1
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
2
|
Bureau JA, Oliva ME, Dong Y, Ignea C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Nat Prod Rep 2023; 40:1822-1848. [PMID: 37523210 DOI: 10.1039/d3np00005b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Covering: 2011-2022The low amounts of terpenoids produced in plants and the difficulty in synthesizing these complex structures have stimulated the production of terpenoid compounds in microbial hosts by metabolic engineering and synthetic biology approaches. Advances in engineering yeast for terpenoid production will be covered in this review focusing on four directions: (1) manipulation of host metabolism, (2) rewiring and reconstructing metabolic pathways, (3) engineering the catalytic activity, substrate selectivity and product specificity of biosynthetic enzymes, and (4) localizing terpenoid production via enzymatic fusions and scaffolds, or subcellular compartmentalization.
Collapse
Affiliation(s)
| | | | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
3
|
Yang K, Wang JQ, Li K, Chen SN, Yu F. Pseudolaric acid B induces apoptosis associated with the mitochondrial and PI3K/AKT/mTOR pathways in triple‑negative breast cancer. Oncol Rep 2023; 50:193. [PMID: 37711030 PMCID: PMC10535017 DOI: 10.3892/or.2023.8630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi, has been shown to exert strong antitumor properties. The aim of the present study was to investigate the mechanisms underlying the proposed antitumor properties of PAB in the triple‑negative breast cancer cells, MDA‑MB‑231. The cell processes evaluated included cell proliferation by Cell Counting Kit‑8 assay, colony formation and EdU assay, apoptosis by Annexin V‑FITC/PI apoptosis assay, cell migration by Transwell migration assay and invasion by Transwell invasion assay. PAB significantly inhibited the proliferation of MDA‑MB‑231 cells through a mechanism that was considered to be associated with cell cycle arrest at the G2/M phase. There was decreased protein expression levels of CDK1 and cyclin B1 and increased protein expression levels of p53 and p21. However, there were no well‑defined inhibitory effects on the normal breast cell line MCF10A. PAB also triggered apoptosis in a concentration‑dependent manner through the mitochondrial apoptosis pathway. It caused collapse of mitochondrial membrane potential, accumulation of reactive oxygen species and release of cytochrome c, as well as upregulation of cleaved caspase‑3, cleaved caspase‑9, cleaved PARP and Bax, and downregulation of Bcl‑2 and Bcl‑xl. The migration and invasion ability of MDA‑MB‑231 cells were inhibited by decreasing the expression levels of the epithelial‑mesenchymal transition‑related markers N‑cadherin and vimentin and increasing the expression of E‑cadherin. Moreover, the expression levels of PI3K (p110β), phosphorylated (p)‑AKT (ser473) and p‑mTOR (ser2448) were downregulated and LY294002, a PI3K inhibitor, could interact additively with PAB to induce apoptosis of MDA‑MB‑231 cells. Overall, the present results demonstrated that PAB induced apoptosis via mitochondrial apoptosis and the PI3K/AKT/mTOR pathway in triple‑negative breast cancer. It also inhibited cellular proliferation, migration and invasion, suggesting that PAB may be a useful phytomedicine for the treatment of triple‑negative breast cancer.
