1
|
Dean CL, Harvey EL, Johnson MD, Subhas AV. Microzooplankton grazing on the coccolithophore Emiliania huxleyi and its role in the global calcium carbonate cycle. SCIENCE ADVANCES 2024; 10:eadr5453. [PMID: 39514667 PMCID: PMC11546808 DOI: 10.1126/sciadv.adr5453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Identifying mechanisms driving the substantial dissolution of biogenic CaCO3 (60 to 80%) in surface and mesopelagic waters of the global ocean is critical for constraining the surface ocean's alkalinity and inorganic carbon budgets. We examine microzooplankton grazing on coccolithophores, photosynthetic calcifying algae responsible for a majority of open-ocean CaCO3 production, as a mechanism driving shallow dissolution. We show that microzooplankton grazing dissolves 92 ± 7% of ingested coccolith calcite, which may explain 50 to 100% of the observed CaCO3 dissolution in supersaturated surface waters. Microzooplankton grazing on coccolithophores is thus a substantial, previously unrecognized biological mechanism affecting the ballasting of organic carbon to deeper waters, the ecology and fitness of microzooplankton themselves due to buffering of food vacuole pH, and ultimately the continued ability of the surface ocean to take up atmospheric carbon dioxide.
Collapse
Affiliation(s)
- Chloe L. Dean
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA 02543, USA
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Elizabeth L. Harvey
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Matthew D. Johnson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Adam V. Subhas
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Miyata K, Adachi K, Miyashita N, Miyazawa K, Foster AS, Fukuma T. High-Speed Three-Dimensional Scanning Force Microscopy Visualization of Subnanoscale Hydration Structures on Dissolving Calcite Step Edges. NANO LETTERS 2024; 24:10842-10849. [PMID: 39183640 PMCID: PMC11378286 DOI: 10.1021/acs.nanolett.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hydration at solid-liquid interfaces plays an essential role in a wide range of phenomena in biology and in materials and Earth sciences. However, the atomic-scale dynamics of hydration have remained elusive because of difficulties associated with their direct visualization. In this work, a high-speed three-dimensional (3D) scanning force microscopy technique that produces 3D images of solid-liquid interfaces with subnanoscale resolution at a rate of 1.6 s per 3D image was developed. Using this technique, direct 3D images of moving step edges were acquired during calcite dissolution in water, and hydration structures on transition regions were visualized. A Ca(OH)2 monolayer was found to form along the step edge as an intermediate state during dissolution. This imaging process also showed that hydration layers extended from the upper terraces to the transition regions to stabilize adsorbed Ca(OH)2. This technique provides information that cannot be obtained via conventional 1D/2D measurement methods.
Collapse
Affiliation(s)
- Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kosuke Adachi
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Naoyuki Miyashita
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Adam S Foster
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
3
|
Kim KT, Henkelman G, Katz LE, Werth CJ. New Insights into Calcite Dissolution Mechanisms under Water, Proton, or Carbonic Acid-Dominated Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11331-11341. [PMID: 38907708 DOI: 10.1021/acs.est.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carbonate minerals are ubiquitous in nature, and their dissolution impacts many environmentally relevant processes including preferential flow during geological carbon sequestration, pH buffering with climate-change induced ocean acidification, and organic carbon bioavailability in melting permafrost. In this study, we advance the atomic level understanding of calcite dissolution mechanisms to improve our ability to predict this complex process. We performed high pressure and temperature (1300 psi and 50 °C) batch experiments to measure transient dissolution of freshly cleaved calcite under H2O, H+, and H2CO3-dominated conditions, without and with an inhibitory anionic surfactant present. Before and after dissolution experiments, we measured dissolution etch-pit geometries using laser profilometry, and we used density functional theory to investigate relative adsorption energies of competing species that affect dissolution. Our results support the hypothesis that calcite dissolution is controlled by the ability of H2O to preferentially adsorb to surface Ca atoms over competing species, even when dissolution is dominated by H+ or H2CO3. More importantly, we identify for the first time that adsorbed H+ enhances the role of water by weakening surface Ca-O bonds. We also identify that H2CO3 undergoes dissociative adsorption resulting in adsorbed HCO3- and H+. Adsorbed HCO3- that competes with H2O for Ca acute edge sites inhibits dissolution, while adsorbed H+ at the neighboring surface of CO3 enhances dissolution. The net effect of the dissociative adsorption of H2CO3 is enhanced dissolution. These results will impact future efforts to more accurately model the impact of solutes in complex water matrices on carbonate mineral dissolution.
