1
|
Bruman SM, Zubareva VM, Shugaeva TE, Lapashina AS, Feniouk BA. Activation of Bacterial F-ATPase by LDAO: Deciphering the Molecular Mechanism. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:374-388. [PMID: 40367080 DOI: 10.1134/s0006297924602600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/06/2024] [Accepted: 01/29/2025] [Indexed: 05/16/2025]
Abstract
Proton FOF1 ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate coupled with transmembrane proton transfer using the energy of the protonmotive force (pmf). As pmf decreases, the direction of the reaction is reversed and the enzyme generates pmf, transferring protons across the membrane using the energy of ATP hydrolysis. ATPase activity of the enzyme can be suppressed by ADP in a non-competitive manner (ADP-inhibition), and in a number of bacteria, it can be inhibited by conformational changes in the regulatory C-terminal domain of the ε subunit. Lauryldimethylamine oxide (LDAO), a zwitterionic detergent, is known to attenuate both of these inhibitory mechanisms, significantly increasing the ATPase activity of the enzyme. For this reason, LDAO is sometimes used for semi-quantitative estimation of the enzyme's susceptibility to these regulatory mechanisms. However, the binding site of LDAO in ATP synthase remains unknown. The mechanism by which the detergent counteracts ADP-inhibition and the inhibition involving the ε subunit is also unclear. We performed molecular docking and predicted that LDAO binding might occur at the catalytic site of ATP synthase, whether empty or containing nucleotides. Molecular dynamics simulations showed that LDAO could affect the mobility of the loop in the β subunit (residues β404-415 in Escherichia coli ATP synthase) near the catalytic site. Mutagenesis of residue β409 in the E. coli enzyme and the corresponding β419 residue in the Bacillus subtilis ATP synthase revealed that the type of side chain of this residue indeed affects LDAO-dependent stimulation of ATPase activity. We also found that LDAO activates the enzyme more strongly in the presence of 100 mM sulfate compared to sulfate-free medium. This phenomenon is likely due to the enhancement of ADP-inhibition of the enzyme by sulfate.
Collapse
Affiliation(s)
- Sofya M Bruman
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeria M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Zharova TV, Grivennikova VG. F o·F 1 ATP-synthase/ATPase of Paracoccus denitrificans: Mystery of Unidirectional Catalysis. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S86-S104. [PMID: 40164154 DOI: 10.1134/s000629792460399x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 04/02/2025]
Abstract
Fo·F1 ATP synthases/ATPases (Fo·F1) catalyze ATP synthesis by consuming energy of electrochemical potential of hydrogen ions (pmf), or ATP hydrolysis resulting in the pmf formation. It is generally accepted to consider Fo·F1 as a reversible chemomechanical-electrical molecular machine, however: (i) the mechanism of energy-dependent ATP synthesis is based only on the data on hydrolytic activity of the enzyme, (ii) Fo·F1 from a number of organisms effectively synthesize, but is unable to hydrolyze ATP, which indicates non-observance of the principle of microreversibility and requires development of a new hypotheses concerning the enzyme mechanism. Since 1980, the group of A. D. Vinogradov has been developing a concept according to which the elementary catalysis stages of ATP hydrolysis and ATP synthesis do not coincide, and there are two independently operating forms of Fo·F1 in the coupled membranes - pmf-generating ATPase and pmf-consuming ATP synthase. Fo·F1 of P. denitrificans as a natural model of an irreversibly functioning enzyme is a convenient object for experimental verification of the hypothesis of unidirectional energy conversion. The review considers modern concepts of the molecular mechanisms of regulation of Fo·F1 ATP synthase/ATPase of P. denitrificans and development of the hypothesis of two forms of Fo·F1.
Collapse
Affiliation(s)
- Tatiana V Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vera G Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Lebok L, Buchert F. The chloroplast ATP synthase redox domain in Chlamydomonas reinhardtii eludes activity regulation for heterotrophic dark metabolism. Proc Natl Acad Sci U S A 2024; 121:e2412589121. [PMID: 39503884 PMCID: PMC11573611 DOI: 10.1073/pnas.2412589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024] Open
Abstract
To maintain CO2 fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF1Fo) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF1Fo γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF1Fo from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in Chlamydomonas reinhardtii that algal CF1Fo is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF1Fo active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF1Fo, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF1Fo as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of C. reinhardtii requires a specific CF1Fo dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.
Collapse
Affiliation(s)
- Lando Lebok
- Institute of Plant Biology and Biotechnology, Department of Biology, University of Münster, Münster48143, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, Department of Biology, University of Münster, Münster48143, Germany
| |
Collapse
|
4
|
Jitapunkul K, Zhao Y, Lawtrakul L, Van Hove MA, Zhang R. Rotations of F-ATPase and V-ATPase analyzed by a torque approach. J Biomol Struct Dyn 2023; 41:10368-10376. [PMID: 36495307 DOI: 10.1080/07391102.2022.2154847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
F-type ATP synthase (F-ATPase) and vacuolar ATP hydrolase (V-ATPase) are well-known biomolecular motors, which play significant catalytic roles in ATP synthesis and ATP hydrolysis reactions. Their rotational torques are important factors involved in their rotational behavior that can be measured experimentally but with considerable difficulty. To overcome this difficulty and thereby provide an in-depth understanding of their operation mechanism, we herein carry out simple and fast computer modelling to study the two proteins, using our torque approach that relies on interatomic forces and coordinates of unequilibrated configurations taken from brief molecular dynamics (MD) simulations. As predicted by the torque approach, F-ATPase is demonstrated to be a random rotor, but it prefers to rotate in clockwise direction (as seen from the membrane toward the protein) for ATP synthesis, owing to the predominantly negative angle-averaged torques. By contrast, V-ATPase tends to rotate only in counterclockwise direction for ATP hydrolysis, due to the almost uniform averaged positive torques generated by the unidirectional rotation near the three catalytic sites. The rotational behaviors of both proteins are also affected by the surrounding solvent which can promote or hinder the internal rotation. By combining the torque approach with classic force-field MD simulations, the torques of two biomolecular motors can be calculated economically, and are found to agree with previous experiments and theoretical calculations. This work demonstrates that our torque approach can be extended to the field of biology and can help gain a deeper insight into the mechanistic rotation of biomolecular motors with modest computation time.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kulpavee Jitapunkul
