1
|
Jain A, Kishore N. Mechanistic insight into association of lysozyme, serum albumin, and insulin with aloin: Thermodynamic and conformational analysis. Int J Biol Macromol 2025; 306:141413. [PMID: 39993682 DOI: 10.1016/j.ijbiomac.2025.141413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Lysozyme, serum albumin, and insulin carry out essential functions in the living systems. The properties and functions of these proteins may be positively impacted in association with Aloe vera, which is known to have usefulness as dietary supplement and clinical conditions. In this work, the conformational changes in these proteins have been analysed as a result of interaction with aloin, which has a long history of use in traditional health management. A combination of circular dichroism spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry have been used in analysing the associated thermodynamic signatures and structural changes. It is observed that lysozyme, and bovine serum albumin showed weak binding behaviour with aloin at molar ratio of (1:1), which is found to be entropically driven at first binding site while enthalpically driven at second binding site. Similarly for insulin also, the interaction of aloin increased with increase in its concentration and the binding of ligand at first and second site is entropically and enthalpically driven, respectively. These three proteins offer hydrophobic and hydrophilic functionalities for establishing intermolecular interactions with aloin. Differential scanning calorimetry and circular dichroism spectroscopy have provided mechanistic details on tertiary structural changes in these proteins as a result of interactions. The results offer valuable insights into molecular mechanism of conformational changes in these proteins and hence their properties in association with aloin, thereby, having biological implications related to health and food industry.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Kudo K, Nishimura T, Izumikawa M, Kozone I, Hashimoto J, Fujie M, Suenaga H, Ikeda H, Satoh N, Shin-Ya K. Capability of a large bacterial artificial chromosome clone harboring multiple biosynthetic gene clusters for the production of diverse compounds. J Antibiot (Tokyo) 2024; 77:288-298. [PMID: 38438499 DOI: 10.1038/s41429-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
The biosynthetic gene clusters (BGCs) for the macrocyclic lactone-based polyketide compounds are extremely large-sized because the polyketide synthases that generate the polyketide chains of the basic backbone are of very high molecular weight. In developing a heterologous expression system for the large BGCs amenable to the production of such natural products, we selected concanamycin as an appropriate target. We obtained a bacterial artificial chromosome (BAC) clone with a 211-kb insert harboring the entire BGC responsible for the biosynthesis of concanamycin. Heterologous expression of this clone in a host strain, Streptomyces avermitilis SUKA32, permitted the production of concanamycin, as well as that of two additional aromatic polyketides. Structural elucidation identified these additional products as ent-gephyromycin and a novel compound that was designated JBIR-157. We describe herein sequencing and expression studies performed on these BGCs, demonstrating the utility of large BAC clones for the heterologous expression of cryptic or near-silent loci.
Collapse
Affiliation(s)
- Kei Kudo
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Takehiro Nishimura
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Miho Izumikawa
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Hikaru Suenaga
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Nori Satoh
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Kazuo Shin-Ya
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
3
|
Wilbanks L, Hennigan HE, Martinez-Brokaw CD, Lakkis H, Thormann S, Eggly AS, Buechel G, Parkinson EI. Synthesis of Gamma-Butyrolactone Hormones Enables Understanding of Natural Product Induction. ACS Chem Biol 2023; 18:1624-1631. [PMID: 37338162 PMCID: PMC10368014 DOI: 10.1021/acschembio.3c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Bacteria produce natural products (NPs) via biosynthetic gene clusters. Unfortunately, many biosynthetic gene clusters are silent under traditional laboratory conditions. To access novel NPs, a better understanding of their regulation is needed. γ-Butyrolactones, including the A-factor and Streptomyces coelicolor butanolides, SCBs, are a major class of Streptomyces' hormones. Study of these hormones has been limited due to challenges in accessing them in stereochemically pure forms. Herein, we describe an efficient route to (R)-paraconyl alcohol, a key intermediate for these molecules, as well as a biocatalytic method to access the exocyclic hydroxyl group that differentiates A-factor-type from SCB-type hormones. Utilizing these methods, a library of hormones have been synthesized and tested in a green fluorescent protein reporter assay for their ability to relieve repression by the repressor ScbR. This allowed the most quantitative structure-activity relationship of γ-butyrolactones and a cognate repressor to date. Bioinformatics analysis strongly suggests that many other repressors of NP biosynthesis likely bind similar molecules. This efficient, diversifiable synthesis will enable further investigation of the regulation of NP biosynthesis.
