1
|
Tang H, Zhang Y, Wu Y, Fu T, Cui C, Wang Z, Xie S, Wu Q, Tan W. The Emerging Era of Molecular Medicine. ACS NANO 2024; 18:30911-30918. [PMID: 39475564 DOI: 10.1021/acsnano.4c07969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The era of molecular medicine arose as we began to diagnose and treat diseases based on understanding how genes, proteins, and cells work, providing optimal therapeutic care through molecular profiling. Central to molecular medicine is molecular recognition, which is underpinned by techniques involving omics analysis, gene editing, and targeted agents. Recent advancements in these tools not only expand our understanding of biological processes but also aid in the development of diagnostic and treatment modalities at the molecular level, thus bridging the gap between medical research and clinical applications. This perspective traces the development of molecular tools, highlighting, along the way, their pivotal role in advancing molecular medicine for the global health of people.
Collapse
Affiliation(s)
- Heming Tang
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ying Zhang
- Department of Geriatric Endocrinology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yanyuan Wu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zongping Wang
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sitao Xie
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qin Wu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
Liu Y, Ai C, Gan T, Wu J, Jiang Y, Liu X, Lu R, Gao N, Li Q, Ji X, Hu J. Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biol 2021; 22:176. [PMID: 34108027 PMCID: PMC8188667 DOI: 10.1186/s13059-021-02390-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage. RESULTS We develop a high-throughput nucleoside analog incorporation sequencing assay and identify thousands of early replication initiation zones in both mouse and human cells. The identified early replication initiation zones fall in open chromatin compartments and are mutually exclusive with transcription elongation. Of note, early replication initiation zones are mainly located in non-transcribed regions adjacent to transcribed regions. Mechanistically, we find that RNA polymerase II actively redistributes the chromatin-bound mini-chromosome maintenance complex (MCM), but not the origin recognition complex (ORC), to actively restrict early DNA replication initiation outside of transcribed regions. In support of this finding, we detect apparent MCM accumulation and DNA replication initiation in transcribed regions due to anchoring of nuclease-dead Cas9 at transcribed genes, which stalls RNA polymerase II. Finally, we find that the orchestration of early DNA replication initiation by transcription efficiently prevents gross DNA damage. CONCLUSION RNA polymerase II redistributes MCM complexes, but not the ORC, to prevent early DNA replication from initiating within transcribed regions. This RNA polymerase II-driven MCM redistribution spatially separates transcription and early DNA replication events and avoids the transcription-replication initiation collision, thereby providing a critical regulatory mechanism to preserve genome stability.
Collapse
Affiliation(s)
- Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chen Ai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jinchun Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yongpeng Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Rusen Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Falbo L, Costanzo V. Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors. Bioessays 2020; 43:e2000181. [PMID: 33165968 DOI: 10.1002/bies.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid-blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non-permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.
Collapse
Affiliation(s)
- Lucia Falbo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Vincenzo Costanzo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy.,Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
5
|
SIR2 suppresses replication gaps and genome instability by balancing replication between repetitive and unique sequences. Proc Natl Acad Sci U S A 2017; 114:552-557. [PMID: 28049846 DOI: 10.1073/pnas.1614781114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication gaps that persist into mitosis likely represent important threats to genome stability, but experimental identification of these gaps has proved challenging. We have developed a technique that allows us to explore the dynamics by which genome replication is completed before mitosis. Using this approach, we demonstrate that excessive allocation of replication resources to origins within repetitive regions, induced by SIR2 deletion, leads to persistent replication gaps and genome instability. Conversely, the weakening of replication origins in repetitive regions suppresses these gaps. Given known age- and cancer-associated changes in chromatin accessibility at repetitive sequences, we suggest that replication gaps resulting from misallocation of replication resources underlie age- and disease-associated genome instability.
Collapse
|