Collapse
Affiliation(s)
- Kyung Tae Kim
- Department of Civil, Architecture & Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, Unites States
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78721, United States
| | - Lynn E Katz
- Department of Civil, Architecture & Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, Unites States
| | - Charles J Werth
- Department of Civil, Architecture & Environmental Engineering, The University of Texas at Austin, Austin, Texas 78721, Unites States
| |
Collapse
|
4
|
Weber UW, Rinaldi AP, Roques C, Wenning QC, Bernasconi SM, Brennwald MS, Jaggi M, Nussbaum C, Schefer S, Mazzotti M, Wiemer S, Giardini D, Zappone A, Kipfer R. In-situ experiment reveals CO 2 enriched fluid migration in faulted caprock. Sci Rep 2023; 13:17006. [PMID: 37813929 PMCID: PMC10562487 DOI: 10.1038/s41598-023-43231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
The sealing characteristics of the geological formation located above a CO2 storage reservoir, the so-called caprock, are essential to ensure efficient geological carbon storage. If CO2 were to leak through the caprock, temporal changes in fluid geochemistry can reveal fundamental information on migration mechanisms and induced fluid-rock interactions. Here, we present the results from a unique in-situ injection experiment, where CO2-enriched fluid was continuously injected in a faulted caprock analogue. Our results show that the CO2 migration follows complex pathways within the fault structure. The joint analysis of noble gases, ion concentrations and carbon isotopes allow us to quantify mixing between injected CO2-enriched fluid and resident formation water and to describe the temporal evolution of water-rock interaction processes. The results presented here are a crucial complement to the geophysical monitoring at the fracture scale highlighting a unique migration of CO2 in fault zones.
Collapse
Affiliation(s)
| | | | - Clément Roques
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Neuchâtel, Switzerland
| | - Quinn C Wenning
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Matthias S Brennwald
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Madalina Jaggi
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| | | | | | - Marco Mazzotti
- Institute of Energy and Process Engineering, ETH Zürich, Zürich, Switzerland
| | - Stefan Wiemer
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
| | | | - Alba Zappone
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland.
- Institute of Energy and Process Engineering, ETH Zürich, Zürich, Switzerland.
| | - Rolf Kipfer
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Cordova-Gonzalez A, Birgel D, Wisshak M, Urich T, Brinkmann F, Marcon Y, Bohrmann G, Peckmann J. A carbonate corrosion experiment at a marine methane seep: The role of aerobic methanotrophic bacteria. GEOBIOLOGY 2023; 21:491-506. [PMID: 36775968 DOI: 10.1111/gbi.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 06/13/2023]
Abstract
Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon-Congo-Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB-B and CAB-C) with apparent active methane seepage and one site (CAB-D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB-C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24-01 clade. The presence of abundant 13 C-depleted lipid biomarkers including fatty acids (n-C16:1ω8c , n-C18:1ω8c , n-C16:1ω5t ), various 4-mono- and 4,4-dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB-C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α-methylcholest-8(14)-en-3β,25-diol is interpreted to be a specific biomarker for the Hyd24-01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB-C experiment at the REGAB pockmark.