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- School of Bio-Chemical Engineering, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, Thailand
| | - Yanling Zhao
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Luckhana Lawtrakul
- School of Bio-Chemical Engineering, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, Thailand
| | - Michel A Van Hove
- Institute of Computational and Theoretical Studies & Department of Physics, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Saw WG, Le KCM, Shin J, Kwek JHM, Wong CF, Ragunathan P, Fong TC, Müller V, Grüber G. Atomic insights of an up and down conformation of the Acinetobacter baumannii F 1 -ATPase subunit ε and deciphering the residues critical for ATP hydrolysis inhibition and ATP synthesis. FASEB J 2023; 37:e23040. [PMID: 37318822 DOI: 10.1096/fj.202300175rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
The Acinetobacter baumannii F1 FO -ATP synthase (α3 :β3 :γ:δ:ε:a:b2 :c10 ), which is essential for this strictly respiratory opportunistic human pathogen, is incapable of ATP-driven proton translocation due to its latent ATPase activity. Here, we generated and purified the first recombinant A. baumannii F1 -ATPase (AbF1 -ATPase) composed of subunits α3 :β3 :γ:ε, showing latent ATP hydrolysis. A 3.0 Å cryo-electron microscopy structure visualizes the architecture and regulatory element of this enzyme, in which the C-terminal domain of subunit ε (Abε) is present in an extended position. An ε-free AbF1 -ɑβγ complex generated showed a 21.5-fold ATP hydrolysis increase, demonstrating that Abε is the major regulator of AbF1 -ATPase's latent ATP hydrolysis. The recombinant system enabled mutational studies of single amino acid substitutions within Abε or its interacting subunits β and γ, respectively, as well as C-terminal truncated mutants of Abε, providing a detailed picture of Abε's main element for the self-inhibition mechanism of ATP hydrolysis. Using a heterologous expression system, the importance of Abε's C-terminus in ATP synthesis of inverted membrane vesicles, including AbF1 FO -ATP synthases, has been explored. In addition, we are presenting the first NMR solution structure of the compact form of Abε, revealing interaction of its N-terminal β-barrel and C-terminal ɑ-hairpin domain. A double mutant of Abε highlights critical residues for Abε's domain-domain formation which is important also for AbF1 -ATPase's stability. Abε does not bind MgATP, which is described to regulate the up and down movements in other bacterial counterparts. The data are compared to regulatory elements of F1 -ATPases in bacteria, chloroplasts, and mitochondria to prevent wasting of ATP.
Collapse
Affiliation(s)
- Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Khoa Cong Minh Le
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jes Hui Min Kwek
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chui Fann Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tuck Choy Fong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Volker Müller
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Yokoyama K. Rotary mechanism of V/A-ATPases-how is ATP hydrolysis converted into a mechanical step rotation in rotary ATPases? Front Mol Biosci 2023; 10:1176114. [PMID: 37168257 PMCID: PMC10166205 DOI: 10.3389/fmolb.2023.1176114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
V/A-ATPase is a rotary molecular motor protein that produces ATP through the rotation of its central rotor. The soluble part of this protein, the V1 domain, rotates upon ATP hydrolysis. However, the mechanism by which ATP hydrolysis in the V1 domain couples with the mechanical rotation of the rotor is still unclear. Cryo-EM snapshot analysis of V/A-ATPase indicated that three independent and simultaneous catalytic events occurred at the three catalytic dimers (ABopen, ABsemi, and ABclosed), leading to a 120° rotation of the central rotor. Besides the closing motion caused by ATP bound to ABopen, the hydrolysis of ATP bound to ABsemi drives the 120° step. Our recent time-resolved cryo-EM snapshot analysis provides further evidence for this model. This review aimed to provide a comprehensive overview of the structure and function of V/A-ATPase from a thermophilic bacterium, one of the most well-studied rotary ATPases to date.
Collapse
Affiliation(s)
- Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
7
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
8
|
Changes within the central stalk of E. coli F 1F o ATP synthase observed after addition of ATP. Commun Biol 2023; 6:26. [PMID: 36631659 PMCID: PMC9834311 DOI: 10.1038/s42003-023-04414-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.
Collapse
|
9
|
Krah A, Vogelaar T, de Jong SI, Claridge JK, Bond PJ, McMillan DGG. ATP binding by an F 1F o ATP synthase ε subunit is pH dependent, suggesting a diversity of ε subunit functional regulation in bacteria. Front Mol Biosci 2023; 10:1059673. [PMID: 36923639 PMCID: PMC10010621 DOI: 10.3389/fmolb.2023.1059673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023] Open
Abstract
It is a conjecture that the ε subunit regulates ATP hydrolytic function of the F1Fo ATP synthase in bacteria. This has been proposed by the ε subunit taking an extended conformation, with a terminal helix probing into the central architecture of the hexameric catalytic domain, preventing ATP hydrolysis. The ε subunit takes a contracted conformation when bound to ATP, thus would not interfere with catalysis. A recent crystallographic study has disputed this; the Caldalkalibacillus thermarum TA2.A1 F1Fo ATP synthase cannot natively hydrolyse ATP, yet studies have demonstrated that the loss of the ε subunit terminal helix results in an ATP synthase capable of ATP hydrolysis, supporting ε subunit function. Analysis of sequence and crystallographic data of the C. thermarum F1Fo ATP synthase revealed two unique histidine residues. Molecular dynamics simulations suggested that the protonation state of these residues may influence ATP binding site stability. Yet these residues lie outside the ATP/Mg2+ binding site of the ε subunit. We then probed the effect of pH on the ATP binding affinity of the ε subunit from the C. thermarum F1Fo ATP synthase at various physiologically relevant pH values. We show that binding affinity changes 5.9 fold between pH 7.0, where binding is weakest, to pH 8.5 where it is strongest. Since the C. thermarum cytoplasm is pH 8.0 when it grows optimally, this correlates to the ε subunit being down due to ATP/Mg2+ affinity, and not being involved in blocking ATP hydrolysis. Here, we have experimentally correlated that the pH of the bacterial cytoplasm is of critical importance for ε subunit ATP affinity regulated by second-shell residues thus the function of the ε subunit changes with growth conditions.