Collapse
Affiliation(s)
- Lauren
E. Wilbanks
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haylie E. Hennigan
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Hani Lakkis
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sarah Thormann
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alyssa S. Eggly
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Grace Buechel
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Elizabeth I. Parkinson
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Alwali AY, Parkinson EI. Small molecule inducers of actinobacteria natural product biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad019. [PMID: 37587009 PMCID: PMC10549211 DOI: 10.1093/jimb/kuad019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from "silent" biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction. ONE-SENTENCE SUMMARY This review describes chemical elicitors of actinobacteria natural products described to date and the proposed mechanisms of induction.
Collapse
Affiliation(s)
- Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
6
|
Hou Y, Li J, Wu JC, Wu QX, Fang J. Activation of Cellular Antioxidant Defense System by Naturally Occurring Dibenzopyrone Derivatives Confers Neuroprotection against Oxidative Insults. ACS Chem Neurosci 2021; 12:2798-2809. [PMID: 34297534 DOI: 10.1021/acschemneuro.1c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seven dibenzopyrone phenolic derivatives, i.e., alternariol (1), alternariol 5-O-methyl ether (2), altenusin B (3), dehydroaltenusin (4), altenuene (5), altenusin (6), and alterlactone (7), were isolated from endophytic fungi Alternaria alternata extract, and these compounds' structures were elucidated based on various spectroscopic data. Compound 3, a diphenic acid derivative, was determined as a new compound. In this study, compounds 3, 4, 6, and 7 displayed remarkable neuroprotective effects against oxidative injuries by acting as potent activators of nuclear factor-erythroid derived 2-like 2 (Nrf2) in PC12 cells. A mechanistic study indicated that these compounds induced the nuclear accumulation of Nrf2, promoted the expression of Nrf2-governed cytoprotective genes, and increased the cellular antioxidant capacity. More importantly, genetic silence of Nrf2 expression deprived the observed cytoprotection, highlighting the important role of Nrf2 in the protection of these compounds.
Collapse
Affiliation(s)
- Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun-Chen Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Quan-Xiang Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Zhou LF, Wu J, Li S, Li Q, Jin LP, Yin CP, Zhang YL. Antibacterial Potential of Termite-Associated Streptomyces spp. ACS OMEGA 2021; 6:4329-4334. [PMID: 33623843 PMCID: PMC7893633 DOI: 10.1021/acsomega.0c05580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Twenty-one strains of termite-associated actinomycetes were tested for their activities against three bacteria. The results showed that nine strains showed bacteriostatic activities against at least one tested bacterium, and the actinomycete YH01, which was isolated from the body surface of the queen of Odontotermes formosanus, had potent antibacterial activity. The YH01 was further identified as Streptomyces davaonensis. Two metabolites roseoflavin (1) and 8-methylamino-8-demethyl-d-riboflavin (2) were isolated and purified from S. davaonensis YH01. Their structures were determined by NMR, MS, and the related literature. The metabolite 1 showed strong inhibition activities against Bacillus subtilis (MIC = 1.56 μg/mL) and Staphylococcus aureus (MIC = 3.125 μg/mL), which were comparable to referenced gentamycin sulfate, with MIC values of 1.56 and 1.56 μg/mL, respectively. Furthermore, the anti-MRSA potential of compound 1 was determined against nine kinds of MRSA strains, with inhibition zones in the ranges of 12.7-19.7 mm under a concentration of 15 μg/6 mm discs and 18.3-22.7 mm under a concentration of 30 μg/6 mm discs. However, metabolite 1 had no inhibitory effect on Gram-negative bacteria. These results suggested that roseoflavin produced by YH01 holds promise for use against Gram-positive bacteria, especially to MRSA.