Collapse
Affiliation(s)
- Alexmar Cordova-Gonzalez
- Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Institut für Geologie, Hamburg, Germany
| | - Daniel Birgel
- Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Institut für Geologie, Hamburg, Germany
| | - Max Wisshak
- Senckenberg am Meer, Abteilung Meeresforschung, Wilhelmshaven, Germany
| | - Tim Urich
- Center for Functional Genomics of Microbes, University of Greifswald, Institut für Mikrobiologie, Greifswald, Germany
| | - Florian Brinkmann
- MARUM - Zentrum für Marine Umweltwissenschaften und Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
| | - Yann Marcon
- MARUM - Zentrum für Marine Umweltwissenschaften und Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
| | - Gerhard Bohrmann
- MARUM - Zentrum für Marine Umweltwissenschaften und Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany
| | - Jörn Peckmann
- Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Institut für Geologie, Hamburg, Germany
| |
Collapse
|
6
|
Adams A, Daval D, Baumgartner LP, Bernard S, Vennemann T, Cisneros-Lazaro D, Stolarski J, Baronnet A, Grauby O, Guo J, Meibom A. Rapid grain boundary diffusion in foraminifera tests biases paleotemperature records. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:144. [PMID: 38665181 PMCID: PMC11041775 DOI: 10.1038/s43247-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2024]
Abstract
The oxygen isotopic compositions of fossil foraminifera tests constitute a continuous proxy record of deep-ocean and sea-surface temperatures spanning the last 120 million years. Here, by incubating foraminifera tests in 18O-enriched artificial seawater analogues, we demonstrate that the oxygen isotopic composition of optically translucent, i.e., glassy, fossil foraminifera calcite tests can be measurably altered at low temperatures through rapid oxygen grain-boundary diffusion without any visible ultrastructural changes. Oxygen grain boundary diffusion occurs sufficiently fast in foraminifera tests that, under normal upper oceanic sediment conditions, their grain boundaries will be in oxygen isotopic equilibrium with the surrounding pore fluids on a time scale of <100 years, resulting in a notable but correctable bias of the paleotemperature record. When applied to paleotemperatures from 38,400 foraminifera tests used in paleoclimate reconstructions, grain boundary diffusion can be shown to bias prior paleotemperature estimates by as much as +0.86 to -0.46 °C. The process is general and grain boundary diffusion corrections can be applied to other polycrystalline biocarbonates composed of small nanocrystallites (<100 nm), such as those produced by corals, brachiopods, belemnites, and molluscs, the fossils of which are all highly susceptible to the effects of grain boundary diffusion.
Collapse
Affiliation(s)
- Arthur Adams
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Damien Daval
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38058 Grenoble, France
| | - Lukas P. Baumgartner
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Bernard
- Museum National d’Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Torsten Vennemann
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Deyanira Cisneros-Lazaro
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - Alain Baronnet
- CNRS, CINaM, Aix-Marseille Université, 13009 Marseille, France
| | - Olivier Grauby
- CNRS, CINaM, Aix-Marseille Université, 13009 Marseille, France
| | - Jinming Guo
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, CH−1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Farrera-Borjas IA, Tzompantzi F, Sánchez-Cantú M, Barrera-Rodríguez A, Tzompantzi-Flores C, Gómez R, Santolalla-Vargas C. gPhotocatalytic mineralization of phenol by Sn-modified calcites. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment. Sci Rep 2021; 11:22867. [PMID: 34819580 PMCID: PMC8613249 DOI: 10.1038/s41598-021-02314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
Ecosystem feedbacks in response to ocean acidification can amplify or diminish diel pH oscillations in productive coastal waters. Benthic microalgae generate such oscillations in sediment porewater and here we ask how CO2 enrichment (acidification) of the overlying seawater alters these in the absence and presence of biogenic calcite. We placed a 1-mm layer of ground oyster shells, mimicking the arrival of dead calcifying biota (+Calcite), or sand (Control) onto intact silt sediment cores, and then gradually increased the pCO2 in the seawater above half of +Calcite and Control cores from 472 to 1216 μatm (pH 8.0 to 7.6, CO2:HCO3- from 4.8 to 9.6 × 10-4). Porewater [O2] and [H+] microprofiles measured 16 d later showed that this enrichment had decreased the O2 penetration depth (O2-pd) in +Calcite and Control, indicating a metabolic response. In CO2-enriched seawater: (1) sediment biogeochemical processes respectively added and removed more H+ to and from the sediment porewater in darkness and light, than in ambient seawater increasing the amplitude of the diel porewater [H+] oscillations, and (2) in darkness, calcite dissolution in +Calcite sediment decreased the porewater [H+] below that in overlying seawater, reversing the sediment-seawater H+ flux and decreasing the amplitude of diel [H+] oscillations. This dissolution did not, however, counter the negative effect of CO2 enrichment on O2-pd. We now hypothesise that feedback to CO2 enrichment-an increase in the microbial reoxidation of reduced solutes with O2-decreased the sediment O2-pd and contributed to the enhanced porewater acidification.