Collapse
Affiliation(s)
- Ke Yang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jun-Qi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Kai Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Su-Ning Chen
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fei Yu
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
4
|
Xu H, Lackus ND, Köllner TG, Dickschat JS. Isotopic Labeling Experiments Solve the Hedycaryol Problem. Org Lett 2022; 24:587-591. [PMID: 34985289 DOI: 10.1021/acs.orglett.1c04021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hedycaryol is a widespread sesquiterpene alcohol and important biosynthetic intermediate toward eudesmols and guaiols. A full NMR assignment for this compound has been hampered because of the unique molecular mechanics of its conformers in complex mixtures. This problem was solved through the enzymatic synthesis of isotopically labeled materials using a mutated plant and a bacterial enzyme for access to both enantiomers of hedycaryol, which also allowed us to follow the stereochemical course of its Cope rearrangement.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Nathalie D Lackus
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Jeroen S Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
5
|
Alicandri E, Covino S, Sebastiani B, Paolacci AR, Badiani M, Manti F, Bonsignore CP, Sorgonà A, Ciaffi M. Diterpene Resin Acids and Olefins in Calabrian Pine ( Pinus nigra subsp. laricio (Poiret) Maire) Oleoresin: GC-MS Profiling of Major Diterpenoids in Different Plant Organs, Molecular Identification and Expression Analysis of Diterpene Synthase Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112391. [PMID: 34834754 PMCID: PMC8622628 DOI: 10.3390/plants10112391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
A quali-quantitative analysis of diterpenoid composition in tissues obtained from different organs of Pinus nigra subsp. laricio (Poiret) Maire (Calabrian pine) was carried out. Diterpene resin acids were the most abundant diterpenoids across all the examined tissues. The same nine diterpene resin acids were always found, with the abietane type prevailing on the pimarane type, although their quantitative distribution was found to be remarkably tissue-specific. The scrutiny of the available literature revealed species specificity as well. A phylogeny-based approach allowed us to isolate four cDNAs coding for diterpene synthases in Calabrian pine, each of which belonging to one of the four groups into which the d3 clade of the plants' terpene synthases family can be divided. The deduced amino acid sequences allowed predicting that both monofunctional and bifunctional diterpene synthases are involved in the biosynthesis of diterpene resin acids in Calabrian pine. Transcript profiling revealed differential expression across the different tissues and was found to be consistent with the corresponding diterpenoid profiles. The isolation of the complete genomic sequences and the determination of their exon/intron structures allowed us to place the diterpene synthase genes from Calabrian pine on the background of current ideas on the functional evolution of diterpene synthases in Gymnosperms.
Collapse
Affiliation(s)
- Enrica Alicandri
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Stefano Covino
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c., 01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Bartolomeo Sebastiani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
| | - Anna Rita Paolacci
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c., 01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Maurizio Badiani
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Francesco Manti
- Dipartimento di Patrimonio, Architettura e Urbanistica, Università Mediterranea di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy; (F.M.); (C.P.B.)
| | - Carmelo Peter Bonsignore
- Dipartimento di Patrimonio, Architettura e Urbanistica, Università Mediterranea di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy; (F.M.); (C.P.B.)
| | - Agostino Sorgonà
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, 89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Mario Ciaffi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c., 01100 Viterbo, Italy; (S.C.); (A.R.P.)
- Correspondence: ; Tel.: +39-0761-357-424; Fax: +39-0761-357-389
| |
Collapse
|
6
|
Mao L, Jin B, Chen L, Tian M, Ma R, Yin B, Zhang H, Guo J, Tang J, Chen T, Lai C, Cui G, Huang L. Functional identification of the terpene synthase family involved in diterpenoid alkaloids biosynthesis in Aconitum carmichaelii. Acta Pharm Sin B 2021; 11:3310-3321. [PMID: 34729318 PMCID: PMC8546855 DOI: 10.1016/j.apsb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Aconitum carmichaelii is a high-value medicinal herb widely used across China, Japan, and other Asian countries. Aconitine-type diterpene alkaloids (DAs) are the characteristic compounds in Aconitum. Although six transcriptomes, based on short-read next generation sequencing technology, have been reported from the Aconitum species, the terpene synthase (TPS) corresponding to DAs biosynthesis remains unidentified. We apply a combination of Pacbio isoform sequencing and RNA sequencing to provide a comprehensive view of the A. carmichaelii transcriptome. Nineteen TPSs and five alternative splicing isoforms belonging to TPS-b, TPS-c, and TPS-e/f subfamilies were identified. In vitro enzyme reaction analysis functional identified two sesqui-TPSs and twelve diTPSs. Seven of the TPS-c subfamily genes reacted with GGPP to produce the intermediate ent-copalyl diphosphate. Five AcKSLs separately reacted with ent-CPP to produce ent-kaurene, ent-atiserene, and ent-13-epi-sandaracopimaradie: a new diterpene found in Aconitum. AcTPSs gene expression in conjunction DAs content analysis in different tissues validated that ent-CPP is the sole precursor to all DAs biosynthesis, with AcKSL1, AcKSL2s and AcKSL3-1 responsible for C20 atisine and napelline type DAs biosynthesis, respectively. These data clarified the molecular basis for the C20-DAs biosynthetic pathway in A. carmichaelii and pave the way for further exploration of C19-DAs biosynthesis in the Aconitum species.
