1
|
Koevoet D, Van Zantwijk L, Naber M, Mathôt S, van der Stigchel S, Strauch C. Effort drives saccade selection. eLife 2025; 13:RP97760. [PMID: 40193176 PMCID: PMC11975373 DOI: 10.7554/elife.97760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade ('saccade costs'). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| | - Laura Van Zantwijk
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| | - Sebastiaan Mathôt
- Department of Psychology, University of GroningenGroningenNetherlands
| | | | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
2
|
Lee HH, Carrasco M. Visual adaptation stronger at horizontal than vertical meridian: Linking performance with V1 cortical surface area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642102. [PMID: 40166189 PMCID: PMC11956974 DOI: 10.1101/2025.03.07.642102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Visual adaptation reduces bioenergetic expenditure by decreasing sensitivity to repetitive and similar stimuli. In human adults, visual performance varies systematically around polar angle for many visual dimensions and tasks. Performance is superior along the horizontal than the vertical meridian (horizontal-vertical anisotropy, HVA), and the lower than upper vertical meridian (vertical meridian asymmetry, VMA). These asymmetries are resistant to spatial and temporal attention. Here, we investigated how adaptation influences contrast sensitivity at the fovea and perifovea across the four cardinal meridian locations, for horizontal and vertical stimuli. In the non-adapted conditions, the HVA was more pronounced for horizontal than vertical stimuli. For both orientations, adaptation was stronger along the horizontal than vertical meridian, exceeding foveal adaptation. Additionally, perifoveal adaptation effects positively correlated with individual V1 cortical surface area. These findings reveal that visual adaptation mitigates the HVA in contrast sensitivity, fostering perceptual uniformity around the visual field while conserving bioenergetic resources.
Collapse
|
3
|
Koevoet D, Naber M, Strauch C, Van der Stigchel S. Presaccadic Attention Shifts Up- and Downwards: Evidence From the Pupil Light Response. Psychophysiology 2025; 62:e70047. [PMID: 40097344 PMCID: PMC11913767 DOI: 10.1111/psyp.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/10/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Vision is introspectively stable, yet every eye movement moves the image of the world on the retina. The dominant view states that attention must precede saccades to prepare the brain for the postsaccadic retinal input, which ensures a stable visual experience. A recent surge of studies investigated visual asymmetries around the visual field, including asymmetries in presaccadic attention. Such studies demonstrated benefits of presaccadic attention on task performance for horizontal and downward saccades, but strikingly no such benefit was observed for upward saccades. An absence of upward presaccadic shifts would contrast the dominant view and indicate that presaccadic attention may not be necessary to ensure perceptual continuity. Here, we capitalized on the fact that the pupil light response robustly tracks spatial attention to investigate whether presaccadic attention shifts up- and downwards. We manipulated whether the landing brightness of the ensuing saccade could be prepared for prior to the saccade. Specifically, we either presented brightness patches throughout the trial or only presented these upon saccade onset. In two experiments, we observed earlier pupil light responses for both up- and downward saccades when the landing brightness could be prepared for presaccadically. This shows that presaccadic attention shifted prior to up- and downward saccades and agrees with presaccadic attention being instrumental in realizing a stable visual experience. Reconciling previously contradictory findings, presaccadic attention can be shifted without necessarily yielding perceptual benefits for all facets of visual processing at the attended location. Nevertheless, our findings demonstrate presaccadic attention to shift along the vertical meridian.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
Yang C, He X, Cai Y. Reactivating and reorganizing activity-silent working memory: two distinct mechanisms underlying pinging the brain. Cereb Cortex 2025; 35:bhae494. [PMID: 39756434 DOI: 10.1093/cercor/bhae494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025] Open
Abstract
Recent studies have proposed that visual information in working memory (WM) can be maintained in an activity-silent state and reactivated by task-irrelevant high-contrast visual impulses ("ping"). Although pinging the brain has become a popular tool for exploring activity-silent WM, its underlying mechanisms remain unclear. In the current study, we directly compared the neural reactivation effects and behavioral consequences of spatial-nonmatching and spatial-matching pings to distinguish the noise-reduction and target-interaction hypotheses of pinging the brain. Initially, in an electroencephalogram study, our neural decoding results showed that spatial-nonmatching pings reactivated activity-silent WM transiently without changing the original WM representations or recall performance. Conversely, spatial-matching pings reactivated activity-silent WM more durably and further reorganized WM information by decreasing neural representations' dynamics. Notably, only the reactivation strength of spatial-matching pings correlated with recall performance and was modulated by the location of memorized items, with neural reactivation occurring only when both items and pings were presented horizontally. Consistently, in a follow-up behavioral study, we found that only spatial-matching, horizontal pings impaired recall performance compared to no ping. Together, our results demonstrated two distinct mechanisms underlying pinging the brain, highlighting the critical role of the ping's context (i.e. spatial information) in reactivating and reorganizing activity-silent WM.
Collapse
Affiliation(s)
- Can Yang
- Department of Psychology and Behavioral Sciences, Zhejiang University, No. 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Xianhui He
- Department of Psychology and Behavioral Sciences, Zhejiang University, No. 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Ying Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, No. 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
5
|
Tünçok E, Kiorpes L, Carrasco M. Opposite asymmetry in visual perception of humans and macaques. Curr Biol 2025; 35:681-687.e4. [PMID: 39814028 PMCID: PMC11817857 DOI: 10.1016/j.cub.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
In human adults, visual perception varies throughout the visual field. Performance decreases with eccentricity1,2 and varies around polar angle. At isoeccentric locations, performance is typically higher along the horizontal than vertical meridian (horizontal-vertical asymmetry [HVA]) and along the lower than the upper vertical meridian (vertical meridian asymmetry [VMA]).3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 It is unknown whether the macaque visual system, the leading animal model for understanding human vision,24,25 also exhibits these performance asymmetries. Here, we investigated whether and how visual field asymmetries differ between these two groups. Human adults and adult macaque monkeys (Macaca nemestrina) performed a two-alternative forced choice (2AFC) motion direction discrimination task for a target presented among distractors at isoeccentric locations. Both groups showed heterogeneous visual sensitivity around the visual field, but there were striking differences between them. Human observers showed a large VMA-their sensitivity was poorest at the upper vertical meridian-a weak horizontal-vertical asymmetry, and lower sensitivity at intercardinal locations. Macaque performance revealed an inverted VMA-their sensitivity was poorest in the lower vertical meridian. The opposite pattern of VMA in macaques and humans revealed in this study may reflect adaptive behavior by increasing discriminability at locations with greater relevance for visuomotor integration. This study reveals that performance also varies as a function of polar angle for monkeys, but in a different manner than in humans, and highlights the need to investigate species-specific similarities and differences in brain and behavior to constrain models of vision and brain function.
Collapse
Affiliation(s)
- Ekin Tünçok
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Lynne Kiorpes
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
6
|
Baumann MP, Denninger AF, Hafed ZM. Perisaccadic perceptual mislocalization strength depends on the visual appearance of saccade targets. J Neurophysiol 2025; 133:85-100. [PMID: 39560111 DOI: 10.1152/jn.00368.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
We normally perceive a stable visual environment despite eye movements. To achieve such stability, visual processing integrates information across a given saccade, and laboratory hallmarks of such integration are robustly observed by presenting brief perisaccadic visual probes. In one classic phenomenon, probe locations are grossly mislocalized. This mislocalization is believed to depend, at least in part, on corollary discharge associated with saccade-related neuronal movement commands. However, we recently found that superior colliculus motor bursts, a known source of corollary discharge, can be different for different image appearances of the saccade target. Therefore, here we investigated whether perisaccadic mislocalization also depends on saccade target appearance. We asked human participants to generate saccades to either low (0.5 cycles/°) or high (5 cycles/°) spatial frequency gratings. We always placed a high-contrast target spot at grating center, to ensure matched saccades across image types. We presented a single, brief perisaccadic probe, which was high in contrast to avoid saccadic suppression, and the subjects pointed (via mouse cursor) at the seen probe location. We observed stronger perisaccadic mislocalization for low-spatial frequency saccade targets and for upper visual field probe locations. This was despite matched saccade metrics and kinematics across conditions, and it was also despite matched probe visibility for the different saccade target images (low vs. high spatial frequency). Assuming that perisaccadic visual mislocalization depends on corollary discharge, our results suggest that such discharge might relay more than just spatial saccade vectors to the visual system; saccade target visual features can also be transmitted.NEW & NOTEWORTHY Brief visual probes are grossly mislocalized when presented in the temporal vicinity of saccades. Although the mechanisms of such mislocalization are still under investigation, one component of them could derive from corollary discharge signals associated with saccade movement commands. Here, we were motivated by the observation that superior colliculus movement bursts, one source of corollary discharge, vary with saccade target image appearance. If so, then perisaccadic mislocalization should also do so, which we confirmed.