Collapse
|
9
|
Savulescu GC, Rücker M, Scanziani A, Pini R, Georgiadis A, Luckham PF. Atomic force microscopy for the characterisation of pinning effects of seawater micro-droplets in n-decane on a calcite surface. J Colloid Interface Sci 2021; 592:397-404. [PMID: 33689984 DOI: 10.1016/j.jcis.2021.02.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS Roughness is an important parameter in applications where wetting needs to be characterized. Micro-computed tomography is commonly used to characterize wetting in porous media but the main limitation of this approach is the incapacity to identify nanoscale roughness. Atomic force microscopy, AFM, however, has been used to characterize the topography of surfaces down to the molecular scale. Here we investigate the potential of using AFM to characterize wetting behavior at the nanoscale. EXPERIMENTS Droplets of water on cleaved calcite under decane were imaged using quantitative imaging QI atomic force microscopy where a force-distance curve is obtained at every pixel. FINDINGS When the AFM tip passed through the water droplet surface, an attraction was observed due to capillary effects, such that the thickness of the water film was estimated and hence the profile of the droplet obtained. This enables parameters such as the contact angle and contact angle distribution to be obtained at a nanometer scale. The contact angles around the 3-phase contact line are found to be quasi-symmetrically distributed between 10-30°. A correlation between the height profile of the surface and contact angle distribution demonstrates a quasi-proportional relationship between roughness on the calcite surface and contact angle.
Collapse
Affiliation(s)
- G C Savulescu
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - M Rücker
- Chemical Engineering, Imperial College London, SW7 2AZ, UK; Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A Scanziani
- Earth Science and Engineering, Imperial College London, SW7 2AZ, UK
| | - R Pini
- Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - A Georgiadis
- Chemical Engineering, Imperial College London, SW7 2AZ, UK; Shell Global Solutions International B.V., 2288 GS Rijswijk, The Netherlands
| | - P F Luckham
- Chemical Engineering, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
10
|
Molecular Evidence for an Active Microbial Methane Cycle in Subsurface Serpentinite-Hosted Groundwaters in the Samail Ophiolite, Oman. Appl Environ Microbiol 2021; 87:AEM.02068-20. [PMID: 33127818 DOI: 10.1128/aem.02068-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Serpentinization can generate highly reduced fluids replete with hydrogen (H2) and methane (CH4), potent reductants capable of driving microbial methanogenesis and methanotrophy, respectively. However, CH4 in serpentinized waters is thought to be primarily abiogenic, raising key questions about the relative importance of methanogens and methanotrophs in the production and consumption of CH4 in these systems. Herein, we apply molecular approaches to examine the functional capability and activity of microbial CH4 cycling in serpentinization-impacted subsurface waters intersecting multiple rock and water types within the Samail Ophiolite of Oman. Abundant 16S rRNA genes and transcripts affiliated with the methanogenic genus Methanobacterium were recovered from the most alkaline (pH, >10), H2- and CH4-rich subsurface waters. Additionally, 16S rRNA genes and transcripts associated with the aerobic methanotrophic genus Methylococcus were detected in wells that spanned varied fluid geochemistry. Metagenomic sequencing yielded genes encoding homologs of proteins involved in the hydrogenotrophic pathway of microbial CH4 production and in microbial CH4 oxidation. Transcripts of several key genes encoding methanogenesis/methanotrophy enzymes were identified, predominantly in communities from the most hyperalkaline waters. These results indicate active methanogenic and methanotrophic populations in waters with hyperalkaline pH in the Samail Ophiolite, thereby supporting a role for biological CH4 cycling in aquifers that undergo low-temperature serpentinization.IMPORTANCE Serpentinization of ultramafic rock can generate conditions favorable for microbial methane (CH4) cycling, including the abiotic production of hydrogen (H2) and possibly CH4 Systems of low-temperature serpentinization are geobiological targets due to their potential to harbor microbial life and ubiquity throughout Earth's history. Biomass in fracture waters collected from the Samail Ophiolite of Oman, a system undergoing modern serpentinization, yielded DNA and RNA signatures indicative of active microbial methanogenesis and methanotrophy. Intriguingly, transcripts for proteins involved in methanogenesis were most abundant in the most highly reacted waters that have hyperalkaline pH and elevated concentrations of H2 and CH4 These findings suggest active biological methane cycling in serpentinite-hosted aquifers, even under extreme conditions of high pH and carbon limitation. These observations underscore the potential for microbial activity to influence the isotopic composition of CH4 in these systems, which is information that could help in identifying biosignatures of microbial activity on other planets.
