1
|
Han B, Zhang Y, Feng X, Yang J, Wang B, Fang J, Wang Z, Zhu J, Niu G, Guo Y. The power of microbes: the key role of gut microbiota in the initiation and progression of colorectal cancer. Front Oncol 2025; 15:1563886. [PMID: 40297806 PMCID: PMC12034544 DOI: 10.3389/fonc.2025.1563886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer (CRC) is ranked as the third most prevalent malignancy and is a leading cause of cancer-related mortality globally, significantly affecting the health and longevity of middle-aged individuals and the elderly. The primary risk factors for CRC are mainly due to unhealthy dietary habits and lifestyle choices, and they have been shown to profoundly influence the composition of the gut microbiota. Given that dietary patterns are critical determinants of gut microbial diversity, a compelling association exists between gut microbiota and the pathogenesis of CRC. Recent research has increasingly focused on the intricate interplay between gut microbiota and CRC, exploring its role in disease initiation, progression, and the modulation of host immune responses. Investigations have demonstrated that certain specific microbial communities can promote inflammation, disrupt metabolic pathways, and produce carcinogenic compounds, thereby contributing to the development of CRC. Conversely, a diverse and balanced gut microbiome may confer protective effects against cancer through mechanisms such as the production of short-chain fatty acids and the enhancement of intestinal barrier integrity. This article provides a comprehensive overview of the characteristics of the gut microbial community and its complex relationship with CRC. It highlights potential mechanisms through which gut microbiota may influence CRC pathogenesis, including chronic inflammation, toxins, metabolites, epigenetic dysregulation, and immune regulatory dysfunction. Additionally, this review summarizes innovative strategies for CRC prevention and treatment, emphasizing the therapeutic potential of probiotics and natural plant extracts. By elucidating these connections, this work aims to enhance the understanding of the gut microbiome's role in CRC.
Collapse
Affiliation(s)
- Bo Han
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Yongfeng Zhang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Xue Feng
- Department of Cardiology, 63650 Military Hospital, Urumqi, China
| | - Jun Yang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Baolin Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jiang Fang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Zhigang Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jun Zhu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Ge Niu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Youxiang Guo
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| |
Collapse
|
2
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
3
|
Liu J, Jing W, Wang T, Hu Z, Lu H. Functional metabolomics revealed the dual-activation of cAMP-AMP axis is a novel therapeutic target of pancreatic cancer. Pharmacol Res 2023; 187:106554. [PMID: 36379357 DOI: 10.1016/j.phrs.2022.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
Pancreatic cancer (PC) is one of the most malignant cancers, owing to extremely high aggressiveness and mortality. Yet, this condition currently incurs widely drug resistance and therapeutic deficiency. In this study, we proposed a novel functional metabolomics strategy as Spatial Temporal Operative Real Metabolomics (STORM) to identify the determinant functional metabolites in a dynamic and visualized pattern whose level changes are mechanistically associated with therapeutic efficiency of gemcitabine against PC. Integrating quantitative analysis and spatial-visualization characterization of functional metabolites in vivo, we identified that the AMP-cAMP axis was a novel therapeutic target of PC to intermediate therapeutic efficiency of gemcitabine. Gemcitabine could induce the dual accumulation of cyclic AMP (cAMP) and AMP in tumor tissues. Quantitative analysis of associated biosynthetic enzymes and genes revealed that two independent intracellular ATP derived biosynthetic pathways to promote the dual activation of AMP-cAMP axis in a lower-level energetic environment. Then, gemcitabine induced the dual accumulation of AMP and cAMP can separately activate signaling pathways of AMPK and PKA, leading to the inhibition of tumor growth by the upregulation of the downstream tumor suppressor GADD45A. Collectively, our new STORM strategy was the first time to identify novel target of PC from a metabolic perspective as the dual activation of AMP-cAMP axis induced by gemcitabine can efficiently suppress PC tumor growth. In addition, such discovery has the capability to lower drug resistance of gemcitabine by specifically interacting with novel target, contributing to the improvement of therapeutic efficiency.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanghui Jing