Collapse
Affiliation(s)
- Alexander Krah
- Korea Institute for Advanced Study, School of Computational Sciences, Seoul, South Korea.,Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Timothy Vogelaar
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Sam I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jolyon K Claridge
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Iwamoto-Kihara A. Regulatory Mechanisms and Environmental Adaptation of the F-ATPase Family. Biol Pharm Bull 2022; 45:1412-1418. [PMID: 36184497 DOI: 10.1248/bpb.b22-00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The F-type ATPase family of enzymes, including ATP synthases, are found ubiquitously in biological membranes. ATP synthesis from ADP and inorganic phosphate is driven by an electrochemical H+ gradient or H+ motive force, in which intramolecular rotation of F-type ATPase is generated with H+ transport across the membranes. Because this rotation is essential for energy coupling between catalysis and H+-transport, regulation of the rotation is important to adapt to environmental changes and maintain ATP concentration. Recently, a series of cryo-electron microscopy images provided detailed insights into the structure of the H+ pathway and the multiple subunit arrangement. However, the regulatory mechanism of the rotation has not been clarified. This review describes the inhibition mechanism of ATP hydrolysis in bacterial enzymes. In addition, properties of the F-type ATPase of Streptococcus mutans, which acts as a H+-pump in an acidic environment, are described. These findings may help in the development of novel antimicrobial agents.
Collapse
|
11
|
The six steps of the complete F 1-ATPase rotary catalytic cycle. Nat Commun 2021; 12:4690. [PMID: 34344897 DOI: 10.1038/s41467-021-25029-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalysis mechanism. Isolated F1-ATPase catalytic cores can hydrolyze ATP, passing through six intermediate conformational states to generate rotation of their central γ-subunit. Although previous structural studies have contributed greatly to understanding rotary catalysis in the F1-ATPase, the structure of an important conformational state (the binding-dwell) has remained elusive. Here, we exploit temperature and time-resolved cryo-electron microscopy to determine the structure of the binding- and catalytic-dwell states of Bacillus PS3 F1-ATPase. Each state shows three catalytic β-subunits in different conformations, establishing the complete set of six states taken up during the catalytic cycle and providing molecular details for both the ATP binding and hydrolysis strokes. We also identify a potential phosphate-release tunnel that indicates how ADP and phosphate binding are coordinated during synthesis. Overall these findings provide a structural basis for the entire F1-ATPase catalytic cycle.
Collapse
|
12
|
Jarman OD, Biner O, Hirst J. Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148355. [PMID: 33321110 PMCID: PMC8039183 DOI: 10.1016/j.bbabio.2020.148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Olivier Biner
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
13
|
A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP. Biochim Biophys Acta Gen Subj 2020; 1865:129766. [PMID: 33069831 DOI: 10.1016/j.bbagen.2020.129766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prediction of ligand binding and design of new function in enzymes is a time-consuming and expensive process. Crystallography gives the impression that proteins adopt a fixed shape, yet enzymes are functionally dynamic. Molecular dynamics offers the possibility of probing protein movement while predicting ligand binding. Accordingly, we choose the bacterial F1Fo ATP synthase ε subunit to unravel why ATP affinity by ε subunits from Bacillus subtilis and Bacillus PS3 differs ~500-fold, despite sharing identical sequences at the ATP-binding site. METHODS We first used the Bacillus PS3 ε subunit structure to model the B. subtilis ε subunit structure and used this to explore the utility of molecular dynamics (MD) simulations to predict the influence of residues outside the ATP binding site. To verify the MD predictions, point mutants were made and ATP binding studies were employed. RESULTS MD simulations predicted that E102 in the B. subtilis ε subunit, outside of the ATP binding site, influences ATP binding affinity. Engineering E102 to alanine or arginine revealed a ~10 or ~54 fold increase in ATP binding, respectively, confirming the MD prediction that E102 drastically influences ATP binding affinity. CONCLUSIONS These findings reveal how MD can predict how changes in the "second shell" residues around substrate binding sites influence affinity in simple protein structures. Our results reveal why seemingly identical ε subunits in different ATP synthases have radically different ATP binding affinities. GENERAL SIGNIFICANCE This study may lead to greater utility of molecular dynamics as a tool for protein design and exploration of protein design and function.
Collapse
|
14
|
Goossens K, Neves RP, Fernandes PA, De Winter H. A Computational and Modeling Study of the Reaction Mechanism of Staphylococcus aureus Monoglycosyltransferase Reveals New Insights on the GT51 Family of Enzymes. J Chem Inf Model 2020; 60:5513-5528. [PMID: 32786224 DOI: 10.1021/acs.jcim.0c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bacterial glycosyltransferases of the GT51 family are key enzymes in bacterial cell wall synthesis. Inhibiting cell wall synthesis is a very effective approach for development of antibiotics, as this can lead to either bacteriostatic or bactericidal effects. Even though the existence of this family has been known for over 50 years, only one potent inhibitor exists, which is an analog of the lipid IV product and derived from a natural product. Drug development focused on bacterial transglycosylase has been hampered due to little being know about its structure and reaction mechanism. In this study, Staphylococcus aureus monoglycosyltransferase was investigated at an atomistic level using computational methods. Classical molecular dynamics simulations were used to reveal information about the large-scale dynamics of the enzyme-substrate complex and the importance of magnesium in structure and function of the protein, while mixed mode quantum mechanics/molecular mechanics calculations unveiled a novel hypothesis for the reaction mechanism. From these results, we present a new model for the binding mode of lipid II and the reaction mechanism of the GT51 glycosyltransferases. A metal-bound hydroxide catalyzed reaction mechanism yields an estimated free energy barrier of 16.1 ± 1.0 kcal/mol, which is in line with experimental values. The importance of divalent cations is also further discussed. These findings could significantly aid targeted drug design, particularly the efficient development of transition state analogues as potential inhibitors for the GT51 glycosyltransferases.