Collapse
|
11
|
Adkins JF, Naviaux JD, Subhas AV, Dong S, Berelson WM. The Dissolution Rate of CaCO 3 in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:57-80. [PMID: 32946363 DOI: 10.1146/annurev-marine-041720-092514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dissolution of CaCO3 minerals in the ocean is a fundamental part of the marine alkalinity and carbon cycles. While there have been decades of work aimed at deriving the relationship between dissolution rate and mineral saturation state (a so-called rate law), no real consensus has been reached. There are disagreements between laboratory- and field-based studies and differences in rates for inorganic and biogenic materials. Rates based on measurements on suspended particles do not always agree with rates inferred from measurements made near the sediment-water interface of the actual ocean. By contrast, the freshwater dissolution rate of calcite has been well described by bulk rate measurements from a number of different laboratories, fit by basic kinetic theory, and well studied by atomic force microscopy and vertical scanning interferometry to document the processes at the atomic scale. In this review, we try to better unify our understanding of carbonate dissolution in the ocean via a relatively new, highly sensitive method we have developed combined with a theoretical framework guided by the success of the freshwater studies. We show that empirical curve fits of seawater data as a function of saturation state do not agree, largely because the curvature is itself a function of the thermodynamics. Instead, we show that models that consider both surface energetic theory and the complicated speciation of seawater and calcite surfaces in seawater are able to explain most of the most recent data.This new framework can also explain features of the historical data that have not been previously explained. The existence of a kink in the relationship between rate and saturation state, reflecting a change in dissolution mechanism, may be playing an important role in accelerating CaCO3 dissolution in key sedimentary environments.
Collapse
Affiliation(s)
- Jess F Adkins
- Linde Center for Global Environmental Science, Department of Geology and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - John D Naviaux
- Linde Center for Global Environmental Science, Department of Geology and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Adam V Subhas
- Department of Chemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
| | - Sijia Dong
- Linde Center for Global Environmental Science, Department of Geology and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA;
| |
Collapse
|
12
|
Zhang X, Guo J, Wu S, Chen F, Yang Y. Divalent heavy metals and uranyl cations incorporated in calcite change its dissolution process. Sci Rep 2020; 10:16864. [PMID: 33033272 PMCID: PMC7546630 DOI: 10.1038/s41598-020-73555-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Due to the high capacity of impurities in its structure, calcite is regarded as one of the most attractive minerals to trap heavy metals (HMs) and radionuclides via substitution during coprecipitation/crystal growth. As a high-reactivity mineral, calcite may release HMs via dissolution. However, the influence of the incorporated HMs and radionuclides in calcite on its dissolution is unclear. Herein, we reported the dissolution behavior of the synthesized calcite incorporated with cadmium (Cd), cobalt (Co), nickel (Ni), zinc (Zn), and uranium (U). Our findings indicated that the HMs and U in calcite could significantly change the dissolution process of calcite. The results demonstrated that the incorporated HMs and U had both inhibiting and enhancing effects on the solubility of calcite, depending on the type of metals and their content. Furthermore, secondary minerals such as smithsonite (ZnCO3), Co-poor aragonite, and U-rich calcite precipitated during dissolution. Thus, the incorporation of metals into calcite can control the behavior of HMs/uranium, calcite, and even carbon dioxide.