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianyu Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Hu
- Luming Biotechnology Co., Ltd., Shanghai 201114, China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Allred DR. Integration of DNA Repair, Antigenic Variation, Cytoadhesion, and Chance in Babesia Survival: A Perspective. Front Cell Infect Microbiol 2022; 12:869696. [PMID: 35493746 PMCID: PMC9047050 DOI: 10.3389/fcimb.2022.869696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites live in hostile environments in which they are challenged chemically and their hosts attempt in many ways to kill them. In response, the parasites have evolved multiple mechanisms that take advantage of these challenges to enhance their survival. Perhaps the most impressive example is the evolutionary co-option of DNA repair mechanisms by the parasites as a means to rapidly manipulate the structure, antigenicity, and expression of the products of specific multigene families. The purpose of variant proteins that mediate cytoadhesion has long been thought to be primarily the avoidance of splenic clearance. Based upon known biology, I present an alternative perspective in which it is survival of the oxidative environment within which Babesia spp. parasites live that has driven integration of DNA repair, antigenic variation, and cytoadhesion, and speculate on how genome organization affects that integration. This perspective has ramifications for the development of parasite control strategies.
Collapse
Affiliation(s)
- David R. Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: David R. Allred,
| |
Collapse
|
5
|
Zhao Q, Kohut A, Li YJ, Martincuks A, Austria T, Zhang C, Santiago NL, Borrero RM, Phan XT, Melstrom L, Rodriguez-Rodriguez L, Yu H. Niraparib-induced STAT3 inhibition increases its antitumor effects. Front Oncol 2022; 12:966492. [PMID: 36324587 PMCID: PMC9618811 DOI: 10.3389/fonc.2022.966492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, poly(ADP-ribosyl)ation polymerase inhibitors (PARPis), which induce synthetic lethality of tumor cells with DNA damage repair defects, have emerged as a promising therapy for ovarian, breast, and pancreatic cancer. Although the PARPi Olaparib is limited to treating cancer patients with DNA repair deficiencies, the PARPi Niraparib is FDA approved to treat ovarian cancer patients regardless of their status in DNA repair pathways. Despite differences in the affinity to PARP enzymes, the rationale behind the clinical use of Niraparib in patients without DNA repair deficiencies is still lacking. Moreover, only Olaparib has been approved for pancreatic ductal adenocarcinoma (PDAC) patients with BRCA mutations, accounting for only 5-7% of total PDACs. It remains unclear whether Niraparib could be beneficial to PDACs without BRCA mutations. We found that Niraparib inhibits ovarian and PDAC tumor cell growth, regardless of BRCA mutational status, more effectively than Olaparib. Unlike Olaparib, which is known to activate STAT3, Niraparib inhibits STAT3 activity in ovarian and PDAC cancer cell lines and patient tumors. Moreover, Niraparib regulates the expression of several STAT3 downstream genes involved in apoptosis. Overexpression of a constitutively activated STAT3 mutant rescues Niraparib-induced cancer cell apoptosis. Our results suggest that Niraparib inhibits pSTAT3 by interfering with SRC tyrosine kinase. Collectively, our studies provide a mechanism underlying Niraparib's ability to induce tumor cell apoptosis without BRCA mutations, suggesting the potential use of Niraparib for treating PDAC patients regardless of BRCA status.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Adrian Kohut