Collapse
Affiliation(s)
- Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anna F Denninger
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department for Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Jenks SK, Carrasco M, Poletti M. Asymmetries in foveal vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629715. [PMID: 39763996 PMCID: PMC11702834 DOI: 10.1101/2024.12.20.629715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Visual perception is characterized by known asymmetries in the visual field; human's visual sensitivity is higher along the horizontal than the vertical meridian, and along the lower than the upper vertical meridian. These asymmetries decrease with decreasing eccentricity from the periphery to the center of gaze, suggesting that they may be absent in the 1-deg foveola, the retinal region used to explore scenes at high-resolution. Using high-precision eyetracking and gaze-contingent display, allowing for accurate control over the stimulated foveolar location despite the continuous eye motion at fixation, we investigated fine visual discrimination at different isoeccentric locations across the foveola and parafovea. Although the tested foveolar locations were only 0.3 deg away from the center of gaze, we show that, similar to more eccentric locations, humans are more sensitive to stimuli presented along the horizontal than the vertical meridian. Whereas the magnitude of this asymmetry is reduced in the foveola, the magnitude of the vertical meridian asymmetry is comparable but, interestingly, reversed: objects presented slightly above the center of gaze are more easily discerned than when presented at the same eccentricity below the center of gaze. Therefore, far from being uniform, as often assumed, foveolar vision is characterized by perceptual asymmetries. Further, these asymmetries differ not only in magnitude but also in direction compared to those present just ~4deg away from the center of gaze, resulting in overall different foveal and extrafoveal perceptual fields.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Brain and Cognitive Sciences, University of Rochester
- Center for Visual Science, University of Rochester
| | - Marisa Carrasco
- Department of Psychology, New York University
- Center for Neural Science, New York University
| | - Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester
- Department of Neuroscience, University of Rochester
- Center for Visual Science, University of Rochester
| |
Collapse
|
8
|
Entzmann L, Ásgeirsson ÁG, Kristjánsson Á. How does color distribution learning affect goal-directed visuomotor behavior? Cognition 2024; 254:106002. [PMID: 39546817 DOI: 10.1016/j.cognition.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
While the visual world is rich and complex, importantly, it nevertheless contains many statistical regularities. For example, environmental feature distributions tend to remain relatively stable from one moment to the next. Recent findings have shown how observers can learn surprising details of environmental color distributions, even when the colors belong to actively ignored stimuli such as distractors in visual search. Our aim was to determine whether such learning influences orienting in the visual environment, measured with saccadic eye movements. In two visual search experiments, observers had to find an odd-one-out target. Firstly, we tested cases where observers selected targets by fixating them. Secondly, we measured saccadic eye movements when observers made judgments on the target and responded manually. Trials were structured in blocks, containing learning trials where distractors came from the same color distribution (uniform or Gaussian) while on subsequent test trials, the target was at different distances from the mean of the learning distractor distribution. For both manual and saccadic measures, performance improved throughout the learning trials and was better when the distractor colors came from a Gaussian distribution. Moreover, saccade latencies during test trials depended on the distance between the color of the current target and the distractors on learning trials, replicating results obtained with manual responses. Latencies were slowed when the target color was within the learning distractor color distribution and also revealed that observers learned the difference between uniform and Gaussian distributions. The importance of several variables in predicting saccadic and manual reaction times was studied using random forests, revealing similar rankings for both modalities, although previous distractor color had a higher impact on free eye movements. Overall, our results demonstrate learning of detailed characteristics of environmental color distributions that affects early attentional selection rather than later decisional processes.
Collapse
Affiliation(s)
- Léa Entzmann
- Icelandic Vision Lab, Faculty of Psychology, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Árni Gunnar Ásgeirsson
- Icelandic Vision Lab, Faculty of Psychology, School of Humanities and Social Sciences, University of Akureyri, Akureyri, Iceland.
| | - Árni Kristjánsson
- Icelandic Vision Lab, Faculty of Psychology, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
9
|
Liu X, Melcher D, Carrasco M, Hanning NM. Presaccadic preview shapes postsaccadic processing more where perception is poor. Proc Natl Acad Sci U S A 2024; 121:e2411293121. [PMID: 39236235 PMCID: PMC11406264 DOI: 10.1073/pnas.2411293121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' postsaccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Division of Science, Psychology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Psychology, Princeton University, Princeton, NJ 08540
| | - David Melcher
- Division of Science, Psychology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10012
| | - Nina M Hanning
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10012
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| |
Collapse
|
10
|
Cutler J, Bodet A, Rivest J, Cavanagh P. The word superiority effect overcomes crowding. Vision Res 2024; 222:108436. [PMID: 38820621 DOI: 10.1016/j.visres.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024]
Abstract
Crowding and the word superiority effect are two perceptual phenomena that influence reading. The identification of the inner letters of a word can be hindered by crowding from adjacent letters, but it can be facilitated by the word context itself (the word superiority effect). In the present study, strings of four-letters (words and non-words) with different inter-letter spacings (ranging from an optimal spacing to produce crowding to a spacing too large to produce crowding) were presented briefly in the periphery and participants were asked to identify the third letter of the string. Each word had a partner word that was identical except for its third letter (e.g., COLD, CORD) so that guessing as the source of the improved performance for words could be ruled out. Unsurprisingly, letter identification accuracy for words was better than non-words. For non-words, it was lowest at closer spacings, confirming crowding. However, for words, accuracy remained high at all inter-letter spacings showing that crowding did not prevent identification of the inner letters. This result supports models of "holistic" word recognition where partial cues can lead to recognition without first identifying individual letters. Once the word is recognized, its inner letters can be recovered, despite their feature loss produced by crowding.
Collapse
Affiliation(s)
- June Cutler
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada
| | - Alexandre Bodet
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada
| | - Josée Rivest
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada; Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.
| | - Patrick Cavanagh
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA; Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
11
|
L-Miao L, Reynvoet B, Sayim B. The radial-tangential anisotropy of numerosity perception. J Vis 2024; 24:15. [PMID: 39046720 PMCID: PMC11271808 DOI: 10.1167/jov.24.7.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Humans can estimate the number of visually presented items without counting. In most studies on numerosity perception, items are uniformly distributed across displays, with identical distributions in central and eccentric parts. However, the neural and perceptual representation of the human visual field differs between the fovea and the periphery. For example, in peripheral vision, there are strong asymmetries with regard to perceptual interferences between visual items. In particular, items arranged radially usually interfere more strongly with each other than items arranged tangentially (the radial-tangential anisotropy). This has been shown for crowding (the deleterious effect of clutter on target identification) and redundancy masking (the reduction of the number of perceived items in repeating patterns). In the present study, we tested how the radial-tangential anisotropy of peripheral vision impacts numerosity perception. In four experiments, we presented displays with varying numbers of discs that were predominantly arranged radially or tangentially, forming strong and weak interference conditions, respectively. Participants were asked to report the number of discs. We found that radial displays were reported as less numerous than tangential displays for all radial and tangential manipulations: weak (Experiment 1), strong (Experiment 2), and when using displays with mixed contrast polarity discs (Experiments 3 and 4). We propose that numerosity perception exhibits a significant radial-tangential anisotropy, resulting from local spatial interactions between items.
Collapse
Affiliation(s)
- Li L-Miao
- Université de Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
- Faculty of Psychology and Educational Sciences, KU Leuven Kulak, Kortrijk, Belgium
- https://miaoli-psy.github.io/
| | - Bert Reynvoet
- Faculty of Psychology and Educational Sciences, KU Leuven Kulak, Kortrijk, Belgium
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- https://www.kuleuven.be/wieiswie/nl/person/00047096
| | - Bilge Sayim
- Université de Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
- https://www.appearancelab.org/bilge
| |
Collapse
|
12
|
Yildirim-Keles FZ, Coates DR, Sayim B. Attention in redundancy masking. Atten Percept Psychophys 2024; 86:1-14. [PMID: 38750302 DOI: 10.3758/s13414-024-02885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 11/13/2024]
Abstract
Peripheral vision is limited due to several factors, such as visual resolution, crowding, and attention. When attention is not directed towards a stimulus, detection, discrimination, and identification are often compromised. Recent studies have found a new phenomenon that strongly limits peripheral vision, "redundancy masking". In redundancy masking, the number of perceived items in repeating patterns is reduced. For example, when presenting three lines in the peripheral visual field and asking participants to report the number of lines, often only two lines are reported. Here, we investigated what role attention plays in redundancy masking. If redundancy masking was due to limited attention to the target, it should be stronger when less attention is allocated to the target, and absent when attention is maximally focused on the target. Participants were presented with line arrays and reported the number of lines in three cueing conditions (i.e., single cue, double cue, and no cue). Redundancy masking was observed in all cueing conditions, with observers reporting fewer lines than presented in the single, double, and no cue conditions. These results suggest that redundancy masking is not due to limited attention. The number of lines reported was closer to the correct number of lines in the single compared to the double and the no cue conditions, suggesting that reduced attention additionally compromised stimulus discrimination, and replicating typical effects of diminished attention. Taken together, our results suggest that the extent of attention to peripherally presented stimuli modulates discrimination performance, but does not account for redundancy masking.
Collapse
Affiliation(s)
- Fazilet Zeynep Yildirim-Keles
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
- Department of Psychology, University of Fribourg, Faucigny 2, 1700, Fribourg, Switzerland.
| | - Daniel R Coates
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland
- College of Optometry, University of Houston, Houston, TX, 77204, USA
| | - Bilge Sayim
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, 59000, Lille, France
| |
Collapse
|
13
|
Liu X, Melcher D, Carrasco M, Hanning NM. Pre-saccadic Preview Shapes Post-Saccadic Processing More Where Perception is Poor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541028. [PMID: 37292871 PMCID: PMC10245755 DOI: 10.1101/2023.05.18.541028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pre-saccadic preview of a peripheral target enhances the efficiency of its post-saccadic processing, termed the extrafoveal preview effect. Peripheral visual performance -and thus the quality of the preview- varies around the visual field, even at iso-eccentric locations: it is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants (to preview four tilted gratings at the cardinals, until a central cue indicated to which one to saccade. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' post-saccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.
