1
|
Chang YN, Welbourne S, Furber S, Lambon Ralph MA. Simultaneous simulations of pure, surface and phonological acquired dyslexia within a full computational model of the primary systems hypothesis. Cortex 2024; 179:112-125. [PMID: 39167917 DOI: 10.1016/j.cortex.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/06/2023] [Accepted: 07/05/2024] [Indexed: 08/23/2024]
Abstract
According to the primary systems hypothesis, reading requires interactions of visual-orthographic, phonological and semantic systems. Damage to each primary system generates very different types of acquired dyslexia. Variants of the connectionist 'triangle' models of reading have been developed to investigate individual acquired dyslexia. However, only a few studies have investigated multiple acquired alexia within one framework. Importantly, there are no studies that simultaneously simulate both central dyslexia (e.g. surface and phonological dyslexia) and peripheral dyslexia (e.g. pure alexia). That is largely due to the lack of a visual component in the traditional reading models. To verify the predictions made by the primary systems hypothesis, we developed a connectionist 'deep' multi-layer triangle model of reading including visual, orthographic, phonological and semantic processing layers. We investigated whether damage to the model could produce the general behavioural patterns of impaired performance observed in patients with the corresponding reading deficits. Crucially, damage to the visual-orthographic, phonological or semantic components of the model resulted in the expected reading impairments associated with pure alexia, phonological dyslexia and surface dyslexia, respectively. The simulation results demonstrated for the first time that neurologically-impaired reading including both central and peripheral dyslexia could be addressed within a single triangle model of reading. The findings are consistent with the predictions made by the primary systems hypothesis.
Collapse
Affiliation(s)
- Ya-Ning Chang
- Miin Wu School of Computing, National Cheng Kung University, Taiwan; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | - Stephen Welbourne
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, UK
| | - Steve Furber
- School of Computer Science, University of Manchester, UK
| | | |
Collapse
|
2
|
Zeng J, Wang C, Chai Y, Lei D, Wang Q. Can transcranial photobiomodulation improve cognitive function in TBI patients? A systematic review. Front Psychol 2024; 15:1378570. [PMID: 38952831 PMCID: PMC11215173 DOI: 10.3389/fpsyg.2024.1378570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technology which has become a promising therapy for treating many brain diseases. Although it has been confirmed in studies targeting neurological diseases including Alzheimer's and Parkinson's that tPBM can improve cognitive function, the effectiveness of interventions targeting TBI patients remains to be determined. This systematic review examines the cognitive outcomes of clinical trials concerning tPBM in the treatment of traumatic brain injury (TBI). Methods We conducted a systematic literature review, following the PRISMA guidelines. The PubMed, Web of Science, Scopus, EMBASE, and Cochrane Library databases were searched before October 31, 2023. Results The initial search retrieved 131 articles, and a total of 6 studies were finally included for full text-analysis after applying inclusion and exclusion criteria. Conclusion Results showed improvements in cognition for patients with chronic TBI after tPBM intervention. The mechanism may be that tPBM increases the volume of total cortical gray matter (GM), subcortical GM, and thalamic, improves cerebral blood flow (CBF), functional connectivity (FC), and cerebral oxygenation, improving brain function. However, due to the significant heterogeneity in application, we cannot summarize the optimal parameters for tPBM treatment of TBI. In addition, there is currently a lack of RCT studies in this field. Therefore, given this encouraging but uncertain finding, it is necessary to conduct randomized controlled clinical trials to further determine the role of tPBM in cognitive rehabilitation of TBI patients.