Collapse
Affiliation(s)
- Liuying Mao
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingli Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Biwei Yin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haiyan Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- College of Pharmacy, Shandong University of Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
7
|
Hu Z, Liu X, Tian M, Ma Y, Jin B, Gao W, Cui G, Guo J, Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med Res Rev 2021; 41:2971-2997. [PMID: 33938025 DOI: 10.1002/med.21816] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Pharmaceutical, Sciences, Capital Medical University, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Park J, Fu Z, Frangaj A, Liu J, Mosyak L, Shen T, Slavkovich VN, Ray KM, Taura J, Cao B, Geng Y, Zuo H, Kou Y, Grassucci R, Chen S, Liu Z, Lin X, Williams JP, Rice WJ, Eng ET, Huang RK, Soni RK, Kloss B, Yu Z, Javitch JA, Hendrickson WA, Slesinger PA, Quick M, Graziano J, Yu H, Fiehn O, Clarke OB, Frank J, Fan QR. Structure of human GABA B receptor in an inactive state. Nature 2020; 584:304-309. [PMID: 32581365 PMCID: PMC7725281 DOI: 10.1038/s41586-020-2452-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/01/2020] [Indexed: 01/21/2023]
Abstract
The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.
Collapse
Affiliation(s)
- Jinseo Park
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Aurel Frangaj
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Jonathan Liu
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Lidia Mosyak
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Tong Shen
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Vesna N Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Kimberly M Ray
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Jaume Taura
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baohua Cao
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Yong Geng
- Department of Pharmacology, Columbia University, New York, NY, USA
- Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hao Zuo
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Yongjun Kou
- Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Robert Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Shaoxia Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Xin Lin
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Justin P Williams
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - William J Rice
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Edward T Eng
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Rick K Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rajesh K Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan A Javitch
- Department of Pharmacology, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
- Department of Anesthesiology and the Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Qing R Fan
- Department of Pharmacology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Ma LT, Lee YR, Liu PL, Cheng YT, Shiu TF, Tsao NW, Wang SY, Chu FH. Phylogenetically distant group of terpene synthases participates in cadinene and cedrane-type sesquiterpenes accumulation in Taiwania cryptomerioides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110277. [PMID: 31623780 DOI: 10.1016/j.plantsci.2019.110277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Along with the species evolution, plants have evolved ways to produce a different collection of terpenoids to accommodate its biotic and abiotic environment, and terpene synthase (TPS) is one of the major contributors to various terpene compounds. The timber of a monotypic and relictual conifer species of Cupressace, Taiwania cryptomerioides, has excellent durability, and one of the essential factors for Taiwania to resist decay and insect pests is sesquiterpene. Compared to other conifers, Taiwania has much higher abundance of cadinene-type sesquiterpenes, and the presence of cedrene-type sesquiterpenes. To understand sesquiterpene biosynthesis in Taiwania, we functionally characterized 10 T. cryptomerioides TPSs (TcTPSs) in vivo or in planta, which could catalyze sesquiterpene formation and potentially are involved in biosynthesis of diverse sesquiterpenoids in Taiwania. The distant phylogenetic relationship and the intron loss event of TcTPSs correlate to the differentiation of chemical profile Taiwania compared to other conifers. Furthermore, we identified TcTPS3 and TcTPS12 as δ-cadinene synthase, and TcTPS6 as cedrol synthase, which demonstrates the important contributions of dynamic evolution in TPSs to the chemical diversity in plants. Combining with functional characterization and comparison of catalytic residues, we conclude at least three catalytic routes for sesquiterpene biosynthesis in this species, and the skeleton diversity has been expended in T. cryptomeriodes.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Ling Liu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Yang-Tui Cheng