Collapse
|
14
|
Lecce M, Miazza D, Muzio C, Parigi M, Miazza A, Bergomi MG. Visuospatial, oculomotor, and executive reading skills evolve in elementary school, and errors are significant: a topological RAN study. Front Psychol 2024; 15:1383969. [PMID: 38903458 PMCID: PMC11188999 DOI: 10.3389/fpsyg.2024.1383969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
We investigate the development of visuospatial and oculomotor reading skills in a cohort of elementary school children. Employing a longitudinal methodology, the study applies the Topological serial digit Rapid Automated Naming (Top-RAN) battery, which evaluates visuospatial reading skills leveraging metrics addressing crowding, distractors, and voluntary attention orientation. The participant pool comprises 142 students (66 males, 76 females), including 46 non-native speakers (21 males, 25 females), representing a diverse range of ethnic backgrounds. The Top-RAN dataset encompasses performance, error, and self-correction metrics for each subtest and student, underscoring the significance of these factors in the process of reading acquisition. Analytical methods include dimensionality reduction, clustering, and classification algorithms, consolidated into a Python package to facilitate reproducible results. Our results indicate that visuospatial reading abilities vary according to the task and demonstrate a marked evolution over time, as seen in the progressive decrease in execution times, errors, and self-corrections. This pattern supports the hypothesis that the growth of oculomotor, attentional, and executive skills is primarily fostered by educational experiences and maturation. This investigation provides valuable insights into the dynamic nature of these skills during pivotal educational stages.
Collapse
|
15
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? J Vis 2024; 24:11. [PMID: 38869372 PMCID: PMC11178122 DOI: 10.1167/jov.24.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Carrasco Lab, New York University, New York, NY, USA
| |
Collapse
|
16
|
Morsi AY, Goffaux V, Greenwood JA. The resolution of face perception varies systematically across the visual field. PLoS One 2024; 19:e0303400. [PMID: 38739635 PMCID: PMC11090322 DOI: 10.1371/journal.pone.0303400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Visual abilities tend to vary predictably across the visual field-for simple low-level stimuli, visibility is better along the horizontal vs. vertical meridian and in the lower vs. upper visual field. In contrast, face perception abilities have been reported to show either distinct or entirely idiosyncratic patterns of variation in peripheral vision, suggesting a dissociation between the spatial properties of low- and higher-level vision. To assess this link more clearly, we extended methods used in low-level vision to develop an acuity test for face perception, measuring the smallest size at which facial gender can be reliably judged in peripheral vision. In 3 experiments, we show the characteristic inversion effect, with better acuity for upright faces than inverted, demonstrating the engagement of high-level face-selective processes in peripheral vision. We also observe a clear advantage for gender acuity on the horizontal vs. vertical meridian and a smaller-but-consistent lower- vs. upper-field advantage. These visual field variations match those of low-level vision, indicating that higher-level face processing abilities either inherit or actively maintain the characteristic patterns of spatial selectivity found in early vision. The commonality of these spatial variations throughout the visual hierarchy means that the location of faces in our visual field systematically influences our perception of them.
Collapse
Affiliation(s)
- Anisa Y. Morsi
- Experimental Psychology, University College London, London, United Kingdom
| | - Valérie Goffaux
- Psychological Sciences Research Institute, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - John A. Greenwood
- Experimental Psychology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Tanriverdi D, Cornelissen FW. Rapid assessment of peripheral visual crowding. Front Neurosci 2024; 18:1332701. [PMID: 38629049 PMCID: PMC11019380 DOI: 10.3389/fnins.2024.1332701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Visual crowding, the phenomenon in which the ability to distinguish objects is hindered in cluttered environments, has critical implications for various ophthalmic and neurological disorders. Traditional methods for assessing crowding involve time-consuming and attention-demanding psychophysical tasks, making routine examination challenging. This study sought to compare trial-based Alternative Forced-Choice (AFC) paradigms using either manual or eye movement responses and a continuous serial search paradigm employing eye movement responses to evaluate their efficiency in rapidly assessing peripheral crowding. In all paradigms, we manipulated the orientation of a central Gabor patch, which could be presented alone or surrounded by six Gabor patches. We measured participants' target orientation discrimination thresholds using adaptive psychophysics to assess crowding magnitude. Depending on the paradigm, participants either made saccadic eye movements to the target location or responded manually by pressing a key or moving a mouse. We compared these paradigms in terms of crowding magnitude, assessment time, and paradigm demand. Our results indicate that employing eye movement-based paradigms for assessing peripheral visual crowding yields results faster compared to paradigms that necessitate manual responses. Furthermore, when considering similar levels of confidence in the threshold measurements, both a novel serial search paradigm and an eye movement-based 6AFC paradigm proved to be the most efficient in assessing crowding magnitude. Additionally, crowding estimates obtained through either the continuous serial search or the 6AFC paradigms were consistently higher than those obtained using the 2AFC paradigms. Lastly, participants did not report a clear difference between paradigms in terms of their perceived demand. In conclusion, both the continuous serial search and the 6AFC eye movement response paradigms enable a fast assessment of visual crowding. These approaches may potentially facilitate future routine crowding assessment. However, the usability of these paradigms in specific patient populations and specific purposes should be assessed.
Collapse
Affiliation(s)
- Dilce Tanriverdi
- Laboratory for Experimental Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
18
|
Broda MD, de Haas B. Individual differences in human gaze behavior generalize from faces to objects. Proc Natl Acad Sci U S A 2024; 121:e2322149121. [PMID: 38470925 PMCID: PMC10963009 DOI: 10.1073/pnas.2322149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Individuals differ in where they fixate on a face, with some looking closer to the eyes while others prefer the mouth region. These individual biases are highly robust, generalize from the lab to the outside world, and have been associated with social cognition and associated disorders. However, it is unclear, whether these biases are specific to faces or influenced by domain-general mechanisms of vision. Here, we juxtaposed these hypotheses by testing whether individual face fixation biases generalize to inanimate objects. We analyzed >1.8 million fixations toward faces and objects in complex natural scenes from 405 participants tested in multiple labs. Consistent interindividual differences in fixation positions were highly inter-correlated across faces and objects in all samples. Observers who fixated closer to the eye region also fixated higher on inanimate objects and vice versa. Furthermore, the inter-individual spread of fixation positions scaled with target size in precisely the same, non-linear manner for faces and objects. These findings contradict a purely domain-specific account of individual face gaze. Instead, they suggest significant domain-general contributions to the individual way we look at faces, a finding with potential relevance for basic vision, face perception, social cognition, and associated clinical conditions.
Collapse
Affiliation(s)
- Maximilian Davide Broda
- Experimental Psychology, Justus Liebig University Giessen, Giessen35394, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Giessen, and Darmstadt, Marburg35032, Germany
| | - Benjamin de Haas
- Experimental Psychology, Justus Liebig University Giessen, Giessen35394, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Giessen, and Darmstadt, Marburg35032, Germany
| |
Collapse
|
19
|
Purokayastha S, Roberts M, Carrasco M. Do microsaccades vary with discriminability around the visual field? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575288. [PMID: 38260406 PMCID: PMC10802594 DOI: 10.1101/2024.01.11.575288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microsaccades-tiny fixational eye movements- improve discriminability in high acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at perifovea, we examined MS characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: Horizontal-Vertical Anisotropy (better discrimination along the horizontal than vertical meridian), and Vertical Meridian Asymmetry (better discrimination along the lower- than upper-vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, USA
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
20
|
Cottier TV, Turner W, Holcombe AO, Hogendoorn H. Exploring the extent to which shared mechanisms contribute to motion-position illusions. J Vis 2023; 23:8. [PMID: 37703000 PMCID: PMC10503592 DOI: 10.1167/jov.23.10.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Motion-position illusions (MPIs) are visual motion illusions in which motion signals bias the perceived position of an object. Due to phenomenological similarities between these illusions, previous research has assumed that some are caused by common mechanisms. However, this assumption has yet to be directly tested. This study investigates this assumption by exploiting between-participant variations in illusion magnitude. During two sessions, 106 participants viewed the flash-lag effect, luminance flash-lag effect, Fröhlich effect, flash-drag effect, flash-grab effect, motion-induced position shift, twinkle-goes effect, and the flash-jump effect. For each effect, the magnitude of the illusion was reliable within participants, strongly correlating between sessions. When the pairwise correlations of averaged illusions magnitudes were explored, two clusters of statistically significant positively correlated illusions were identified. The first cluster comprised the flash-grab effect, motion-induced position shift, and twinkle-goes effect. The second cluster comprised the Fröhlich and flash-drag effect. The fact that within each of these two clusters, individual differences in illusion magnitude were correlated suggests that these clusters may reflect shared underlying mechanisms. An exploratory factor analysis provided additional evidence that these correlated clusters shared an underlying factor, with each cluster loading onto their own factor. Overall, our results reveal that, contrary to the prevailing perspective in the literature, while some motion-position illusions share processes, most of these illusions are unlikely to reflect any shared processes, instead implicating unique mechanisms.