Collapse
Affiliation(s)
- Kenneth Goossens
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rui Pp Neves
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hans De Winter
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
15
|
Krah A, Huber RG, McMillan DGG, Bond PJ. The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit. Chembiochem 2020; 21:3249-3254. [PMID: 32608105 DOI: 10.1002/cbic.202000291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Indexed: 12/21/2022]
Abstract
The ϵ subunit of ATP synthases has been proposed to regulate ATP hydrolysis in bacteria. Prevailing evidence supports the notion that when the ATP concentration falls below a certain threshold, the ϵ subunit changes its conformation from a non-inhibitory down-state to an extended up-state that then inhibits enzymatic ATP hydrolysis by binding to the catalytic domain. It has been demonstrated that the ϵ subunit from Bacillus PS3 is selective for ATP over other nucleotides, including GTP. In this study, the purine triphosphate selectivity is rationalized by using results from MD simulations and free energy calculations for the R103A/R115A mutant of the ϵ subunit from Bacillus PS3, which binds ATP more strongly than the wild-type protein. Our results are in good agreement with experimental data, and the elucidated molecular basis for selectivity could help to guide the design of novel GTP sensors.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,Korea Institute for Advanced Study, School of Computational Sciences, 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of Korea
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore
| | - Duncan G G McMillan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
16
|
Wong CF, Lau AM, Harikishore A, Saw WG, Shin J, Ragunathan P, Bhushan S, Ngan SFC, Sze SK, Bates RW, Dick T, Grüber G. A systematic assessment of mycobacterial F 1 -ATPase subunit ε's role in latent ATPase hydrolysis. FEBS J 2020; 288:818-836. [PMID: 32525613 DOI: 10.1111/febs.15440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
In contrast to most bacteria, the mycobacterial F1 FO -ATP synthase (α3 :β3 :γ:δ:ε:a:b:b':c9 ) does not perform ATP hydrolysis-driven proton translocation. Although subunits α, γ and ε of the catalytic F1 -ATPase component α3 :β3 :γ:ε have all been implicated in the suppression of the enzyme's ATPase activity, the mechanism remains poorly defined. Here, we brought the central stalk subunit ε into focus by generating the recombinant Mycobacterium smegmatis F1 -ATPase (MsF1 -ATPase), whose 3D low-resolution structure is presented, and its ε-free form MsF1 αβγ, which showed an eightfold ATP hydrolysis increase and provided a defined system to systematically study the segments of mycobacterial ε's suppression of ATPase activity. Deletion of four amino acids at ε's N terminus, mutant MsF1 αβγεΔ2-5 , revealed similar ATP hydrolysis as MsF1 αβγ. Together with biochemical and NMR solution studies of a single, double, triple and quadruple N-terminal ε-mutants, the importance of the first N-terminal residues of mycobacterial ε in structure stability and latency is described. Engineering ε's C-terminal mutant MsF1 αβγεΔ121 and MsF1 αβγεΔ103-121 with deletion of the C-terminal residue D121 and the two C-terminal ɑ-helices, respectively, revealed the requirement of the very C terminus for communication with the catalytic α3 β3 -headpiece and its function in ATP hydrolysis inhibition. Finally, we applied the tools developed during the study for an in silico screen to identify a novel subunit ε-targeting F-ATP synthase inhibitor.
Collapse
Affiliation(s)
- Chui-Fann Wong
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Aik-Meng Lau
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Amaravadhi Harikishore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - So-Fong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Roderick W Bates
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
17
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
18
|
ATP-binding affinity of the ε subunit of thermophilic F 1-ATPase under label-free conditions. Biochem Biophys Rep 2020; 21:100725. [PMID: 31938734 PMCID: PMC6953521 DOI: 10.1016/j.bbrep.2020.100725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
The ε subunits of several bacterial F1-ATPases bind ATP. ATP binding to the ε subunit has been shown to be involved in the regulation of F1-ATPase from thermophilic Bacillus sp. PS3 (TF1). We previously reported that the dissociation constant for ATP of wild-type ε subunit of TF1 at 25 °C is 4.3 μM by measuring changes in the fluorescence of the dye attached to the ε subunit (Kato, S. et al. (2007) J. Biol. Chem.282, 37618). However, we have recently noticed that this varies with the dye used. In this report, to determine the affinity for ATP under label-free conditions, we have measured the competitive displacement of 2′(3′)-O-N′-methylaniloyl-aminoadenosine-5′-triphosphate (Mant-ATP), a fluorescent analog of ATP, by ATP. The dissociation constant for ATP of wild-type ε subunit of TF1 at 25 °C was determined to be 0.29 μM, which is one order of magnitude higher affinity than previously reported values. The ε subunit of F1-ATPase from Bacillus PS3 specifically binds ATP. Fluorescent labeling of ε subunit for the measurement may affect binding affinity. ATP binding affinity under label-free conditions was determined. Affinity of ε subunit for ATP is revised.
Collapse
|
19
|
Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 152:64-73. [PMID: 31743686 DOI: 10.1016/j.pbiomolbio.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
The causative agent of Tuberculosis (TB) Mycobacterium tuberculosis (Mtb) encounters unfavourable environmental conditions in the lungs, including nutrient limitation, low oxygen tensions and/or low/high pH values. These harsh conditions in the host triggers Mtb to enter a dormant state in which the pathogen does not replicate and uses host-derived fatty acids instead of carbohydrates as an energy source. Independent to the energy source, the bacterium's energy currency ATP is generated by oxidative phosphorylation, in which the F1FO-ATP synthase uses the proton motive force generated by the electron transport chain. This catalyst is essential in Mtb and inhibition by the diarylquinoline class of drugs like Bedaquilline, TBAJ-587, TBAJ-876 or squaramides demonstrated that this engine is an attractive target in TB drug discovery. A special feature of the mycobacterial F-ATP synthase is its inability to establish a significant proton gradient during ATP hydrolysis, and its latent ATPase activity, to prevent energy waste and to control the membrane potential. Recently, unique epitopes of mycobacterial F1FO-ATP synthase subunits absent in their prokaryotic or mitochondrial counterparts have been identified to contribute to the regulation of the low ATPase activity. Most recent structural insights into individual subunits, the F1 domain or the entire mycobacterial enzyme added to the understanding of mechanisms, regulation and differences of the mycobacterial F1FO-ATP synthase compared to other bacterial and eukaryotic engines. These novel insights provide the basis for the design of new compounds targeting this engine and even novel regimens for multidrug resistant TB.
Collapse
|
20
|
Disrupting coupling within mycobacterial F-ATP synthases subunit ε causes dysregulated energy production and cell wall biosynthesis. Sci Rep 2019; 9:16759. [PMID: 31727946 PMCID: PMC6856130 DOI: 10.1038/s41598-019-53107-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε’s coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.
Collapse
|
21
|
Petri J, Nakatani Y, Montgomery MG, Ferguson SA, Aragão D, Leslie AGW, Heikal A, Walker JE, Cook GM. Structure of F 1-ATPase from the obligate anaerobe Fusobacterium nucleatum. Open Biol 2019; 9:190066. [PMID: 31238823 PMCID: PMC6597759 DOI: 10.1098/rsob.190066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F1-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity. The βE-subunits in all three enzymes are in the conventional ‘open’ state, and in the case of C. thermarum and M. smegmatis, they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum, the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.