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Tz-Fan Shiu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung 402, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Celedon JM, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. THE NEW PHYTOLOGIST 2019; 224:1444-1463. [PMID: 31179548 DOI: 10.1111/nph.15984] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 05/20/2023]
Abstract
Conifers have evolved complex oleoresin terpene defenses against herbivores and pathogens. In co-evolved bark beetles, conifer terpenes also serve chemo-ecological functions as pheromone precursors, chemical barcodes for host identification, or nutrients for insect-associated microbiomes. We highlight the genomic, molecular and biochemical underpinnings of the large chemical space of conifer oleoresin terpenes and volatiles. Conifer terpenes are predominantly the products of the conifer terpene synthase (TPS) gene family. Terpene diversity is increased by cytochromes P450 of the CYP720B class. Many conifer TPS are multiproduct enzymes. Multisubstrate CYP720B enzymes catalyse multistep oxidations. We summarise known terpenoid gene functions in various different conifer species with reference to the annotated terpenoid gene space in a spruce genome. Overall, biosynthesis of terpene diversity in conifers is achieved through a system of biochemical radiation and metabolic grids. Expression of TPS and CYP720B genes can be specific to individual cell types of constitutive or traumatic resin duct systems. Induced terpenoid transcriptomes in resin duct cells lead to dynamic changes of terpene composition and quantity to fend off herbivores and pathogens. While terpenoid defenses have contributed much to the evolutionary success of conifers, under new conditions of climate change, these defences may become inconsequential against range-expanding forest pests.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
11
|
Ma LT, Lee YR, Tsao NW, Wang SY, Zerbe P, Chu FH. Biochemical characterization of diterpene synthases of Taiwania cryptomerioides expands the known functional space of specialized diterpene metabolism in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1254-1272. [PMID: 31448467 DOI: 10.1111/tpj.14513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Philipp Zerbe
- Department of Plant Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
12
|
Johnson SR, Bhat WW, Sadre R, Miller GP, Garcia AS, Hamberger B. Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution. THE NEW PHYTOLOGIST 2019; 223:323-335. [PMID: 30843212 PMCID: PMC6593445 DOI: 10.1111/nph.15778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these. We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS-a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS-a enzymes from Lamiaceae were cytosolic and reported to act on the 15-carbon farnesyl diphosphate. Plastidial TPS-a enzymes using the 20-carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family. All four new enzymes were found to be active on multiple prenyl-diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11-hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins. We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification.
Collapse
Affiliation(s)
- Sean R. Johnson
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Wajid Waheed Bhat
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMI48824USA
| | - Radin Sadre
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Garret P. Miller
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Alekzander Sky Garcia
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Björn Hamberger
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
13
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
14
|
Cool LG, Vermillion KE, Takeoka GR, Wang SC, Tantillo DJ. Biosynthesis and Conformational Properties of the Irregular Sesquiterpenoids Isothapsadiene and β-Isothapsenol. J Org Chem 2018; 83:5724-5730. [PMID: 29684282 DOI: 10.1021/acs.joc.8b00800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A carbocation cyclization/rearrangement mechanism for the biosynthesis of isothapsadiene and β-isothapsenol is shown to be energetically viable on the basis of density functional theory (DFT) calculations. In addition, for both isothapsadiene and β-isothapsenol, variable-temperature NMR experiments reveal two equilibrium conformers that undergo hindered exchange. The identities of these conformers, which are related by a chair-flip, are confirmed by DFT calculations on their structures, energies, 1H and 13C chemical shifts, and interconversion pathways.