Collapse
Affiliation(s)
- Timothy V Cottier
- Melbourne School of Psychological Sciences, the University of Melbourne, Melbourne, Australia
- https://research.qut.edu.au/timinglab/
| | - William Turner
- Melbourne School of Psychological Sciences, the University of Melbourne, Melbourne, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Alex O Holcombe
- School of Psychology, the University of Sydney, Sydney, Australia
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, the University of Melbourne, Melbourne, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
21
|
Huang Y, Liu Z, Wang M, Gao L, Wu Y, Hu J, Zhang Z, Yan FF, Deng D, Huang CB, Yu M. Cortical Reorganization After Optical Alignment in Strabismic Patients Outside of Critical Period. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 37535007 PMCID: PMC10408769 DOI: 10.1167/iovs.64.11.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
PURPOSE To measure visual crowding, an essential bottleneck on object recognition and reliable psychophysical index of cortex organization, in older children and adults with horizontal concomitant strabismus before and after strabismus surgery. METHODS Using real-time eye tracking to ensure gaze-contingent display, we examined the peripheral visual crowding effects in older children and adults with horizontal concomitant strabismus but without amblyopia before and after strabismus surgery. Patients were asked to discriminate the orientation of the central tumbling E target letter with flankers arranged along the radial or tangential axis in the nasal or temporal hemifield at different eccentricities (5° or 10°). The critical spacing value, which is the minimum space between the target and the flankers required for correct discrimination, was obtained for comparisons before and after strabismus surgery. RESULTS Twelve individuals with exotropia (6 males, 21.75 ± 7.29 years, mean ± SD) and 15 individuals with esotropia (6 males, 24.13 ± 5.96 years) participated in this study. We found that strabismic individuals showed significantly larger critical spacing with nasotemporal asymmetry along the radial axis that related to the strabismus pattern, with exotropes exhibiting stronger temporal field crowding and esotropes exhibiting stronger nasal field crowding before surgical alignment. After surgery, the critical spacing was reduced and rebalanced between the nasal and temporal hemifields. Furthermore, the postoperative recovery of stereopsis was associated with the extent of nasotemporal balance of critical spacing. CONCLUSIONS We find that optical realignment (i.e., strabismus surgery) can normalize the enlarged visual crowding effects, a reliable psychophysical index of cortical organization, in the peripheral visual field of older children and adults with strabismus and rebalance the nasotemporal asymmetry of crowding, promoting the recovery of postoperative stereopsis. Our results indicated a potential of experience-dependent cortical organization after axial alignment even for individuals who are out of the critical period of visual development, illuminating the capacity and limitations of optics on sensory plasticity and emphasizing the importance of ocular correction for clinical practice.
Collapse
Affiliation(s)
- Yiru Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zitian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Mingqin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Le Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yanyan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Jingyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zhenyu Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Daming Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Chang-Bing Huang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Kurzawski JW, Burchell A, Thapa D, Winawer J, Majaj NJ, Pelli DG. The Bouma law accounts for crowding in 50 observers. J Vis 2023; 23:6. [PMID: 37540179 PMCID: PMC10408772 DOI: 10.1167/jov.23.8.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/16/2023] [Indexed: 08/05/2023] Open
Abstract
Crowding is the failure to recognize an object due to surrounding clutter. Our visual crowding survey measured 13 crowding distances (or "critical spacings") twice in each of 50 observers. The survey includes three eccentricities (0, 5, and 10 deg), four cardinal meridians, two orientations (radial and tangential), and two fonts (Sloan and Pelli). The survey also tested foveal acuity, twice. Remarkably, fitting a two-parameter model-the well-known Bouma law, where crowding distance grows linearly with eccentricity-explains 82% of the variance for all 13 × 50 measured log crowding distances, cross-validated. An enhanced Bouma law, with factors for meridian, crowding orientation, target kind, and observer, explains 94% of the variance, again cross-validated. These additional factors reveal several asymmetries, consistent with previous reports, which can be expressed as crowding-distance ratios: 0.62 horizontal:vertical, 0.79 lower:upper, 0.78 right:left, 0.55 tangential:radial, and 0.78 Sloan-font:Pelli-font. Across our observers, peripheral crowding is independent of foveal crowding and acuity. Evaluation of the Bouma factor, b (the slope of the Bouma law), as a biomarker of visual health would be easier if there were a way to compare results across crowding studies that use different methods. We define a standardized Bouma factor b' that corrects for differences from Bouma's 25 choice alternatives, 75% threshold criterion, and linearly symmetric flanker placement. For radial crowding on the right meridian, the standardized Bouma factor b' is 0.24 for this study, 0.35 for Bouma (1970), and 0.30 for the geometric mean across five representative modern studies, including this one, showing good agreement across labs, including Bouma's. Simulations, confirmed by data, show that peeking can skew estimates of crowding (e.g., greatly decreasing the mean or doubling the SD of log b). Using gaze tracking to prevent peeking, individual differences are robust, as evidenced by the much larger 0.08 SD of log b across observers than the mere 0.03 test-retest SD of log b measured in half an hour. The ease of measurement of crowding enhances its promise as a biomarker for dyslexia and visual health.
Collapse
Affiliation(s)
- Jan W Kurzawski
- Department of Psychology, New York University, New York, NY, USA
| | - Augustin Burchell
- Cognitive Science & Computer Science, Swarthmore College, Swarthmore, PA, USA
| | - Darshan Thapa
- Center for Neural Science, New York University, New York, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Najib J Majaj
- Center for Neural Science, New York University, New York, NY, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
23
|
Roux-Sibilon A, Peyrin C, Greenwood JA, Goffaux V. Radial bias in face identification. Proc Biol Sci 2023; 290:20231118. [PMID: 37357864 PMCID: PMC10291718 DOI: 10.1098/rspb.2023.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023] Open
Abstract
Human vision in the periphery is most accurate for stimuli that point towards the fovea. This so-called radial bias has been linked with the organization and spatial selectivity of neurons at the lowest levels of the visual system, from retinal ganglion cells onwards. Despite evidence that the human visual system is radially biased, it is not yet known whether this bias persists at higher levels of processing, or whether high-level representations are invariant to this low-level orientation bias. We used the case of face identity recognition to address this question. The specialized high-level mechanisms that support efficient face recognition are highly dependent on horizontally oriented information, which convey the most useful identity cues in the fovea. We show that face selective mechanisms are more sensitive on the horizontal meridian (to the left and right of fixation) compared to the vertical meridian (above and below fixation), suggesting that the horizontal cues in the face are better extracted on the horizontal meridian, where they align with the radial bias. The results demonstrate that the radial bias is maintained at high-level recognition stages and emphasize the importance of accounting for the radial bias in future investigation of visual recognition processes in peripheral vision.
Collapse
Affiliation(s)
- Alexia Roux-Sibilon
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Carole Peyrin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - John A. Greenwood
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Valérie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IONS), UC Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Himmelberg MM, Winawer J, Carrasco M. Polar angle asymmetries in visual perception and neural architecture. Trends Neurosci 2023; 46:445-458. [PMID: 37031051 PMCID: PMC10192146 DOI: 10.1016/j.tins.2023.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Human visual performance changes with visual field location. It is best at the center of gaze and declines with eccentricity, and also varies markedly with polar angle. These perceptual polar angle asymmetries are linked to asymmetries in the organization of the visual system. We review and integrate research quantifying how performance changes with visual field location and how this relates to neural organization at multiple stages of the visual system. We first briefly review how performance varies with eccentricity and the neural foundations of this effect. We then focus on perceptual polar angle asymmetries and their neural foundations. Characterizing perceptual and neural variations across and around the visual field contributes to our understanding of how the brain translates visual signals into neural representations which form the basis of visual perception.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
25
|
Palmieri H, Fernández A, Carrasco M. Microsaccades and temporal attention at different locations of the visual field. J Vis 2023; 23:6. [PMID: 37145653 PMCID: PMC10168009 DOI: 10.1167/jov.23.5.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Temporal attention, the prioritization of information at specific points in time, improves performance in behavioral tasks but cannot ameliorate the perceptual asymmetries that exist across the visual field. That is, even after attentional deployment, performance is better along the horizontal than vertical meridian and worse at the upper than lower vertical meridian. Here we asked whether and how microsaccades-tiny fixational eye-movements-could mirror or alternatively attempt to compensate for these performance asymmetries by assessing temporal profiles and direction of microsaccades as a function of visual field location. Observers were asked to report the orientation of one of two targets presented at different time points, in one of three blocked locations (fovea, right horizontal meridian, upper vertical meridian). We found the following: (1) Microsaccade occurrence did not affect either task performance or the magnitude of the temporal attention effect. (2) Temporal attention modulated the microsaccade temporal profiles, and this modulation varied with polar angle location. At all locations, microsaccade rates were significantly more suppressed in anticipation of the target when temporally cued than in the neutral condition. Moreover, microsaccade rates were more suppressed during target presentation in the fovea than in the right horizontal meridian. (3) Across locations and attention conditions, there was a pronounced bias toward the upper hemifield. Overall, these results reveal that temporal attention benefits performance similarly around the visual field, microsaccade suppression is more pronounced for attention than expectation (neutral trials) across locations, and the directional bias toward the upper hemifield could reflect an attempt to compensate for typical poor performance at the upper vertical meridian.
Collapse
Affiliation(s)
- Helena Palmieri
- Department of Psychology, New York University, New York, NY, USA
| | - Antonio Fernández
- Department of Psychology, New York University, New York, NY, USA
- Department of Psychology, University of Texas in Austin, Austin, TX, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
26
|
Jigo M, Tavdy D, Himmelberg MM, Carrasco M. Cortical magnification eliminates differences in contrast sensitivity across but not around the visual field. eLife 2023; 12:e84205. [PMID: 36961485 PMCID: PMC10089656 DOI: 10.7554/elife.84205] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Human visual performance changes dramatically both across (eccentricity) and around (polar angle) the visual field. Performance is better at the fovea, decreases with eccentricity, and is better along the horizontal than vertical meridian and along the lower than the upper vertical meridian. However, all neurophysiological and virtually all behavioral studies of cortical magnification have investigated eccentricity effects without considering polar angle. Most performance differences due to eccentricity are eliminated when stimulus size is cortically magnified (M-scaled) to equate the size of its cortical representation in primary visual cortex (V1). But does cortical magnification underlie performance differences around the visual field? Here, to assess contrast sensitivity, human adult observers performed an orientation discrimination task with constant stimulus size at different locations as well as when stimulus size was M-scaled according to stimulus eccentricity and polar angle location. We found that although M-scaling stimulus size eliminates differences across eccentricity, it does not eliminate differences around the polar angle. This finding indicates that limits in contrast sensitivity across eccentricity and around polar angle of the visual field are mediated by different anatomical and computational constraints.