Collapse
Affiliation(s)
- Ling-Feng Zhou
- College
of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
| | - Jun Wu
- College
of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
| | - Shuai Li
- College
of Chemistry and Life Sciences, Zhejiang
Normal University, Jinhua 321004, People’s Republic
of China
| | - Qi Li
- Zhejiang
Jinhua Guangfu Hospital, Jinhua 321004, People’s Republic
of China
| | - Li-Ping Jin
- College
of Chemistry and Life Sciences, Zhejiang
Normal University, Jinhua 321004, People’s Republic
of China
| | - Cai-Ping Yin
- College
of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
| | - Ying-Lao Zhang
- College
of Life Sciences, Anhui Agricultural University, Hefei 230036, People’s Republic of China
| |
Collapse
|
8
|
Hashimoto T, Hashimoto J, Kagaya N, Nishimura T, Suenaga H, Nishiyama M, Kuzuyama T, Shin-Ya K. A novel oxazole-containing tetraene compound, JBIR-159, produced by heterologous expression of the cryptic trans-AT type polyketide synthase biosynthetic gene cluster. J Antibiot (Tokyo) 2021; 74:354-358. [PMID: 33558648 DOI: 10.1038/s41429-021-00410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
Using genome mining approach, we identified a novel biosynthetic gene cluster containing trans-AT type PKS genes from Streptomyces versipellis 4083-SVS6. A bacterial artificial chromosome (BAC) clone, pKU503JL68_PN1_P10-C12, accommodating the entire biosynthetic gene cluster was obtained from a BAC library. Heterologous expression of the biosynthetic gene cluster in Streptomyces lividans TK23 led to the production of a novel polyene compound, JBIR-159. We report herein the biosynthetic gene cluster for JBIR-159, and the heterologous expression, isolation, structure determination and a brief biological activity.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takehiro Nishimura
- Technology Research Association for Next Generation Natural Products Chemistry, Tokyo, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan. .,Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Hashimoto T, Kozone I, Hashimoto J, Suenaga H, Fujie M, Satoh N, Ikeda H, Shin-Ya K. Identification, cloning and heterologous expression of biosynthetic gene cluster for desertomycin. J Antibiot (Tokyo) 2020; 73:650-654. [PMID: 32457441 DOI: 10.1038/s41429-020-0319-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 01/23/2023]
Abstract
From our in-house microbial genome database of secondary metabolite producers, we identified a candidate biosynthetic gene cluster for desertomycin from Streptomyces nobilis JCM4274. We report herein the cloning of the 127-kb entire gene cluster for desertomycin biosynthesis using bacterial artificial chromosome vector. The entire biosynthetic gene cluster for desertomycin was introduced in the heterologous host, Streptomyces lividans TK23, with an average yield of more than 130 mg l-1.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan. .,The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
10
|
Cremosnik GS, Liu J, Waldmann H. Guided by evolution: from biology oriented synthesis to pseudo natural products. Nat Prod Rep 2020; 37:1497-1510. [DOI: 10.1039/d0np00015a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview and historical context to two concepts for the design of natural product-inspired compound libraries and highlights the used synthetic methodologies.