Collapse
Affiliation(s)
- Xiaohang Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China
- University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Jianan Guo
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China
- University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China.
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China
| |
Collapse
|
13
|
Simulated CO 2-induced ocean acidification for ocean in the East China: historical conditions since preindustrial time and future scenarios. Sci Rep 2019; 9:18559. [PMID: 31811165 PMCID: PMC6897940 DOI: 10.1038/s41598-019-54861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
Since preindustrial times, as atmospheric CO2 concentration increases, the ocean continuously absorbs anthropogenic CO2, reducing seawater pH and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$\end{document}[CO32−], which is termed ocean acidification. We perform Earth system model simulations to assess CO2-induced acidification for ocean in the East China, one of the most vulnerable areas to ocean acidification. By year 2017, ocean surface pH in the East China drops from the preindustrial level of 8.20 to 8.06, corresponding to a 35% rise in [H+], and reduction rate of pH becomes faster in the last two decades. Changes in surface seawater acidity largely result from CO2-induced changes in surface dissolved inorganic carbon (DIC), alkalinity (ALK), salinity and temperature, among which DIC plays the most important role. By year 2300, simulated reduction in sea surface \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$\end{document}[CO32−] is 13% under RCP2.6, contrasted to 72% under RCP8.5. Furthermore, simulated results show that CO2-induced warming acts to mitigate reductions in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[{{\rm{C}}{\rm{O}}}_{3}^{2-}]$$\end{document}[CO32−], but the individual effect of oceanic CO2 uptake is much greater than the effect of CO2-induced warming on ocean acidification. Our study quantifies ocean acidification induced by anthropogenic CO2, and indicates the potentially important role of accelerated CO2 emissions in projections of future changes in biogeochemistry and ecosystem of ocean in the East China.
Collapse
|
14
|
Liefferink RW, Naillon A, Bonn D, Prat M, Shahidzadeh N. Single layer porous media with entrapped minerals for microscale studies of multiphase flow. LAB ON A CHIP 2018; 18:1094-1104. [PMID: 29504009 DOI: 10.1039/c7lc01377a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The behaviour of minerals (i.e. salts) such as sodium chloride and calcite in porous media is very important in various applications such as weathering of artworks, oil recovery and CO2 sequestration. We report a novel method for manufacturing single layer porous media in which minerals can be entrapped in a controlled way in order to study their dissolution and recrystallization. In addition, our manufacturing method is a versatile tool for creating monomodal, bimodal or multimodal pore size microporous media with controlled porosity ranging from 25% to 50%. These micromodels allow multiphase flows to be quantitatively studied with different microscopy techniques and can serve to validate numerical models that can subsequently be extended to the 3D situation where visualization is experimentally difficult. As an example of their use, deliquescence (dissolution by moisture absorption) of entrapped NaCl crystals is studied; our results show that the invasion of the resulting salt solution is controlled by the capillary pressure within the porous network. For hydrophilic porous media, the liquid preferentially invades the small pores whereas in a hydrophobic network the large pores are filled. Consequently, after several deliquescence/drying cycles in the hydrophilic system, the salt is transported towards the outside of the porous network via small pores; in hydrophobic micromodels, no salt migration is observed. Numerical simulations based on the characteristics of our single layer pore network agree very well with the experimental results and give more insight into the dynamics of salt transport through porous media.
Collapse
Affiliation(s)
- R W Liefferink
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|