Collapse
Affiliation(s)
- Michael Jigo
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Daniel Tavdy
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Marc M Himmelberg
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Marisa Carrasco
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
27
|
Himmelberg MM, Tünçok E, Gomez J, Grill-Spector K, Carrasco M, Winawer J. Comparing retinotopic maps of children and adults reveals a late-stage change in how V1 samples the visual field. Nat Commun 2023; 14:1561. [PMID: 36944643 PMCID: PMC10030632 DOI: 10.1038/s41467-023-37280-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Adult visual performance differs with angular location -it is better for stimuli along the horizontal than vertical, and lower than upper vertical meridian of the visual field. These perceptual asymmetries are paralleled by asymmetries in cortical surface area in primary visual cortex (V1). Children, unlike adults, have similar visual performance at the lower and upper vertical meridian. Do children have similar V1 surface area representing the upper and lower vertical meridian? Using MRI, we measure the surface area of retinotopic maps (V1-V3) in children and adults. Many features of the maps are similar between groups, including greater V1 surface area for the horizontal than vertical meridian. However, unlike adults, children have a similar amount of V1 surface area representing the lower and upper vertical meridian. These data reveal a late-stage change in V1 organization that may relate to the emergence of the visual performance asymmetry along the vertical meridian by adulthood.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Ekin Tünçok
- Department of Psychology, New York University, New York, NY, 10003, USA
| | - Jesse Gomez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
28
|
Kwak Y, Hanning NM, Carrasco M. Presaccadic attention sharpens visual acuity. Sci Rep 2023; 13:2981. [PMID: 36807313 PMCID: PMC9941468 DOI: 10.1038/s41598-023-29990-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Visual perception is limited by spatial resolution, the ability to discriminate fine details. Spatial resolution not only declines with eccentricity but also differs for polar angle locations around the visual field, also known as 'performance fields'. To compensate for poor peripheral resolution, we make rapid eye movements-saccades-to bring peripheral objects into high-acuity foveal vision. Already before saccade onset, visual attention shifts to the saccade target location and prioritizes visual processing. This presaccadic shift of attention improves performance in many visual tasks, but whether it changes resolution is unknown. Here, we investigated whether presaccadic attention sharpens peripheral spatial resolution; and if so, whether such effect interacts with performance fields asymmetries. We measured acuity thresholds in an orientation discrimination task during fixation and saccade preparation around the visual field. The results revealed that presaccadic attention sharpens acuity, which can facilitate a smooth transition from peripheral to foveal representation. This acuity enhancement is similar across the four cardinal locations; thus, the typically robust effect of presaccadic attention does not change polar angle differences in resolution.
Collapse
Affiliation(s)
- Yuna Kwak
- Department of Psychology, NYU, New York, USA.
| | - Nina M Hanning
- Department of Psychology, NYU, New York, USA
- Center for Neural Science, NYU, New York, USA
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marisa Carrasco
- Department of Psychology, NYU, New York, USA
- Center for Neural Science, NYU, New York, USA
| |
Collapse
|
29
|
Huang Y, Liu Z, Chen Z, Zhan Z, Gao L, Hu J, Wu Y, Yan FF, Deng D, Huang CB, Yu M. Visual Crowding Reveals Field- and Axis-Specific Cortical Miswiring After Long-Term Axial Misalignment in Strabismic Patients Without Amblyopia. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 36652265 PMCID: PMC9855284 DOI: 10.1167/iovs.64.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose Inspired by physiological and neuroimaging findings that revealed squint-induced modification of cortical volume and visual receptive field in early visual areas, we hypothesized that strabismic eyes without amblyopia manifest an increase in critical spacing of visual crowding, an essential bottleneck on object recognition and reliable psychophysical index of cortical organization. Methods We used real-time eye tracking to ensure gaze-contingent display and examined visual crowding in patients with horizontal concomitant strabismus (both esotropia and exotropia) but without amblyopia and age-matched normal controls. Results Nineteen patients with exotropia (12 men, mean ± SD = 22.89 ± 7.82 years), 21 patients with esotropia (10 men, mean ± SD = 23.48 ± 6.95 years), and 14 age-matched normal controls (7 men, mean ± SD = 23.07 ± 1.07 years) participated in this study. We found that patients with strabismus without amblyopia showed significantly larger critical spacing with nasotemporal asymmetry in only the radial axis that related to the strabismus pattern, with exotropia exhibiting stronger temporal hemifield crowding and esotropia exhibiting stronger nasal hemifield crowding, in both the deviated and fixating eyes. Moreover, the magnitude of crowding change was related to the duration and degree of strabismic deviation. Conclusions Using visual crowding as a psychophysical index of cortical organization, our study demonstrated significantly greater peripheral visual crowding with nasotemporal asymmetry in only the radial axis in patients with strabismus without amblyopia, indicating the existence of hemifield- and axis-specific miswiring of cortical processing in object recognition induced by long-term adaptation to ocular misalignment.
Collapse
Affiliation(s)
- Yiru Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zitian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zidong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zongyi Zhan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen Eye Hospital affiliated to Jinan University, Shenzhen, China,School of Optometry, Shenzhen University, Shenzhen, China
| | - Le Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Jingyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yanyan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Fang-Fang Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Daming Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Chang-Bing Huang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
L-Miao L, Reynvoet B, Sayim B. Anisotropic representations of visual space modulate visual numerosity estimation. Vision Res 2022; 201:108130. [PMID: 36215795 DOI: 10.1016/j.visres.2022.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
Abstract
Humans can estimate the number of visually displayed items without counting. This capacity of numerosity perception has often been attributed to a dedicated system to estimate numerosity, or alternatively to the exploitation of various stimulus features, such as density, convex hull, the size of items, and occupancy area. The distribution of the presented items is usually not varied with eccentricity in the visual field. However, our visual fields are highly asymmetric. To date, it is unclear how inhomogeneities of the visual field impact numerosity perception. Besides eccentricity, a pronounced asymmetry is the radial-tangential anisotropy. For example, in crowding, radially placed flankers interfere more strongly with target perception than tangentially placed flankers. Similarly, in redundancy masking, the number of perceived items in repeating patterns is reduced when the items are arranged radially but not when they are arranged tangentially. Here, we investigated whether numerosity perception is subject to the radial-tangential anisotropy of spatial vision to shed light on the underlying topology of numerosity perception. In Experiment 1, observers were presented with varying numbers of discs, predominantly arranged radially or tangentially, and asked to report their perceived number. In Experiment 2, observers were presented with the same displays as in Experiment 1, and were asked to encircle items that were perceived as a group. We found that numerosity estimation depended on the arrangement of discs, suggesting a radial-tangential anisotropy of numerosity perception. Grouping among discs did not seem to explain our results. We suggest that the topology of spatial vision modulates numerosity estimation and that asymmetries of visual space should be taken into account when investigating numerosity estimation.
Collapse
Affiliation(s)
- Li L-Miao
- Univ. Lille, CNRS, UMR9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France; Faculty of Psychology and Educational Sciences, KU Leuven @Kulak, Kortrijk, Belgium.
| | - Bert Reynvoet
- Faculty of Psychology and Educational Sciences, KU Leuven @Kulak, Kortrijk, Belgium; Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bilge Sayim
- Univ. Lille, CNRS, UMR9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France; Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Unlocking crowding by ensemble statistics. Curr Biol 2022; 32:4975-4981.e3. [PMID: 36309011 DOI: 10.1016/j.cub.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
In crowding,1,2,3,4,5,6,7 objects that can be easily recognized in isolation appear jumbled when surrounded by other elements.8 Traditionally, crowding is explained by local pooling mechanisms,3,6,9,10,11,12,13,14,15 but many findings have shown that the global configuration of the entire stimulus display, rather than local aspects, determines crowding.8,16,17,18,19,20,21,22,23,24,25,26,27,28 However, understanding global configurations is challenging because even slight changes can lead from crowding to uncrowding and vice versa.23,25,28,29 Unfortunately, the number of configurations to explore is virtually infinite. Here, we show that one does not need to know the specific configuration of flankers to determine crowding strength but only their ensemble statistics, which allow for the rapid computation of groups within the stimulus display.30,31,32,33,34,35,36,37 To investigate the role of ensemble statistics in (un)crowding, we used a classic vernier offset discrimination task in which the vernier was flanked by multiple squares. We manipulated the orientation statistics of the squares based on the following rationale: a central square with an orientation different from the mean orientation of the other squares stands out from the rest and groups with the vernier, causing strong crowding. If, on the other hand, all squares group together, the vernier is the only element that stands out, and crowding is weak. These effects should depend exclusively on the perceived ensemble statistics, i.e., on the mean orientation of the squares and not on their individual orientations. In two experiments, we confirmed these predictions.