Collapse
Affiliation(s)
- Gregor S. Cremosnik
- Department of Chemical Biology
- Max-Planck-Institute of Molecular Physiology
- 44227 Dortmund
- Germany
| | - Jie Liu
- Department of Chemical Biology
- Max-Planck-Institute of Molecular Physiology
- 44227 Dortmund
- Germany
- Faculty of Chemistry and Chemical Biology
| | - Herbert Waldmann
- Department of Chemical Biology
- Max-Planck-Institute of Molecular Physiology
- 44227 Dortmund
- Germany
- Faculty of Chemistry and Chemical Biology
| |
Collapse
|
11
|
Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908. J Antibiot (Tokyo) 2019; 73:171-174. [DOI: 10.1038/s41429-019-0265-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
|
12
|
Tantawy AH, Farag SM, Hegazy L, Jiang H, Wang MQ. The larvicidal activity of natural inspired piperine-based dienehydrazides against Culex pipiens. Bioorg Chem 2019; 94:103464. [PMID: 31836185 DOI: 10.1016/j.bioorg.2019.103464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Abstract
A series of piperine-based dienehydrazide derivatives were designed and synthesized to be used as insecticides against Culex pipiens. The chemical structure of compound 5n was confirmed by single-crystal x-ray diffraction. Their insecticidal activities of synthesized compounds were tested against third-instar larval of Cx. pipiens at concentrations ranging from 0.1 to 1.2 mg/mL. Among all derivatives, compounds 5a, 5b, 5f, 5g, 5m, 5n, 5o, 5p, and 5u displayed good activities. The final mortality rates at the concentration of 0.75 mg/mL after 48 h treatment, were found to be in the range from 80.00 to 83.33% and with LC50 values ranging from 0.221 to 0.094 mg/mL. These compounds demonstrated higher insecticidal activities than piperine and Deltamethrin (a commercial positive control). Molecular modelling reveals several molecular interactions between synthesized compounds and the substrate binding sits of acetylcholinesterase (AChE) that are predicted to be responsible for its binding and inhibition activity. .
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China; Department of Chemistry, College of Science, Benha University, Benha 13518, Egypt
| | - Shaimaa M Farag
- Department of Entomology, Faculty of Science-Ain Shams University, Egypt
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
13
|
Genilloud O. Natural products discovery and potential for new antibiotics. Curr Opin Microbiol 2019; 51:81-87. [PMID: 31739283 DOI: 10.1016/j.mib.2019.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
Microbial natural products have been one of the most important sources for the discovery of potential new antibiotics. However, the decline in the number of new chemical scaffolds discovered and the rediscovery problem of old known molecules has become a limitation for discovery programs developed by an industry confronted by a lack of incentives and a broken economic model. In contrast, the emergence of multidrug resistance in key pathogens has continued to progress and this issue is compounded by a lack of new antibiotics in development to address most of the difficult to treat infections. Advances in genome mining have confirmed the richness of biosynthetic gene clusters (BGCs) in the majority of microbial sources, and this suggests that an untapped chemical diversity is waiting to be discovered. The development of new genome engineering and synthetic biology tools, and the implementation of comparative omic approaches is fostering the development of new integrated culture-based strategies and genomic-driven approaches aimed at delivering new chemical classes of antibiotics.
Collapse
Affiliation(s)
- Olga Genilloud
- Fundación MEDINA, Avda Conocimiento 34, 18016 Granada, Spain.
| |
Collapse
|
14
|
Guo Y, Fan J, Zhang Q, Bao C, Liu Z, Yang R. Turning natural products into insecticide candidates: Design and semisynthesis of novel fraxinellone-based N-(1,3-thiazol-2-yl)carboxamides against two crop-threatening insect pests. Bioorg Med Chem Lett 2019; 29:179-184. [DOI: 10.1016/j.bmcl.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
|
15
|
Granda JM, Donina L, Dragone V, Long DL, Cronin L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 2018; 559:377-381. [PMID: 30022133 DOI: 10.1038/s41586-018-0307-8] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
The discovery of chemical reactions is an inherently unpredictable and time-consuming process1. An attractive alternative is to predict reactivity, although relevant approaches, such as computer-aided reaction design, are still in their infancy2. Reaction prediction based on high-level quantum chemical methods is complex3, even for simple molecules. Although machine learning is powerful for data analysis4,5, its applications in chemistry are still being developed6. Inspired by strategies based on chemists' intuition7, we propose that a reaction system controlled by a machine learning algorithm may be able to explore the space of chemical reactions quickly, especially if trained by an expert8. Here we present an organic synthesis robot that can perform chemical reactions and analysis faster than they can be performed manually, as well as predict the reactivity of possible reagent combinations after conducting a small number of experiments, thus effectively navigating chemical reaction space. By using machine learning for decision making, enabled by binary encoding of the chemical inputs, the reactions can be assessed in real time using nuclear magnetic resonance and infrared spectroscopy. The machine learning system was able to predict the reactivity of about 1,000 reaction combinations with accuracy greater than 80 per cent after considering the outcomes of slightly over 10 per cent of the dataset. This approach was also used to calculate the reactivity of published datasets. Further, by using real-time data from our robot, these predictions were followed up manually by a chemist, leading to the discovery of four reactions.