Collapse
Affiliation(s)
- Jessica Petri
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand
| | - Yoshio Nakatani
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - Martin G Montgomery
- 3 Medical Research Council Mitochondrial Biology Unit , Cambridge Biomedical Campus, Cambridge CB2 0XY , UK
| | - Scott A Ferguson
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand
| | - David Aragão
- 4 Australian Synchrotron , 800 Blackburn Road, Clayton, Victoria 3168 , Australia
| | - Andrew G W Leslie
- 5 Medical Research Council Laboratory of Molecular Biology , Cambridge Biomedical Campus, Cambridge CB2 0QH , UK
| | - Adam Heikal
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - John E Walker
- 3 Medical Research Council Mitochondrial Biology Unit , Cambridge Biomedical Campus, Cambridge CB2 0XY , UK
| | - Gregory M Cook
- 1 Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago , Dunedin 9054 , New Zealand.,2 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| |
Collapse
|
22
|
Inabe K, Kondo K, Yoshida K, Wakabayashi KI, Hisabori T. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity. J Biol Chem 2019; 294:10094-10103. [PMID: 31068416 DOI: 10.1074/jbc.ra118.007131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis activity catalyzed by chloroplast and proteobacterial ATP synthase is inhibited by their ϵ subunits. To clarify the function of the ϵ subunit from phototrophs, here we analyzed the ϵ subunit-mediated inhibition (ϵ-inhibition) of cyanobacterial F1-ATPase, a subcomplex of ATP synthase obtained from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. We generated three C-terminal α-helix null ϵ-mutants; one lacked the C-terminal α-helices, and in the other two, the C-terminal conformation could be locked by a disulfide bond formed between two α-helices or an α-helix and a β-sandwich structure. All of these ϵ-mutants maintained ATPase-inhibiting competency. We then used single-molecule observation techniques to analyze the rotary motion of F1-ATPase in the presence of these ϵ-mutants. The stop angular position of the γ subunit in the presence of the ϵ-mutant was identical to that in the presence of the WT ϵ. Using magnetic tweezers, we examined recovery from the inhibited rotation and observed restoration of rotation by 80° forcing of the γ subunit in the case of the ADP-inhibited form, but not when the rotation was inhibited by the ϵ-mutants or by the WT ϵ subunit. These results imply that the C-terminal α-helix domain of the ϵ subunit of cyanobacterial enzyme does not directly inhibit ATP hydrolysis and that its N-terminal domain alone can inhibit the hydrolysis activity. Notably, this property differed from that of the proteobacterial ϵ, which could not tightly inhibit rotation. We conclude that phototrophs and heterotrophs differ in the ϵ subunit-mediated regulation of ATP synthase.
Collapse
Affiliation(s)
- Kosuke Inabe
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and.,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kumiko Kondo
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Keisuke Yoshida
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and
| | - Ken-Ichi Wakabayashi
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and.,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Toru Hisabori
- From the Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan and .,the School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
23
|
Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Christie M, Stocker R, Duncan TM, Stewart AG. Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 2019; 8:e43864. [PMID: 30912741 PMCID: PMC6449082 DOI: 10.7554/elife.43864] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, β and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Robert Ishmukhametov
- Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUnited Kingdom
| | - James C Bouwer
- Molecular HorizonsThe University of WollongongWollongongAustralia
| | - Anita Ayer
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Cacang Suarna
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Nicola J Smith
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Mary Christie
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Roland Stocker
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Thomas M Duncan
- Department of Biochemistry & Molecular BiologySUNY Upstate Medical UniversitySyracuse, NYUnited States
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| |
Collapse
|
24
|
Duncan TM. Turbine enzyme's structure in the crosshairs to target tuberculosis. Proc Natl Acad Sci U S A 2019; 116:3956-3958. [PMID: 30782825 PMCID: PMC6410854 DOI: 10.1073/pnas.1900798116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Thomas M Duncan
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
25
|
Guo H, Suzuki T, Rubinstein JL. Structure of a bacterial ATP synthase. eLife 2019; 8:43128. [PMID: 30724163 PMCID: PMC6377231 DOI: 10.7554/elife.43128] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/02/2019] [Indexed: 01/20/2023] Open
Abstract
ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit ε shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.
Collapse
Affiliation(s)
- Hui Guo
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Molecular Bioscience, Kyoto-Sangyo University, Kyoto, Japan
| | - John L Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
The structure of the catalytic domain of the ATP synthase from Mycobacterium smegmatis is a target for developing antitubercular drugs. Proc Natl Acad Sci U S A 2019; 116:4206-4211. [PMID: 30683723 DOI: 10.1073/pnas.1817615116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from Mycobacterium smegmatis which hydrolyzes ATP very poorly. The structure of the α3β3-component of the catalytic domain is similar to those in active F1-ATPases in Escherichia coli and Geobacillus stearothermophilus However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. In E. coli and G. stearothermophilus, the α-helices adopt an "up" state where the α-helices enter the α3β3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase from Caldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The βE-subunits in both enzymes are in the usual "open" conformation but appear to be occupied uniquely by the combination of an adenosine 5'-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1 domain in Mycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.
Collapse
|
27
|
Gonçalves MCP, Kieckbusch TG, Perna RF, Fujimoto JT, Morales SAV, Romanelli JP. Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.09.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
29
|
Murcia Rios A, Vahidi S, Dunn SD, Konermann L. Evidence for a Partially Stalled γ Rotor in F 1-ATPase from Hydrogen-Deuterium Exchange Experiments and Molecular Dynamics Simulations. J Am Chem Soc 2018; 140:14860-14869. [PMID: 30339028 DOI: 10.1021/jacs.8b08692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
F1-ATPase uses ATP hydrolysis to drive rotation of the γ subunit. The γ C-terminal helix constitutes the rotor tip that is seated in an apical bearing formed by α3β3. It remains uncertain to what extent the γ conformation during rotation differs from that seen in rigid crystal structures. Existing models assume that the entire γ subunit participates in every rotation. Here we interrogated E. coli F1-ATPase by hydrogen-deuterium exchange (HDX) mass spectrometry. Rotation of γ caused greatly enhanced deuteration in the γ C-terminal helix. The HDX kinetics implied that most F1 complexes operate with an intact rotor at any given time, but that the rotor tip is prone to occasional unfolding. A molecular dynamics (MD) strategy was developed to model the off-axis forces acting on γ. MD runs showed stalling of the rotor tip and unfolding of the γ C-terminal helix. MD-predicted H-bond opening events coincided with experimental HDX patterns. Our data suggest that in vitro operation of F1-ATPase is associated with significant rotational resistance in the apical bearing. These conditions cause the γ C-terminal helix to get "stuck" (and unfold) sporadically while the remainder of γ continues to rotate. This scenario contrasts the traditional "greasy bearing" model that envisions smooth rotation of the γ C-terminal helix. The fragility of the apical rotor tip in F1-ATPase is attributed to the absence of a c10 ring that stabilizes the rotation axis in intact FoF1. Overall, the MD/HDX strategy introduced here appears well suited for interrogating the inner workings of molecular motors.