Collapse
|
32
|
Zhang T, Malevich T, Baumann MP, Hafed ZM. Superior colliculus saccade motor bursts do not dictate movement kinematics. Commun Biol 2022; 5:1222. [DOI: 10.1038/s42003-022-04203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractThe primate superior colliculus (SC) contains a topographic map of space, such that the anatomical location of active neurons defines a desired eye movement vector. Complementing such a spatial code, SC neurons also exhibit saccade-related bursts that are tightly synchronized with movement onset. Current models suggest that such bursts constitute a rate code dictating movement kinematics. Here, using two complementary approaches, we demonstrate a dissociation between the SC rate code and saccade kinematics. First, we show that SC burst strength systematically varies depending on whether saccades of the same amplitude are directed towards the upper or lower visual fields, but the movements themselves have similar kinematics. Second, we show that for the same saccade vector, when saccades are significantly slowed down by the absence of a visible saccade target, SC saccade-related burst strengths can be elevated rather than diminished. Thus, SC saccade-related motor bursts do not necessarily dictate movement kinematics.
Collapse
|
33
|
Kewan-Khalayly B, Migó M, Yashar A. Transient attention equally reduces visual crowding in radial and tangential axes. J Vis 2022; 22:3. [PMID: 35921089 PMCID: PMC9360535 DOI: 10.1167/jov.22.9.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Crowding refers to the failure to identify a peripheral object due to its proximity to other objects (flankers). This phenomenon can lead to reading and object recognition impairments and is associated with macular degeneration, amblyopia, and dyslexia. Crucially, the maximal target–flanker spacing required for the crowding interference (critical spacing) increases with eccentricity. This spacing is also larger when target and flankers appear along the horizontal meridian (radial arrangement) than when the flankers appear above and below the target (tangential arrangement). This phenomenon is known as radial–tangential anisotropy. Previous studies have demonstrated that transient attention can reduce crowding interference; however, it is still unclear whether and how attention interacts with radial–tangential anisotropy. To address this issue, we manipulated transient attention by using a cue at either the target (valid) or the fixation (neutral) location, in both radial and tangential target–flanker arrangements. Results showed that critical spacing was larger in the radial than in the tangential arrangement and that cueing the target location improved performance and reduced the critical spacing for both radial and tangential arrangements to the same extent. Together, our findings suggest that transient spatial attention plays an essential role in crowding but not in radial–tangential anisotropy.
Collapse
Affiliation(s)
| | - Marta Migó
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,
| | - Amit Yashar
- Department of Special Education, University of Haifa, Haifa, Israel.,The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel., https://yasharlab.com
| |
Collapse
|
34
|
Shamsi F, Liu R, Kwon M. Foveal crowding appears to be robust to normal aging and glaucoma unlike parafoveal and peripheral crowding. J Vis 2022; 22:10. [PMID: 35848904 PMCID: PMC9308014 DOI: 10.1167/jov.22.8.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Visual crowding is the inability to recognize a target object in clutter. Previous studies have shown an increase in crowding in both parafoveal and peripheral vision in normal aging and glaucoma. Here, we ask whether there is any increase in foveal crowding in both normal aging and glaucomatous vision. Twenty-four patients with glaucoma and 24 age-matched normally sighted controls (mean age = 65 ± 7 vs. 60 ± 8 years old) participated in this study. For each subject, we measured the extent of foveal crowding using Pelli's foveal crowding paradigm (2016). We found that the average crowding zone was 0.061 degrees for glaucoma and 0.056 degrees for age-matched normal vision, respectively. These values fall into the range of foveal crowding zones (0.0125 degrees to 0.1 degrees) observed in young normal vision. We, however, did not find any evidence supporting increased foveal crowding in glaucoma (p = 0.375), at least in the early to moderate stages of glaucoma. In the light of previous studies on foveal crowding in normal young vision, we did not find any evidence supporting age-related changes in foveal crowding. Even if there is any, the effect appears to be rather inconsequential. Taken together, our findings suggest unlike parafoveal or peripheral crowding (2 degrees, 4 degrees, 8 degrees, and 10 degrees eccentricities), foveal crowding (<0.25 degrees eccentricity) appears to be less vulnerable to normal aging or moderate glaucomatous damage.
Collapse
Affiliation(s)
- Foroogh Shamsi
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Rong Liu
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - MiYoung Kwon
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Himmelberg MM, Winawer J, Carrasco M. Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field. Nat Commun 2022; 13:3309. [PMID: 35697680 PMCID: PMC9192713 DOI: 10.1038/s41467-022-31041-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
A central question in neuroscience is how the organization of cortical maps relates to perception, for which human primary visual cortex (V1) is an ideal model system. V1 nonuniformly samples the retinal image, with greater cortical magnification (surface area per degree of visual field) at the fovea than periphery and at the horizontal than vertical meridian. Moreover, the size and cortical magnification of V1 varies greatly across individuals. Here, we used fMRI and psychophysics in the same observers to quantify individual differences in V1 cortical magnification and contrast sensitivity at the four polar angle meridians. Across observers, the overall size of V1 and localized cortical magnification positively correlated with contrast sensitivity. Moreover, greater cortical magnification and higher contrast sensitivity at the horizontal than the vertical meridian were strongly correlated. These data reveal a link between cortical anatomy and visual perception at the level of individual observer and stimulus location.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
36
|
Abstract
Visual perception in human adults varies throughout the visual field, both across eccentricity - decreasing with distance from the center of gaze - and around isoeccentric locations - that is, with polar angle at a constant distance from the center of gaze. At isoeccentric locations, the same visual information yields better performance along the horizontal than vertical meridian (horizontal-vertical anisotropy, HVA) and along the lower than upper vertical meridian (vertical-meridian asymmetry, VMA). These perceptual polar angle asymmetries in adults have been well characterized. Poor perception at upper visual field locations would be particularly detrimental to children: in their perceptual world, given their height, many important events occur above eye level. Developmental aspects of visual perception have been well characterized1, and some basic dimensions, such as contrast sensitivity, continue to develop through childhood2, but there is no research on polar angle asymmetries before adulthood. Here, we investigated whether these asymmetries are present in children, and if so, whether they differ from those of adults. We found clear differences between children and adults in performance around the visual field: the HVA is less pronounced and the VMA is not present for children.
Collapse
|
37
|
Structure of visual biases revealed by individual differences. Vision Res 2022; 195:108014. [DOI: 10.1016/j.visres.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022]
|
38
|
Kalpadakis-Smith AV, Tailor VK, Dahlmann-Noor AH, Greenwood JA. Crowding changes appearance systematically in peripheral, amblyopic, and developing vision. J Vis 2022; 22:3. [PMID: 35506917 PMCID: PMC9078053 DOI: 10.1167/jov.22.6.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual crowding is the disruptive effect of clutter on object recognition. Although most prominent in adult peripheral vision, crowding also disrupts foveal vision in typically developing children and those with strabismic amblyopia. Do these crowding effects share the same mechanism? Here we exploit observations that crowded errors in peripheral vision are not random: Target objects appear either averaged with the flankers (assimilation) or replaced by them (substitution). If amblyopic and developmental crowding share the same mechanism, then their errors should be similarly systematic. We tested foveal vision in children aged 3 to 8 years with typical vision or strabismic amblyopia and peripheral vision in typical adults. The perceptual effects of crowding were measured by requiring observers to adjust a reference stimulus to match the perceived orientation of a target “Vac-Man” element. When the target was surrounded by flankers that differed by ± 30°, all three groups (adults and children with typical or amblyopic vision) reported orientations between the target and flankers (assimilation). Errors were reduced with ± 90° differences but primarily matched the flanker orientation (substitution) when they did occur. A population pooling model of crowding successfully simulated this pattern of errors in all three groups. We conclude that the perceptual effects of amblyopic and developing crowding are systematic and resemble the near periphery in adults, suggesting a common underlying mechanism.
Collapse
Affiliation(s)
| | - Vijay K Tailor
- Experimental Psychology, University College London, London, UK.,NIHR Biomedical Research Centre @ Moorfields Eye Hospital, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,
| | - Annegret H Dahlmann-Noor
- NIHR Biomedical Research Centre @ Moorfields Eye Hospital, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,
| | - John A Greenwood
- Experimental Psychology, University College London, London, UK., http://eccentricvision.com
| |
Collapse
|
39
|
Abstract
Redundancy masking is the reduction of the perceived number of items in repeating patterns. It shares a number of characteristics with crowding, the impairment of target identification in visual clutter. Crowding strongly depends on the location of the target in the visual field. For example, it is stronger in the upper compared to the lower visual field and is usually weakest on the horizontal meridian. This pattern of visual field asymmetries is common in spatial vision, as revealed by tasks measuring, for example, spatial resolution and contrast sensitivity. Here, to characterize redundancy masking and reveal its similarities to and differences from other spatial tasks, we investigated whether redundancy masking shows the same typical visual field asymmetries. Observers were presented with three to six radially arranged lines at 10° eccentricity at one of eight locations around fixation and were asked to report the number of lines. We found asymmetries that differed pronouncedly from those found in crowding. Redundancy masking did not differ between upper and lower visual fields. Importantly, redundancy masking was stronger on the horizontal meridian than on the vertical meridian, the opposite of what is usually found in crowding. These results show that redundancy masking diverges from crowding in regard to visual field asymmetries, suggesting different underlying mechanisms of redundancy masking and crowding. We suggest that the observed atypical visual field asymmetries in redundancy masking are due to the superior extraction of regularity and a more pronounced compression of visual space on the horizontal compared to the vertical meridian.
