and FMT reconstituted chickens. Taken together, the current study suggests that shifts in the composition of gut microbiota of chickens may result in changes in cell- and antibody-mediated immune responses to vaccination against influenza viruses. Further studies will be needed to highlight the mechanisms involved in this modulation.
Collapse
|