Collapse
Affiliation(s)
- Angela Murcia Rios
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Siavash Vahidi
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Stanley D Dunn
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Lars Konermann
- Departments of Chemistry and Biochemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| |
Collapse
|
30
|
Bogdanović N, Sundararaman L, Kamariah N, Tyagi A, Bhushan S, Ragunathan P, Shin J, Dick T, Grüber G. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε. J Struct Biol 2018; 204:420-434. [PMID: 30342092 DOI: 10.1016/j.jsb.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 01/21/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) F1FO-ATP synthase (α3:β3:γ:δ:ε:a:b:b':c9) is an essential enzyme that supplies energy for both the aerobic growing and the hypoxic dormant stage of the mycobacterial life cycle. Employing the heterologous F-ATP synthase model system αchi3:β3:γ we showed previously, that transfer of the C-terminal domain (CTD) of Mtb subunit α (Mtα514-549) to a standard F-ATP synthase α subunit suppresses ATPase activity. Here we determined the 3D reconstruction from electron micrographs of the αchi3:β3:γ complex reconstituted with the Mtb subunit ε (Mtε), which has been shown to crosstalk with the CTD of Mtα. Together with the first solution shape of Mtb subunit α (Mtα), derived from solution X-ray scattering, the structural data visualize the extended C-terminal stretch of the mycobacterial subunit α. In addition, Mtε mutants MtεR62L, MtεE87A, Mtε6-121, and Mtε1-120, reconstituted with αchi3:β3:γ provided insight into their role in coupling and in trapping inhibiting MgADP. NMR solution studies of MtεE87A gave insights into how this residue contributes to stability and crosstalk between the N-terminal domain (NTD) and the CTD of Mtε. Analyses of the N-terminal mutant Mtε6-121 highlight the differences of the NTD of mycobacterial subunit ε to the well described Geobacillus stearothermophilus or Escherichia coli counterparts. These data are discussed in context of a crosstalk between the very N-terminal amino acids of Mtε and the loop region of one c subunit of the c-ring turbine for coupling of proton-translocation and ATP synthesis activity.
Collapse
Affiliation(s)
- Nebojša Bogdanović
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lavanya Sundararaman
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Neelagandan Kamariah
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Anu Tyagi
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Shashi Bhushan
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Republic of Singapore
| | - Priya Ragunathan
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Joon Shin
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore; Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
31
|
Mendoza-Hoffmann F, Zarco-Zavala M, Ortega R, García-Trejo JJ. Control of rotation of the F1FO-ATP synthase nanomotor by an inhibitory α-helix from unfolded ε or intrinsically disordered ζ and IF1 proteins. J Bioenerg Biomembr 2018; 50:403-424. [DOI: 10.1007/s10863-018-9773-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
|
32
|
Structure of the γ-ε complex of cyanobacterial F 1-ATPase reveals a suppression mechanism of the γ subunit on ATP hydrolysis in phototrophs. Biochem J 2018; 475:2925-2939. [PMID: 30054433 DOI: 10.1042/bcj20180481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
F1-ATPase forms the membrane-associated segment of F0F1-ATP synthase - the fundamental enzyme complex in cellular bioenergetics for ATP hydrolysis and synthesis. Here, we report a crystal structure of the central F1 subcomplex, consisting of the rotary shaft γ subunit and the inhibitory ε subunit, from the photosynthetic cyanobacterium Thermosynechococcus elongatus BP-1, at 1.98 Å resolution. In contrast with their homologous bacterial and mitochondrial counterparts, the γ subunits of photosynthetic organisms harbour a unique insertion of 35-40 amino acids. Our structural data reveal that this region forms a β-hairpin structure along the central stalk. We identified numerous critical hydrogen bonds and electrostatic interactions between residues in the hairpin and the rest of the γ subunit. To elaborate the critical function of this β-hairpin in inhibiting ATP hydrolysis, the corresponding domain was deleted in the cyanobacterial F1 subcomplex. Biochemical analyses of the corresponding α3β3γ complex confirm that the clinch of the hairpin structure plays a critical role and accounts for a significant interaction in the α3β3 complex to induce ADP inhibition during ATP hydrolysis. In addition, we found that truncating the β-hairpin insertion structure resulted in a marked impairment of the interaction with the ε subunit, which binds to the opposite side of the γ subunit from the β-hairpin structure. Combined with structural analyses, our work provides experimental evidence supporting the molecular principle of how the insertion region of the γ subunit suppresses F1 rotation during ATP hydrolysis.
Collapse
|
33
|
Krah A, Bond PJ. Single mutations in the ε subunit from thermophilic Bacillus PS3 generate a high binding affinity site for ATP. PeerJ 2018; 6:e5505. [PMID: 30202650 PMCID: PMC6129141 DOI: 10.7717/peerj.5505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023] Open
Abstract
The ε subunit from ATP synthases acts as an ATP sensor in the bacterial cell to prevent ATP hydrolysis and thus the waste of ATP under conditions of low ATP concentration. However, the ATP binding affinities from various bacterial organisms differ markedly, over several orders of magnitude. For example, the ATP synthases from thermophilic Bacillus PS3 and Escherichia coli exhibit affinities of 4 µM and 22 mM, respectively. The recently reported R103A/R115A double mutant of Bacillus PS3 ATP synthase demonstrated an increased binding affinity by two orders of magnitude with respect to the wild type. Here, we used atomic-resolution molecular dynamics simulations to determine the role of the R103A and R115A single mutations. These lead us to predict that both single mutations also cause an increased ATP binding affinity. Evolutionary analysis reveals R103 and R115 substitutions in the ε subunit from other bacillic organisms, leading us to predict they likely have a higher ATP binding affinity than previously expected.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.,Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Zarco-Zavala M, Mendoza-Hoffmann F, García-Trejo JJ. Unidirectional regulation of the F 1F O-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:762-774. [PMID: 29886048 DOI: 10.1016/j.bbabio.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF1 subunits, prevent the wasteful CCW F1FO-ATPase activity by blocking γ rotation at the αDP/βDP/γ interface of the F1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F1-ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF1, it also binds to the αDP/βDP/γ interface of the F1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the αDP/βDP/γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F1FO-ATPase rotation without affecting the CW-F1FO-ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as a unidirectional pawl-ratchet PdF1FO-ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is a useful model that mimics mitochondrial IF1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF1) of this unique ATP synthase nanomotor, essential for life.