Collapse
Affiliation(s)
| | - Daniel R Coates
- Institute of Psychology, University of Bern, Bern, Switzerland.,College of Optometry, University of Houston, Houston, TX, USA.,
| | - Bilge Sayim
- Institute of Psychology, University of Bern, Bern, Switzerland.,Sciences Cognitives et Sciences Affectives (SCALab), CNRS, UMR 9193, University of Lille, Lille, France.,
| |
Collapse
|
40
|
Smith DT. A horizontal–vertical anisotropy in spatial short-term memory. VISUAL COGNITION 2022. [DOI: 10.1080/13506285.2022.2042446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Hanning NM, Himmelberg MM, Carrasco M. Presaccadic attention enhances contrast sensitivity, but not at the upper vertical meridian. iScience 2022; 25:103851. [PMID: 35198902 PMCID: PMC8850791 DOI: 10.1016/j.isci.2022.103851] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Visual performance has striking polar performance asymmetries: At a fixed eccentricity, it is better along the horizontal than vertical meridian and the lower than upper vertical meridian. These asymmetries are not alleviated by covert exogenous or endogenous attention, but have been studied exclusively during eye fixation. However, a major driver of everyday attentional orienting is saccade preparation, during which attention automatically shifts to the future eye fixation. This presaccadic attention shift is considered strong and compulsory, and relies on different neural computations and substrates than covert attention. Thus, we asked: Can presaccadic attention compensate for the ubiquitous performance asymmetries observed during eye fixation? Our data replicate polar performance asymmetries during fixation and document the same asymmetries during saccade preparation. Crucially, however, presaccadic attention enhanced contrast sensitivity at the horizontal and lower vertical meridian, but not at the upper vertical meridian. Thus, instead of attenuating performance asymmetries, presaccadic attention exacerbates them.
Collapse
Affiliation(s)
- Nina M. Hanning
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| | - Marc M. Himmelberg
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| |
Collapse
|
42
|
Reuther J, Chakravarthi R, Martinovic J. Masking, crowding, and grouping: Connecting low and mid-level vision. J Vis 2022; 22:7. [PMID: 35147663 PMCID: PMC8842520 DOI: 10.1167/jov.22.2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
An important task for vision science is to build a unitary framework of low- and mid-level vision. As a step on this way, our study examined differences and commonalities between masking, crowding and grouping-three processes that occur through spatial interactions between neighbouring elements. We measured contrast thresholds as functions of inter-element spacing and eccentricity for Gabor detection, discrimination and contour integration, using a common stimulus grid consisting of nine Gabor elements. From these thresholds, we derived a) the baseline contrast necessary to perform each task and b) the spatial extent over which task performance was stable. This spatial window can be taken as an indicator of field size, where elements that fall within a putative field are readily combined. We found that contrast thresholds were universally modulated by inter-element distance, with a shallower and inverted effect for grouping compared with masking and crowding. Baseline contrasts for detecting stimuli and discriminating their properties were positively linked across the tested retinal locations (parafovea and near periphery), whereas those for integrating elements and discriminating their properties were negatively linked. Meanwhile, masking and crowding spatial windows remained uncorrelated across eccentricity, although they were correlated across participants. This suggests that the computation performed by each type of visual field operates over different distances that co-varies across observers, but not across retinal locations. Contrast-processing units may thus lie at the core of the shared idiosyncrasies across tasks reported in many previous studies, despite the fundamental differences in the extent of their spatial windows.
Collapse
Affiliation(s)
| | | | - Jasna Martinovic
- School of Psychology, University of Aberdeen, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, UK
| |
Collapse
|
43
|
Zhang S, Chen X, Wang Y, Liu B, Gao X. Visual field inhomogeneous in brain-computer interfaces based on rapid serial visual presentation. J Neural Eng 2022; 19. [PMID: 35016160 DOI: 10.1088/1741-2552/ac4a3e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/11/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Visual attention is not homogeneous across the visual field, while how to mine the effective EEG characteristics that are sensitive to the inhomogeneous of visual attention and further explore applications such as the performance of brain-computer interface (BCI) are still distressing explorative scientists. APPROACH Images were encoded into a rapid serial visual presentation (RSVP) paradigm, and were presented in three visuospatial patterns (central, left/right, upper/lower) at the stimulation frequencies of 10Hz, 15Hz and 20Hz. The comparisons among different visual fields were conducted in the dimensions of subjective behavioral and EEG characteristics. Furthermore, the effective features (e.g. SSVEP, N2pc and P300) that sensitive to visual-field asymmetry were also explored. RESULTS The visual fields had significant influences on the performance of RSVP target detection, in which the performance of central was better than that of peripheral visual field, the performance of horizontal meridian was better than that of vertical meridian, the performance of left visual field was better than that of right visual field, and the performance of upper visual field was better than that of lower visual field. Furthermore, stimuli of different visual fields had significant effects on the spatial distributions of EEG, in which N2pc and P300 showed left-right asymmetry in occipital and frontal regions, respectively. In addition, the evidences of SSVEP characteristics indicated that there was obvious overlap of visual fields on the horizontal meridian, but not on the vertical meridian. SIGNIFICANCE The conclusions of this study provide insights into the relationship between visual field inhomogeneous and EEG characteristics. In addition, this study has the potential to achieve precise positioning of the target's spatial orientation in RSVP-BCIs.
Collapse
Affiliation(s)
- Shangen Zhang
- University of Science and Technology Beijing, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, CHINA
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, Tianjin, 300192, CHINA
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, China State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China, Beijing, 100083, CHINA
| | - Baolin Liu
- University of Science and Technology Beijing, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China, Beijing, 100083, CHINA
| | - Xiaorong Gao
- Department of Biomedical Engineering, Tsinghua University, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China, Beijing, 100084, CHINA
| |
Collapse
|
44
|
Kupers ER, Benson NC, Carrasco M, Winawer J. Asymmetries around the visual field: From retina to cortex to behavior. PLoS Comput Biol 2022; 18:e1009771. [PMID: 35007281 PMCID: PMC8782511 DOI: 10.1371/journal.pcbi.1009771] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/21/2022] [Accepted: 12/19/2021] [Indexed: 11/29/2022] Open
Abstract
Visual performance varies around the visual field. It is best near the fovea compared to the periphery, and at iso-eccentric locations it is best on the horizontal, intermediate on the lower, and poorest on the upper meridian. The fovea-to-periphery performance decline is linked to the decreases in cone density, retinal ganglion cell (RGC) density, and V1 cortical magnification factor (CMF) as eccentricity increases. The origins of polar angle asymmetries are not well understood. Optical quality and cone density vary across the retina, but recent computational modeling has shown that these factors can only account for a small percentage of behavior. Here, we investigate how visual processing beyond the cone photon absorptions contributes to polar angle asymmetries in performance. First, we quantify the extent of asymmetries in cone density, midget RGC density, and V1 CMF. We find that both polar angle asymmetries and eccentricity gradients increase from cones to mRGCs, and from mRGCs to cortex. Second, we extend our previously published computational observer model to quantify the contribution of phototransduction by the cones and spatial filtering by mRGCs to behavioral asymmetries. Starting with photons emitted by a visual display, the model simulates the effect of human optics, cone isomerizations, phototransduction, and mRGC spatial filtering. The model performs a forced choice orientation discrimination task on mRGC responses using a linear support vector machine classifier. The model shows that asymmetries in a decision maker's performance across polar angle are greater when assessing the photocurrents than when assessing isomerizations and are greater still when assessing mRGC signals. Nonetheless, the polar angle asymmetries of the mRGC outputs are still considerably smaller than those observed from human performance. We conclude that cone isomerizations, phototransduction, and the spatial filtering properties of mRGCs contribute to polar angle performance differences, but that a full account of these differences will entail additional contribution from cortical representations.
Collapse
Affiliation(s)
- Eline R. Kupers
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| | - Noah C. Benson
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Sciences, New York University, New York, New York, United States of America
| |
Collapse
|
45
|
Himmelberg MM, Kurzawski JW, Benson NC, Pelli DG, Carrasco M, Winawer J. Cross-dataset reproducibility of human retinotopic maps. Neuroimage 2021; 244:118609. [PMID: 34582948 PMCID: PMC8560578 DOI: 10.1016/j.neuroimage.2021.118609] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022] Open
Abstract
Population receptive field (pRF) models fit to fMRI data are used to non-invasively measure retinotopic maps in human visual cortex, and these maps are a fundamental component of visual neuroscience experiments. Here, we examined the reproducibility of retinotopic maps across two datasets: a newly acquired retinotopy dataset from New York University (NYU) (n = 44) and a public dataset from the Human Connectome Project (HCP) (n = 181). Our goal was to assess the degree to which pRF properties are similar across datasets, despite substantial differences in their experimental protocols. The two datasets simultaneously differ in their stimulus apertures, participant pool, fMRI protocol, MRI field strength, and preprocessing pipeline. We assessed the cross-dataset reproducibility of the two datasets in terms of the similarity of vertex-wise pRF estimates and in terms of large-scale polar angle asymmetries in cortical magnification. Within V1, V2, V3, and hV4, the group-median NYU and HCP vertex-wise polar angle estimates were nearly identical. Both eccentricity and pRF size estimates were also strongly correlated between the two datasets, but with a slope different from 1; the eccentricity and pRF size estimates were systematically greater in the NYU data. Next, to compare large-scale map properties, we quantified two polar angle asymmetries in V1 cortical magnification previously identified in the HCP data. The NYU dataset confirms earlier reports that more cortical surface area represents horizontal than vertical visual field meridian, and lower than upper vertical visual field meridian. Together, our findings show that the retinotopic properties of V1, V2, V3, and hV4 can be reliably measured across two datasets, despite numerous differences in their experimental design. fMRI-derived retinotopic maps are reproducible because they rely on an explicit computational model of the fMRI response. In the case of pRF mapping, the model is grounded in physiological evidence of how visual receptive fields are organized, allowing one to quantitatively characterize the BOLD signal in terms of stimulus properties (i.e., location and size). The new NYU Retinotopy Dataset will serve as a useful benchmark for testing hypotheses about the organization of visual areas and for comparison to the HCP 7T Retinotopy Dataset.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York 10003, NY, USA.