Collapse
Affiliation(s)
- Laurence G Cool
- United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States
| | - Karl E Vermillion
- United States Department of Agriculture , Agricultural Research Service , 1815 North University Street , Peoria , Illinois 61604 , United States
| | - Gary R Takeoka
- United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States
| | - Selina C Wang
- Olive Center and Department of Food Science and Technology , University of California-Davis , Davis , California 95616 , United States
| | - Dean J Tantillo
- Department of Chemistry , University of California-Davis , Davis , California 95616 , United States
| |
Collapse
|
15
|
Zhang J, Han RY, Ye HC, Zhou Y, Zhang ZK, Yuan EL, Li Y, Yan C, Liu X, Feng G, Guo YX. Effect of pseudolaric acid B on biochemical and physiologic characteristics in Colletotrichum gloeosporioides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:75-82. [PMID: 29933996 DOI: 10.1016/j.pestbp.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 06/08/2023]
Abstract
In our previous study on natural products with fungicidal activity, pseudolaric acid B (PAB) isolated from Pseudolarix amabilis was examined to inhibit significantly mango anthracnose (Colletotrichum gloeosporioides) in vivo and in vitro. In the current study, sensitivity of 17 plant pathogenic fungi to PAB was determined. Mycelial growth rate results showed that PAB possessed strong antifungal activities to eleven fungi with median effective concentration (EC50) values ranging from 0.087 to 1.927μg/mL. EC50 of PAB against spore germination was greater than that of mycelium growth inhibition, which suggest that PAB could execute antifungal activity through mycelial growth inhibition. Further action mechanism of PAB against C. gloeosporioides was investigated, in which PAB treatment inhibited mycelia dry weight, decreased the mycelia reducing sugar and soluble protein. Furthermore, PAB induced an increase in membrane permeability, inhibited the biosynthesis of ergosterol, caused the extreme alteration in ultrastructure as indicated by the thickened cell wall and increased vesicles. These results will increase our understanding of action mechanism of PAB against plant pathogenic fungi.
Collapse
Affiliation(s)
- Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Ru-Yue Han
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Huo-Chun Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Ying Zhou
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Zheng-Ke Zhang
- College of Food Science and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - En-Lin Yuan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China; Guangxi Tianyuan Biochemistry Joint stock Corp, Nanning 530003, People's Republic of China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Chao Yan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Xia Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China.
| | - Yong-Xia Guo
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China.
| |
Collapse
|
16
|
Eriksson A, Kürten C, Syrén P. Protonation-Initiated Cyclization by a Class II Terpene Cyclase Assisted by Tunneling. Chembiochem 2017; 18:2301-2305. [PMID: 28980755 PMCID: PMC5725671 DOI: 10.1002/cbic.201700443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 02/03/2023]
Abstract
Terpenes represent one of the most diversified classes of natural products with potent biological activities. The key to the myriad of polycyclic terpene skeletons with crucial functions in organisms from all kingdoms of life are terpene cyclase enzymes. These biocatalysts enable stereospecific cyclization of relatively simple, linear, prefolded polyisoprenes by highly complex, partially concerted, electrophilic cyclization cascades that remain incompletely understood. Herein, additional mechanistic light is shed on terpene biosynthesis by kinetic studies in mixed H2 O/D2 O buffers of a class II bacterial ent-copalyl diphosphate synthase. Mass spectrometry determination of the extent of deuterium incorporation in the bicyclic product, reminiscent of initial carbocation formation by protonation, resulted in a large kinetic isotope effect of up to seven. Kinetic analysis at different temperatures confirmed that the isotope effect was independent of temperature, which is consistent with hydrogen tunneling.
Collapse
Affiliation(s)
- Adam Eriksson
- School of Chemical Science and EngineeringKTH Royal Institute of Technology100 44StockholmSweden
| | - Charlotte Kürten
- Science for Life LaboratoryKTH Royal Institute of TechnologySchool of BiotechnologyDivision of Proteomics171 21StockholmSweden
| | - Per‐Olof Syrén
- School of Chemical Science and EngineeringKTH Royal Institute of Technology100 44StockholmSweden
- Science for Life LaboratoryKTH Royal Institute of TechnologySchool of BiotechnologyDivision of Proteomics171 21StockholmSweden
| |
Collapse
|