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Theresa Austria
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Nicole Lugo Santiago
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Rosemarie Martinez Borrero
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Xuan Thuy Phan
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Laleh Melstrom
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, Division of Gynecologic Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
6
|
Behrendt I, Eichner G, Fasshauer M. Association of Antioxidants Use with All-Cause and Cause-Specific Mortality: A Prospective Study of the UK Biobank. Antioxidants (Basel) 2020; 9:E1287. [PMID: 33339307 PMCID: PMC7766648 DOI: 10.3390/antiox9121287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022] Open
Abstract
Prospective studies and randomized controlled trials elucidating the impact of antioxidants supplementation on mortality risk are inconclusive. The present analysis determined association between regular antioxidants use and all-cause (primary objective), as well as cause-specific, mortality in 345,626 participants of the UK Biobank cohort using Cox proportional hazard models. All models were adjusted for confounders and multiple testing. Antioxidants users were defined as participants who indicated to regularly use at least one of the following: multivitamins, vitamin C, vitamin E, selenium, and zinc. Median age of antioxidants users (n = 101,159) and non-users (n = 244,467) at baseline was 57 years. During 3.9 million person-years and a median follow-up of 11.5 years, 19,491 deaths occurred. Antioxidants use was not significantly associated with all-cause, cancer, and non-cancer mortality including several cancer and non-cancer subtypes. Interestingly, mortality risk from respiratory disease was significantly 21% lower among antioxidants users as compared to non-users (hazard ratio: 0.79; 95% confidence interval: 0.67, 0.92). In conclusion, the present study findings do not support recommendations for antioxidants supplementation to prevent all-cause, cancer, or non-cancer mortality on a population level. The significant inverse association between antioxidants use and respiratory disease mortality needs further study.
Collapse
Affiliation(s)
- Inken Behrendt
- Institute of Nutritional Science, Justus-Liebig University of Giessen, 35390 Giessen, Germany;
| | - Gerrit Eichner
- Mathematical Institute, Justus-Liebig University of Giessen, 35392 Giessen, Germany;
| | - Mathias Fasshauer
- Institute of Nutritional Science, Justus-Liebig University of Giessen, 35390 Giessen, Germany;
- Department of Internal Medicine (Endocrinology, Nephrology, and Rheumatology), University of Leipzig, 04103 Leipzig, Germany
- Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Meng X, Zhang G, Cao H, Yu D, Fang X, de Vos WM, Wu H. Gut dysbacteriosis and intestinal disease: mechanism and treatment. J Appl Microbiol 2020; 129:787-805. [PMID: 32277534 PMCID: PMC11027427 DOI: 10.1111/jam.14661] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiome functions like an endocrine organ, generating bioactive metabolites, enzymes or small molecules that can impact host physiology. Gut dysbacteriosis is associated with many intestinal diseases including (but not limited to) inflammatory bowel disease, primary sclerosing cholangitis-IBD, irritable bowel syndrome, chronic constipation, osmotic diarrhoea and colorectal cancer. The potential pathogenic mechanism of gut dysbacteriosis associated with intestinal diseases includes the alteration of composition of gut microbiota as well as the gut microbiota-derived signalling molecules. The many correlations between the latter and the susceptibility for intestinal diseases has placed a spotlight on the gut microbiome as a potential novel target for therapeutics. Currently, faecal microbial transplantation, dietary interventions, use of probiotics, prebiotics and drugs are the major therapeutic tools utilized to impact dysbacteriosis and associated intestinal diseases. In this review, we systematically summarized the role of intestinal microbiome in the occurrence and development of intestinal diseases. The potential mechanism of the complex interplay between gut dysbacteriosis and intestinal diseases, and the treatment methods are also highlighted.