| | - Jan W Kurzawski
- Department of Psychology, New York University, New York 10003, NY, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle 98195, WA, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| |
Collapse
|
46
|
Tailor VK, Theodorou M, Dahlmann-Noor AH, Dekker TM, Greenwood JA. Eye movements elevate crowding in idiopathic infantile nystagmus syndrome. J Vis 2021; 21:9. [PMID: 34935877 PMCID: PMC8709927 DOI: 10.1167/jov.21.13.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic infantile nystagmus syndrome is a disorder characterised by involuntary eye movements, which leads to decreased acuity and visual function. One such function is visual crowding – a process whereby objects that are easily recognised in isolation become impaired by nearby flankers. Crowding typically occurs in the peripheral visual field, although elevations in foveal vision have been reported in congenital nystagmus, similar to those found with amblyopia. Here, we examine whether elevated foveal crowding with nystagmus is driven by similar mechanisms to those of amblyopia – long-term neural changes associated with a sensory deficit – or by the momentary displacement of the stimulus through nystagmus eye movements. A Landolt-C orientation identification task was used to measure threshold gap sizes with and without either horizontally or vertically placed Landolt-C flankers. We assume that a sensory deficit should give equivalent crowding in these two dimensions, whereas an origin in eye movements should give stronger crowding with horizontal flankers given the predominantly horizontal eye movements of nystagmus. We observe elevations in nystagmic crowding that are above crowding in typical vision but below that of amblyopia. Consistent with an origin in eye movements, elevations were stronger with horizontal than vertical flankers in nystagmus, but not in typical or amblyopic vision. We further demonstrate the same horizontal elongation in typical vision with stimulus movement that simulates nystagmus. Consequently, we propose that the origin of nystagmic crowding lies in the eye movements, either through image smear of the target and flanker elements or through relocation of the stimulus into the peripheral retina.
Collapse
Affiliation(s)
- Vijay K Tailor
- Experimental Psychology, University College London, London, UK.,NIHR Biomedical Research Centre @ Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK., https://eccentricvision.com
| | - Maria Theodorou
- NIHR Biomedical Research Centre @ Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,
| | - Annegret H Dahlmann-Noor
- NIHR Biomedical Research Centre @ Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,
| | - Tessa M Dekker
- Experimental Psychology, University College London, London, UK.,NIHR Biomedical Research Centre @ Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK., https://www.ucl.ac.uk/~ucjttb1/
| | - John A Greenwood
- Experimental Psychology, University College London, London, UK., https://eccentricvision.com
| |
Collapse
|
47
|
Lee RJ, Reuther J, Chakravarthi R, Martinovic J. Emergence of crowding: The role of contrast and orientation salience. J Vis 2021; 21:20. [PMID: 34709355 PMCID: PMC8556554 DOI: 10.1167/jov.21.11.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
Crowding causes difficulties in judging attributes of an object surrounded by other objects. We investigated crowding for stimuli that isolated either S-cone or luminance mechanisms or combined them. By targeting different retinogeniculate mechanisms with contrast-matched stimuli, we aim to determine the earliest site at which crowding emerges. Discrimination was measured in an orientation judgment task where Gabor targets were presented parafoveally among flankers. In the first experiment, we assessed flanked and unflanked orientation discrimination thresholds for pure S-cone and achromatic stimuli and their combinations. In the second experiment, to capture individual differences, we measured unflanked detection and orientation sensitivity, along with performance under flanker interference for stimuli containing luminance only or combined with S-cone contrast. We confirmed that orientation sensitivity was lower for unflanked S-cone stimuli. When flanked, the pattern of results for S-cone stimuli was the same as for achromatic stimuli with comparable (i.e. low) contrast levels. We also found that flanker interference exhibited a genuine signature of crowding only when orientation discrimination threshold was reliably surpassed. Crowding, therefore, emerges at a stage that operates on signals representing task-relevant featural (here, orientation) information. Because luminance and S-cone mechanisms have very different spatial tuning properties, it is most parsimonious to conclude that crowding takes place at a neural processing stage after they have been combined.
Collapse
Affiliation(s)
| | - Josephine Reuther
- School of Psychology, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Jasna Martinovic
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh & School of Psychology, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
48
|
Coates DR, Ludowici CJH, Chung STL. The generality of the critical spacing for crowded optotypes: From Bouma to the 21st century. J Vis 2021; 21:18. [PMID: 34694326 PMCID: PMC8556556 DOI: 10.1167/jov.21.11.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
It is rare to find a crowding manuscript that fails to mention "Bouma's law," the rule of thumb stating that flankers within a distance of about one half of the target eccentricity will induce crowding. Here we investigate the generality of this rule (even for just optotypes), the factors that modulate the critical spacing, and the evidence for the rule in Bouma's own data. We explore these questions by reanalyzing a variety of studies from the literature, running several new control experiments, and by utilizing a model that unifies flanked identification measurements between psychophysical paradigms. Specifically, with minimal assumptions (equivalent psychometric slopes across conditions, for example), crowded acuity can be predicted for arbitrary target sizes and flanker spacings, revealing a performance "landscape" that delineates the critical spacing. Last, we present a compact quantitative summary of the effects of different types of stimulus manipulations on optotype crowding.
Collapse
Affiliation(s)
- Daniel R Coates
- College of Optometry, University of Houston, Houston, TX, USA
| | | | - Susana T L Chung
- School of Optometry, Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
49
|
Chakravarthi R, Rubruck J, Kipling N, Clarke ADF. Characterizing the in-out asymmetry in visual crowding. J Vis 2021; 21:10. [PMID: 34668932 PMCID: PMC8602924 DOI: 10.1167/jov.21.11.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022] Open
Abstract
An object's processing is impaired by the presence of nearby clutter. Several distinct mechanisms, such as masking and visual crowding, are thought to contribute to such flanker-induced interference. It is therefore important to determine which mechanism is operational in any given situation. Previous studies have proposed that the in-out asymmetry (IOA), where a peripheral flanker interferes with the target more than a foveal flanker, is diagnostic of crowding. However, several studies have documented inconsistencies in the occurrence of this asymmetry, particularly at locations beyond the horizontal meridian, casting doubt on its ability to delineate crowding. In this study, to determine if IOA is diagnostic of crowding, we extensively charted its properties. We asked a relatively large set of participants (n = 38) to identify a briefly presented peripheral letter flanked by a single inward or outward letter at one of four locations. We also manipulated target location uncertainty and attentional allocation by blocking, randomizing or pre-cueing the target location. Using multilevel Bayesian regression analysis, we found robust IOA at all locations, although its strength was modulated by target location, location uncertainty, and attentional allocation. Our findings suggest that IOA can be an excellent marker of crowding, to the extent that it is not observed in other flanker-interference mechanisms, such as masking.
Collapse
Affiliation(s)
| | - Jirko Rubruck
- School of Psychology, University of Aberdeen, Aberdeen, UK
| | - Nikki Kipling
- Department of Psychology, University of Essex, Essex, UK
| | - Alasdair D F Clarke
- Department of Psychology, University of Essex, Essex, UK
- https://www.essex.ac.uk/people/clark28201/alasdair-clarke
| |
Collapse
|
50
|
Plank T, Lerner L, Tuschewski J, Pawellek M, Malania M, Greenlee MW. Perceptual learning of a crowding task: Effects of anisotropy and optotype. J Vis 2021; 21:13. [PMID: 34673900 PMCID: PMC8543403 DOI: 10.1167/jov.21.11.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual crowding refers to the impairment of recognizing peripherally presented objects flanked by distractors. Crowding effects, exhibiting a certain spatial extent between target and flankers, can be reduced by perceptual learning. In this experiment, we investigated the learning-induced reduction of crowding in normally sighted participants and tested if learning on one optotype (Landolt-C) transfers to another (Tumbling-E) or vice versa. Twenty-three normally sighted participants (18-42 years) trained on a crowding task in the right-upper quadrant (target at 6.5 degrees eccentricity) over four sessions. Half of the participants had the four-alternative forced-choice task to discriminate the orientation of a Landolt-C, the other half of participants had the task to discriminate the orientation of a Tumbling-E, each flanked by distractors. In the fifth session, all participants switched to the other untrained optotype, respectively. Learning success was measured as reduction of the spatial extent of crowding. We found an overall significant and comparable learning-induced reduction of crowding in both conditions (Landolt-C and Tumbling-E). However, only in the group who trained on the Landolt-C task did learning effects transfer to the other optotype. The specific target-flanker-constellations may modulate the transfer effects found here. Perceptual learning of a crowding task with optotypes could be a promising tool in rehabilitation programs to help improve peripheral vision (e.g. in patients with central vision loss), but the dependence of possible transfer effects on the optotype and distractors used requires further clarification.
Collapse
Affiliation(s)
- Tina Plank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany.,
| | - Laura Lerner
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany.,
| | - Jana Tuschewski
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany.,
| | - Maja Pawellek
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany.,Children's University Hospital, University of Regensburg, Regensburg, Germany.,
| | - Maka Malania
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany.,
| | - Mark W Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany.,
| |
Collapse
|