7
|
Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A, Hassall C, Adamík P, Adriaensen F, Ahola MP, Arcese P, Miguel Avilés J, Balbontin J, Berg KS, Borras A, Burthe S, Clobert J, Dehnhard N, de Lope F, Dhondt AA, Dingemanse NJ, Doi H, Eeva T, Fickel J, Filella I, Fossøy F, Goodenough AE, Hall SJG, Hansson B, Harris M, Hasselquist D, Hickler T, Joshi J, Kharouba H, Martínez JG, Mihoub JB, Mills JA, Molina-Morales M, Moksnes A, Ozgul A, Parejo D, Pilard P, Poisbleau M, Rousset F, Rödel MO, Scott D, Senar JC, Stefanescu C, Stokke BG, Kusano T, Tarka M, Tarwater CE, Thonicke K, Thorley J, Wilting A, Tryjanowski P, Merilä J, Sheldon BC, Pape Møller A, Matthysen E, Janzen F, Dobson FS, Visser ME, Beissinger SR, Courtiol A, Kramer-Schadt S. Adaptive responses of animals to climate change are most likely insufficient. Nat Commun 2019; 10:3109. [PMID: 31337752 PMCID: PMC6650445 DOI: 10.1038/s41467-019-10924-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. It is unclear whether species’ responses to climate change tend to be adaptive or sufficient to keep up with climate change. Here, Radchuk et al. perform a meta-analysis showing that in birds phenology has advanced adaptively in some species, though not all the way to the new optima.
Collapse
Affiliation(s)
- Viktoriia Radchuk
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Thomas Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 N73K, Ireland
| | - Céline Teplitsky
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Martijn van de Pol
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Anne Charmantier
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Adamík
- Department of Zoology, Palacký University, tř. 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Frank Adriaensen
- Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Markus P Ahola
- Swedish Museum of Natural History, P.O. Box 50007, 10405, Stockholm, Sweden
| | - Peter Arcese
- Department of Forest and Conservation Sciences, 2424 Main Mall, Vancouver, V6T 1Z4, BC, Canada
| | - Jesús Miguel Avilés
- Department of Functional and Evolutionary Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Ctra de Sacramento s/n, 04120, Almería, Spain
| | - Javier Balbontin
- Department of Zoology, Faculty of Biology, University of Seville, Avenue Reina Mercedes, 41012, Seville, Spain
| | - Karl S Berg
- Department of Biological Sciences, University of Texas Rio Grande Valley, Brownsville, 78520, TX, USA
| | - Antoni Borras
- Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003, Barcelona, Spain
| | - Sarah Burthe
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - Jean Clobert
- Station of Experimental and Theoretical Ecology (SETE), UMR 5321, CNRS and University Paul Sabatier, 2 route du CNRS, 09200, Moulis, France
| | - Nina Dehnhard
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk (Antwerp), Belgium
| | - Florentino de Lope
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006, Badajoz, Spain
| | - André A Dhondt
- Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Kobe, 650-0047, Japan
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, FI-20014, Finland
| | - Joerns Fickel
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.,Institute for Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Iolanda Filella
- CREAF, 08193, Cerdanyola del Vallès, Spain.,CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Spain
| | - Frode Fossøy
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Anne E Goodenough
- School of Natural and Social Sciences, University of Gloucestershire, Swindon Road, Cheltenham, GL50 4AZ, UK
| | - Stephen J G Hall
- Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Bengt Hansson
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Michael Harris
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | | | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Center (BiK-F), Senckenberganlage 25, 60325, Frankfurt/Main, Germany
| | - Jasmin Joshi
- Biodiversity research/Systematic Botany, University of Potsdam, Maulbeerallee 1, Berlin, 14469, Germany.,Institute for Landscape and Open Space, HSR Hochschule für Technik, Oberseestrasse 10, Rapperswil, 8640, Switzerland
| | - Heather Kharouba
- Department of Biology, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Juan Gabriel Martínez
- Departamento de Zoologia, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jean-Baptiste Mihoub
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, CESCO, UMR 7204, 61 rue Buffon, 75005, Paris, France
| | - James A Mills
- 10527A Skyline Drive, Corning, NY, 14830, USA.,3 Miromiro Drive, Kaikoura, 7300, New Zealand
| | - Mercedes Molina-Morales
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006, Badajoz, Spain
| | - Arne Moksnes
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Spain
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
| | - Deseada Parejo
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006, Badajoz, Spain
| | - Philippe Pilard
- LPO Mission Rapaces, 26 avenue Alain Guigue, 13104, Mas-Thibert, France
| | - Maud Poisbleau
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk (Antwerp), Belgium
| | - Francois Rousset
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, 34095, France
| | - Mark-Oliver Rödel
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstrasse 43, 10115, Berlin, Germany
| | - David Scott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, 29802, USA
| | - Juan Carlos Senar
- Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003, Barcelona, Spain
| | - Constanti Stefanescu
- CREAF, 08193, Cerdanyola del Vallès, Spain.,Natural History Museum of Granollers, Francesc Macià, 52, 08401, Granollers, Spain
| | - Bård G Stokke
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Spain.,Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Tamotsu Kusano
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Maja Tarka
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Corey E Tarwater
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Kirsten Thonicke
- Research Domain 1 'Earth System Analysis', Potsdam Institute for Climate Impact Research (PIK), P.O. Box 60 12 03, Telegrafenberg A31, Potsdam, D-14412, Germany
| | - Jack Thorley
- Imperial College London, Silwood Park Campus, Buckurst Road, Ascot, SL5 7PY, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Andreas Wilting
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Piotr Tryjanowski
- Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Ecological Genetics Research Unit, Faculty Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Erik Matthysen
- Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fredric Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - F Stephen Dobson
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| | - Steven R Beissinger
- Department of Environmental Science, Policy and Management and Museum of Vertebrate Zoology, University of California, Berkeley, 94720, CA, USA
| | - Alexandre Courtiol
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.,Department of Ecology, Technische Universität Berlin, 12165, Berlin, Germany
| |
Collapse
|
8
|
Lawn RB, Sallis HM, Taylor AE, Wootton RE, Smith GD, Davies NM, Hemani G, Fraser A, Penton-Voak IS, Munafò MR. Schizophrenia risk and reproductive success: a Mendelian randomization study. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181049. [PMID: 31031992 PMCID: PMC6458425 DOI: 10.1098/rsos.181049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Schizophrenia is a debilitating and heritable mental disorder associated with lower reproductive success. However, the prevalence of schizophrenia is stable over populations and time, resulting in an evolutionary puzzle: how is schizophrenia maintained in the population, given its apparent fitness costs? One possibility is that increased genetic liability for schizophrenia, in the absence of the disorder itself, may confer some reproductive advantage. We assessed the correlation and causal effect of genetic liability for schizophrenia with number of children, age at first birth and number of sexual partners using data from the Psychiatric Genomics Consortium and UK Biobank. Linkage disequilibrium score regression showed little evidence of genetic correlation between genetic liability for schizophrenia and number of children (r g = 0.002, p = 0.84), age at first birth (r g = -0.007, p = 0.45) or number of sexual partners (r g = 0.007, p = 0.42). Mendelian randomization indicated no robust evidence of a causal effect of genetic liability for schizophrenia on number of children (mean difference: 0.003 increase in number of children per doubling in the natural log odds ratio of schizophrenia risk, 95% confidence interval (CI): -0.003 to 0.009, p = 0.39) or age at first birth (-0.004 years lower age at first birth, 95% CI: -0.043 to 0.034, p = 0.82). We find some evidence of a positive effect of genetic liability for schizophrenia on number of sexual partners (0.165 increase in the number of sexual partners, 95% CI: 0.117-0.212, p = 5.30×10-10). These results suggest that increased genetic liability for schizophrenia does not confer a fitness advantage but does increase mating success.
Collapse
Affiliation(s)
- Rebecca B. Lawn
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Hannah M. Sallis
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Amy E. Taylor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Robyn E. Wootton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Neil M. Davies
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Ian S. Penton-Voak
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| | - Marcus R. Munafò
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK
| |
Collapse
|
13
|
Tropf FC, Lee SH, Verweij RM, Stulp G, van der Most PJ, de Vlaming R, Bakshi A, Briley DA, Rahal C, Hellpap R, Iliadou AN, Esko T, Metspalu A, Medland SE, Martin NG, Barban N, Snieder H, Robinson MR, Mills MC. Hidden heritability due to heterogeneity across seven populations. Nat Hum Behav 2017; 1:757-765. [PMID: 29051922 PMCID: PMC5642946 DOI: 10.1038/s41562-017-0195-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Meta-analyses of genome-wide association studies (GWAS), which dominate genetic discovery are based on data from diverse historical time periods and populations. Genetic scores derived from GWAS explain only a fraction of the heritability estimates obtained from whole-genome studies on single populations, known as the ‘hidden heritability’ puzzle. Using seven sampling populations (N=35,062), we test whether hidden heritability is attributed to heterogeneity across sampling populations and time, showing that estimates are substantially smaller from across compared to within populations. We show that the hidden heritability varies substantially: from zero (height), to 20% for BMI, 37% for education, 40% for age at first birth and up to 75% for number of children. Simulations demonstrate that our results more likely reflect heterogeneity in phenotypic measurement or gene-environment interaction than genetic heterogeneity. These findings have substantial implications for genetic discovery, suggesting that large homogenous datasets are required for behavioural phenotypes and that gene-environment interaction may be a central challenge for genetic discovery.
Collapse
Affiliation(s)
- Felix C Tropf
- Department of Sociology/Nuffield College, University of Oxford, Oxford, OX1 3UQ, UK.
| | - S Hong Lee
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Renske M Verweij
- Department of Sociology/Interuniversity Center for Social Science Theory and Methodology, University of Groningen, Groningen, 9712 TG, The Netherlands
| | - Gert Stulp
- Department of Sociology/Interuniversity Center for Social Science Theory and Methodology, University of Groningen, Groningen, 9712 TG, The Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Ronald de Vlaming
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Rotterdam, 3062 PA, The Netherlands.,Department of Complex Trait Genetics, University Amsterdam, Amsterdam, The Netherlands
| | - Andrew Bakshi
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daniel A Briley
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820-9998, USA
| | - Charles Rahal
- Department of Sociology/Nuffield College, University of Oxford, Oxford, OX1 3UQ, UK
| | - Robert Hellpap
- Department of Sociology/Nuffield College, University of Oxford, Oxford, OX1 3UQ, UK
| | - Anastasia N Iliadou
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, Stockholm, SE-171 77, Sweden
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Sarah E Medland
- Quantitative Genetics Laboratory, Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Nicholas G Martin
- Quantitative Genetics Laboratory, Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Nicola Barban
- Department of Sociology/Nuffield College, University of Oxford, Oxford, OX1 3UQ, UK
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Matthew R Robinson
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Computational Biology, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Melinda C Mills
- Department of Sociology/Nuffield College, University of Oxford, Oxford, OX1 3UQ, UK
| |
Collapse
|