Collapse
Affiliation(s)
- X Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - G Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - H Cao
- InnovHope Inc, Framingham, MA, USA
| | - D Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - X Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, PR China
| | - W M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - H Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Singh AK, Yu X. Tissue-Specific Carcinogens as Soil to Seed BRCA1/2-Mutant Hereditary Cancers. Trends Cancer 2020; 6:559-568. [PMID: 32336659 DOI: 10.1016/j.trecan.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Despite their ubiquitous expression, the inheritance of monoallelic germline mutations in breast cancer susceptibility gene type 1 or 2 (BRCA1/2) poses tissue-specific variations in cancer risks and primarily associate with familial breast and ovarian cancers. The molecular basis of this tissue-specific tumor incidence remains unknown and intriguing to cancer researchers. A plethora of recent reports support the idea that several nongenetic factors present in the tissue microenvironment could induce tumors in the mutant BRCA1/2 background. This Opinion article summarizes the recent advances on tissue-specific carcinogens and their complex crosstalk with the compromised DNA repair machinery of BRCA1/2-mutant cells. Finally, we present our perspective on the therapeutic and chemopreventive interpretations of these developments.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Ko KH, An JM, Son MS, Chung JB, Hahm KB. Antioxidant therapy in chronic pancreatitis-promises and pitfalls. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S115. [PMID: 31576322 DOI: 10.21037/atm.2019.05.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kwang Hyun Ko
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Jeong Min An
- Cancer Prevention Research Center, CHA Bio Complex, Pangyo, Korea
| | - Mi Seo Son
- Cancer Prevention Research Center, CHA Bio Complex, Pangyo, Korea
| | - Jae Bock Chung
- Department of Gastroenterology, National Health Insurance Service Ilsan Hospital, Ilsan, Korea
| | - Ki Baik Hahm
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea.,Cancer Prevention Research Center, CHA Bio Complex, Pangyo, Korea
| |
Collapse
|
10
|
Xie LN, Shao J, Huang CH, Li F, Xu D, Kalyanaraman B, Zhu BZ. An unusual double radical homolysis mechanism for the unexpected activation of the aldoxime nerve-agent antidotes by polyhalogenated quinoid carcinogens under normal physiological conditions. Free Radic Biol Med 2019; 130:1-7. [PMID: 30352302 DOI: 10.1016/j.freeradbiomed.2018.10.425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 01/21/2023]
Abstract
We have recently shown that the pyridinium aldoximes, best-known as therapeutic antidotes for chemical warfare nerve-agents, could markedly detoxify the carcinogenic tetrachloro-1,4-benzoquinone (TCBQ) via an unusual double Beckmann fragmentation mechanism. However, it is still not clear why pralidoxime (2-PAM) cannot provide full protection against TCBQ-induced biological damages even when 2-PAM was in excess. Here we show, unexpectedly, that TCBQ can also activate pralidoxime to generate a reactive iminyl radical intermediate in two-consecutive steps, which was detected and unequivocally characterized by the complementary application of ESR spin-trapping, HPLC/MS and nitrogen-15 isotope-labeling studies. The same iminyl radical was observed when TCBQ was substituted by other halogenated quinones. The end product of iminyl radical was isolated and identified as its corresponding reactive and toxic aldehyde. Based on these data, we proposed that the reaction of 2-PAM and TCBQ might be through the following two competing pathways: a nucleophilic attack of 2-PAM on TCBQ forms an unstable transient intermediate, which can decompose not only heterolytically to form 2-CMP via double Beckmann fragmentation, but also homolytically leading to the formation of a reactive iminyl radical in double-steps, which then via H abstraction and further hydrolyzation to form its corresponding more toxic aldehyde. Analogous radical homolysis mechanism was observed with other halogenated quinones and pyridinium aldoximes. This study represents the first detection and identification of reactive iminyl radical intermediates produced under normal physiological conditions, which provides direct experimental evidence to explain only the partial protection by 2-PAM against TCBQ-induced biological damages, and also the potential side-toxic effects induced by 2-PAM and other pyridinium aldoxime nerve-agent antidotes.
Collapse
Affiliation(s)
- Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
11
|
Zhen Y, Yu Y. Proteomic Analysis of the Downstream Signaling Network of PARP1. Biochemistry 2018; 57:429-440. [PMID: 29327913 DOI: 10.1021/acs.biochem.7b01022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.
Collapse
Affiliation(s)
- Yuanli Zhen
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
12
|
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines 2017; 5:biomedicines5040065. [PMID: 29156578 PMCID: PMC5744089 DOI: 10.3390/biomedicines5040065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments.
Collapse
|