Collapse
Affiliation(s)
| | - Liva Donina
- School of Chemistry, University of Glasgow, Glasgow, UK
| | | | - De-Liang Long
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
16
|
Moss NA, Leao T, Glukhov E, Gerwick L, Gerwick WH. Collection, Culturing, and Genome Analyses of Tropical Marine Filamentous Benthic Cyanobacteria. Methods Enzymol 2018; 604:3-43. [PMID: 29779657 DOI: 10.1016/bs.mie.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics. Here, we describe workflows, procedures, and commentary on sample collection, cultivation, genomic DNA generation, bioinformatics tools, and biosynthetic pathway analysis concerning filamentous cyanobacteria.
Collapse
Affiliation(s)
- Nathan A Moss
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Tiago Leao
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Evgenia Glukhov
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - Lena Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, CA, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States.
| |
Collapse
|
17
|
Trobe M, Burke MD. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angew Chem Int Ed Engl 2018; 57:4192-4214. [PMID: 29513400 PMCID: PMC5912692 DOI: 10.1002/anie.201710482] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Indexed: 11/10/2022]
Abstract
Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale.
Collapse
Affiliation(s)
- Melanie Trobe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
18
|
Trobe M, Burke MD. Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Melanie Trobe
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| | - Martin D. Burke
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| |
Collapse
|
19
|
Kawahara T, Izumikawa M, Kozone I, Hashimoto J, Kagaya N, Koiwai H, Komatsu M, Fujie M, Sato N, Ikeda H, Shin-Ya K. Neothioviridamide, a Polythioamide Compound Produced by Heterologous Expression of a Streptomyces sp. Cryptic RiPP Biosynthetic Gene Cluster. JOURNAL OF NATURAL PRODUCTS 2018; 81:264-269. [PMID: 29381067 DOI: 10.1021/acs.jnatprod.7b00607] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During genome mining for thioviridamide-like biosynthetic gene clusters that could produce polythioamide RiPP (ribosomally synthesized and post-translationally modified peptides), we discovered a novel cryptic biosynthetic gene cluster. During efforts to express this biosynthetic gene using heterologous expression of this biosynthetic gene cluster, a novel compound designated as neothioviridamide was produced. We report herein the cloning and heterologous expression of the neothioviridamide biosynthetic gene cluster and the isolation, structure determination, and cytotoxic activity of neothioviridamide.
Collapse
Affiliation(s)
- Teppei Kawahara
- Japan Biological Informatics Consortium (JBIC) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Miho Izumikawa
- Japan Biological Informatics Consortium (JBIC) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hanae Koiwai
- Kitasato Institute for Life Sciences, Kitasato University , 1-15-1 Kitasato Sagamihara, Kanagawa 228-8555, Japan
| | - Mamoru Komatsu
- Kitasato Institute for Life Sciences, Kitasato University , 1-15-1 Kitasato Sagamihara, Kanagawa 228-8555, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Noriyuki Sato
- Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University , 1-15-1 Kitasato Sagamihara, Kanagawa 228-8555, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- The Biotechnology Research Center, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Abstract
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.
Collapse
Affiliation(s)
- Jonathan W Lehmann
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
21
|
Reply to Skinnider and Magarvey: Rates of novel natural product discovery remain high. Proc Natl Acad Sci U S A 2017; 114:E6273. [PMID: 28710331 DOI: 10.1073/pnas.1711139114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|