Collapse
Affiliation(s)
- Mariel Zarco-Zavala
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico; Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Francisco Mendoza-Hoffmann
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico
| | - José J García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico.
| |
Collapse
|
35
|
Abstract
Bedaquiline (BDQ), an inhibitor of the mycobacterial F1Fo-ATP synthase, has revolutionized the antitubercular drug discovery program by defining energy metabolism as a potent new target space. Several studies have recently suggested that BDQ ultimately causes mycobacterial cell death through a phenomenon known as uncoupling. The biochemical basis underlying this, in BDQ, is unresolved and may represent a new pathway to the development of effective therapeutics. In this communication, we demonstrate that BDQ can inhibit ATP synthesis in Escherichia coli by functioning as a H+/K+ ionophore, causing transmembrane pH and potassium gradients to be equilibrated. Despite the apparent lack of a BDQ-binding site, incorporating the E. coli Fo subunit into liposomes enhanced the ionophoric activity of BDQ. We discuss the possibility that localization of BDQ at F1Fo-ATP synthases enables BDQ to create an uncoupled microenvironment, by antiporting H+/K+ Ionophoric properties may be desirable in high-affinity antimicrobials targeting integral membrane proteins.
Collapse
|
36
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
37
|
Sukmana A, Yang Z. The type IV pilus assembly motor PilB is a robust hexameric ATPase with complex kinetics. Biochem J 2018; 475:1979-1993. [PMID: 29717025 DOI: 10.1042/bcj20180167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023]
Abstract
The bacterial type IV pilus (T4P) is a versatile nanomachine that functions in pathogenesis, biofilm formation, motility, and horizontal gene transfer. T4P assembly is powered by the motor ATPase PilB which is proposed to hydrolyze ATP by a symmetrical rotary mechanism. This mechanism, which is deduced from the structure of PilB, is untested. Here, we report the first kinetic studies of the PilB ATPase, supporting co-ordination among the protomers of this hexameric enzyme. Analysis of the genome sequence of Chloracidobacterium thermophilum identified a pilB gene whose protein we then heterologously expressed. This PilB formed a hexamer in solution and exhibited highly robust ATPase activity. It displays complex steady-state kinetics with an incline followed by a decline over an ATP concentration range of physiological relevance. The incline is multiphasic and the decline signifies substrate inhibition. These observations suggest that variations in intracellular ATP concentrations may regulate T4P assembly and T4P-mediated functions in vivo in accordance with the physiological state of bacteria with unanticipated complexity. We also identified a mutant pilB gene in the genomic DNA of C. thermophilum from an enrichment culture. The mutant PilB variant, which is significantly less active, exhibited similar inhibition of its ATPase activity by high concentrations of ATP. Our findings here with the PilB ATPase from C. thermophilum provide the first line of biochemical evidence for the co-ordination among PilB protomers consistent with the symmetrical rotary model of catalysis based on structural studies.
Collapse
Affiliation(s)
- Andreas Sukmana
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
| |
Collapse
|
38
|
Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 2018; 360:eaat4318. [PMID: 29748256 PMCID: PMC7116070 DOI: 10.1126/science.aat4318] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
Abstract
The chloroplast adenosine triphosphate (ATP) synthase uses the electrochemical proton gradient generated by photosynthesis to produce ATP, the energy currency of all cells. Protons conducted through the membrane-embedded Fo motor drive ATP synthesis in the F1 head by rotary catalysis. We determined the high-resolution structure of the complete cF1Fo complex by cryo-electron microscopy, resolving side chains of all 26 protein subunits, the five nucleotides in the F1 head, and the proton pathway to and from the rotor ring. The flexible peripheral stalk redistributes differences in torsional energy across three unequal steps in the rotation cycle. Plant ATP synthase is autoinhibited by a β-hairpin redox switch in subunit γ that blocks rotation in the dark.
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany.
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
40
|
Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. ATP synthase from Trypanosoma brucei has an elaborated canonical F 1-domain and conventional catalytic sites. Proc Natl Acad Sci U S A 2018; 115:2102-2107. [PMID: 29440423 PMCID: PMC5834723 DOI: 10.1073/pnas.1720940115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures and functions of the components of ATP synthases, especially those subunits involved directly in the catalytic formation of ATP, are widely conserved in metazoans, fungi, eubacteria, and plant chloroplasts. On the basis of a map at 32.5-Å resolution determined in situ in the mitochondria of Trypanosoma brucei by electron cryotomography, it has been proposed that the ATP synthase in this species has a noncanonical structure and different catalytic sites in which the catalytically essential arginine finger is provided not by the α-subunit adjacent to the catalytic nucleotide-binding site as in all species investigated to date, but rather by a protein, p18, found only in the euglenozoa. A crystal structure at 3.2-Å resolution of the catalytic domain of the same enzyme demonstrates that this proposal is incorrect. In many respects, the structure is similar to the structures of F1-ATPases determined previously. The α3β3-spherical portion of the catalytic domain in which the three catalytic sites are found, plus the central stalk, are highly conserved, and the arginine finger is provided conventionally by the α-subunits adjacent to each of the three catalytic sites found in the β-subunits. Thus, the enzyme has a conventional catalytic mechanism. The structure differs from previous described structures by the presence of a p18 subunit, identified only in the euglenozoa, associated with the external surface of each of the three α-subunits, thereby elaborating the F1-domain. Subunit p18 is a pentatricopeptide repeat (PPR) protein with three PPRs and appears to have no function in the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Martin G Montgomery
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Ondřej Gahura
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
41
|
Joon S, Ragunathan P, Sundararaman L, Nartey W, Kundu S, Manimekalai MSS, Bogdanović N, Dick T, Grüber G. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine. FEBS J 2018; 285:1111-1128. [PMID: 29360236 DOI: 10.1111/febs.14392] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/30/2017] [Accepted: 01/18/2018] [Indexed: 11/27/2022]
Abstract
Mycobacterium tuberculosis (Mt) F1 F0 ATP synthase (α3 :β3 :γ:δ:ε:a:b:b':c9 ) is essential for the viability of growing and nongrowing persister cells of the pathogen. Here, we present the first NMR solution structure of Mtε, revealing an N-terminal β-barrel domain (NTD) and a C-terminal domain (CTD) composed of a helix-loop-helix with helix 1 and -2 being shorter compared to their counterparts in other bacteria. The C-terminal amino acids are oriented toward the NTD, forming a domain-domain interface between the NTD and CTD. The Mtε structure provides a novel mechanistic model of coupling c-ring- and ε rotation via a patch of hydrophobic residues in the NTD and residues of the CTD to the bottom of the catalytic α3 β3 -headpiece. To test our model, genome site-directed mutagenesis was employed to introduce amino acid changes in these two parts of the epsilon subunit. Inverted vesicle assays show that these mutations caused an increase in ATP hydrolysis activity and a reduction in ATP synthesis. The structural and enzymatic data are discussed in light of the transition mechanism of a compact and extended state of Mtε, which provides the inhibitory effects of this coupling subunit inside the rotary engine. Finally, the employment of these data with molecular docking shed light into the second binding site of the drug Bedaquiline. DATABASE Structural data are available in the PDB under the accession number 5YIO.
Collapse
Affiliation(s)
- Shin Joon
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Priya Ragunathan
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Lavanya Sundararaman
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Subhashri Kundu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Nebojša Bogdanović
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| |
Collapse
|
42
|
Varghese F, Blaza JN, Jones AJY, Jarman OD, Hirst J. Deleting the IF 1-like ζ subunit from Paracoccus denitrificans ATP synthase is not sufficient to activate ATP hydrolysis. Open Biol 2018; 8:170206. [PMID: 29367351 PMCID: PMC5795051 DOI: 10.1098/rsob.170206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 11/12/2022] Open
Abstract
In oxidative phosphorylation, ATP synthases interconvert two forms of free energy: they are driven by the proton-motive force across an energy-transducing membrane to synthesize ATP and displace the ADP/ATP ratio from equilibrium. For thermodynamically efficient energy conversion they must be reversible catalysts. However, in many species ATP synthases are unidirectional catalysts (their rates of ATP hydrolysis are negligible), and in others mechanisms have evolved to regulate or minimize hydrolysis. Unidirectional catalysis by Paracoccus denitrificans ATP synthase has been attributed to its unique ζ subunit, which is structurally analogous to the mammalian inhibitor protein IF1 Here, we used homologous recombination to delete the ζ subunit from the P. denitrificans genome, and compared ATP synthesis and hydrolysis by the wild-type and knockout enzymes in inverted membrane vesicles and the F1-ATPase subcomplex. ATP synthesis was not affected by loss of the ζ subunit, and the rate of ATP hydrolysis increased by less than twofold, remaining negligible in comparison with the rates of the Escherichia coli and mammalian enzymes. Therefore, deleting the P. denitrificans ζ subunit is not sufficient to activate ATP hydrolysis. We close by considering our conclusions in the light of reversible catalysis and regulation in ATP synthase enzymes.
Collapse
Affiliation(s)
- Febin Varghese
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - James N Blaza
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew J Y Jones
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
43
|
Krah A, Kato-Yamada Y, Takada S. The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase. PLoS One 2017; 12:e0177907. [PMID: 28542497 PMCID: PMC5436830 DOI: 10.1371/journal.pone.0177907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/04/2017] [Indexed: 01/09/2023] Open
Abstract
The ε subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ε subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double mutant. Our results suggest that the double mutant is stabilized by an enhanced hydrogen-bond network and fewer repulsive contacts in the ligand binding site. The inferred structural basis of the high affinity mutant may help to design novel nucleotide sensors based on the ε subunit from bacterial ATP synthases.
Collapse
Affiliation(s)
- Alexander Krah
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
- School of Computational Sciences, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul, Republic of Korea
- * E-mail:
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
44
|
Noji H, Ueno H, McMillan DGG. Catalytic robustness and torque generation of the F 1-ATPase. Biophys Rev 2017; 9:103-118. [PMID: 28424741 PMCID: PMC5380711 DOI: 10.1007/s12551-017-0262-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
The F1-ATPase is the catalytic portion of the FoF1 ATP synthase and acts as a rotary molecular motor when it hydrolyzes ATP. Two decades have passed since the single-molecule rotation assay of F1-ATPase was established. Although several fundamental issues remain elusive, basic properties of F-type ATPases as motor proteins have been well characterized, and a large part of the reaction scheme has been revealed by the combination of extensive structural, biochemical, biophysical, and theoretical studies. This review is intended to provide a concise summary of the fundamental features of F1-ATPases, by use of the well-described model F1 from the thermophilic Bacillus PS3 (TF1). In the last part of this review, we focus on the robustness of the rotary catalysis of F1-ATPase to provide a perspective on the re-designing of novel molecular machines.
Collapse
Affiliation(s)
- Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| | - Duncan G. G. McMillan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656 Japan
| |
Collapse
|
45
|
Singh D, Sielaff H, Börsch M, Grüber G. Conformational dynamics of the rotary subunit F in the A 3 B 3 DF complex of Methanosarcina mazei Gö1 A-ATP synthase monitored by single-molecule FRET. FEBS Lett 2017; 591:854-862. [PMID: 28231387 DOI: 10.1002/1873-3468.12605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022]
Abstract
In archaea the A1 AO ATP synthase uses a transmembrane electrochemical potential to generate ATP, while the soluble A1 domain (subunits A3 B3 DF) alone can hydrolyse ATP. The three nucleotide-binding AB pairs form a barrel-like structure with a central orifice that hosts the rotating central stalk subunits DF. ATP binding, hydrolysis and product release cause a conformational change inside the A:B-interface, which enforces the rotation of subunits DF. Recently, we reported that subunit F is a stimulator of ATPase activity. Here, we investigated the nucleotide-dependent conformational changes of subunit F relative to subunit D during ATP hydrolysis in the A3 B3 DF complex of the Methanosarcina mazei Gö1 A-ATP synthase using single-molecule Förster resonance energy transfer. We found two conformations for subunit F during ATP hydrolysis.
Collapse
Affiliation(s)
- Dhirendra Singh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hendrik Sielaff
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Single-Molecule Microscopy Group, Jena University Hospital, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Germany
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|