Collapse
Affiliation(s)
- Jia Zeng
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Chen Wang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yuan Chai
- Xinyang Central Hospital, Xinyang, China
| | - Danyun Lei
- Department of Physical Education, Xinyang University, Xinyang, China
| | - Qiuli Wang
- Independent Researcher, Xinyang, Henan Province, China
| |
Collapse
|
3
|
Luo Y, Wang K, Jiao S, Zeng J, Han Z. Distinct parallel activation and interaction between dorsal and ventral pathways during phonological and semantic processing: A cTBS-fMRI study. Hum Brain Mapp 2024; 45:e26569. [PMID: 38224540 PMCID: PMC10785560 DOI: 10.1002/hbm.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Successful visual word recognition requires the integration of phonological and semantic information, which is supported by the dorsal and ventral pathways in the brain. However, the functional specialization or interaction of these pathways during phonological and semantic processing remains unclear. Previous research has been limited by its dependence on correlational functional magnetic resonance imaging (fMRI) results or causal validation using patient populations, which are susceptible to confounds such as plasticity and lesion characteristics. To address this, the present study employed continuous theta-burst stimulation combined with fMRI in a within-subject design to assess rapid adaptation in regional activity and functional connectivity of the dorsal and ventral pathways during phonological and semantic tasks. This assessment followed the precise inhibition of the left inferior parietal lobule and anterior temporal lobe in the dorsal and ventral pathways, respectively. Our results reveal that both the dorsal and ventral pathways were activated during phonological and semantic processing, while the adaptation activation and interactive network were modulated by the task type and inhibited region. The two pathways exhibited interconnectivity in phonological processing, and disruption of either pathway led to rapid adaptation across both pathways. In contrast, only the ventral pathway exhibited connectivity in semantic processing, and disruption of this pathway alone resulted in adaptive effects primarily in the ventral pathway. These findings provide essential evidence supporting the interactive theory, phonological information processing in particular, potentially providing meaningful implications for clinical populations.
Collapse
Affiliation(s)
- Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of System ScienceBeijing Normal UniversityBeijingChina
| | - Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
4
|
Arrington CN, Ossowski AE, Baig H, Persichetti E, Morris R. The Impact of Transcranial Magnetic Stimulation on Reading Processes: A Systematic Review. Neuropsychol Rev 2023; 33:255-277. [PMID: 35119625 PMCID: PMC9349478 DOI: 10.1007/s11065-022-09534-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/14/2021] [Indexed: 01/26/2023]
Abstract
The current systematic review examines the behavioral effects of TMS on reading. Transcranial magnetic stimulation (TMS) to targeted nodes of the brain's reading network has been shown to impact reading. Extracted data included (a) study characteristics, (b) methodology, (c) targeted nodes, (d) control paradigm, (e) type of reading task, (f) adverse effects, and (g) main findings. Data was classified by type of reading task: 1) phonological processing, 2) semantic judgment, 3) lexical decision, 4) whole word reading, and 5) visual or text characteristics. Seventy records from 46 studies (n = 844) were identified. Results indicate that TMS modulates semantic judgments when focused in the anterior aspects of the reading circuit, phonological processes after stimulation within the dorsal circuit, and impacts single word recognition and contextual reading when administered to the ventral circuit. Findings suggest that changes in specific behavioral aspects of reading following TMS may contribute to identification of foci for use as part of reading interventions.
Collapse
Affiliation(s)
- C Nikki Arrington
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA. .,GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA.
| | | | - Humza Baig
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA.,GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA
| | - Eileen Persichetti
- GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA.,School of Social Work, Boston University, Boston, MA, 02215, USA
| | - Robin Morris
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA.,GSU/GT Center for Advanced Brain Imaging, Atlanta, GA, 30318, USA
| |
Collapse
|
5
|
Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023; 21:135. [PMID: 36814278 PMCID: PMC9945713 DOI: 10.1186/s12967-023-03988-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.
Collapse
Affiliation(s)
- Wei-tong Pan
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Pan-miao Liu
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK. .,National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Jian-jun Yang
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
6
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Turker S, Hartwigsen G. Exploring the neurobiology of reading through non-invasive brain stimulation: A review. Cortex 2021; 141:497-521. [PMID: 34166905 DOI: 10.1016/j.cortex.2021.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Non-invasive brain stimulation (NIBS) has gained increasing popularity as a modulatory tool for drawing causal inferences and exploring task-specific network interactions. Yet, a comprehensive synthesis of reading-related NIBS studies is still missing. We fill this gap by synthesizing the results of 78 NIBS studies investigating the causal involvement of brain regions for reading processing, and then link these results to a neurobiological model of reading. The included studies provide evidence for a functional-anatomical double dissociation for phonology versus semantics during reading-related processes within left inferior frontal and parietal areas. Additionally, the posterior parietal cortex and the anterior temporal lobe are identified as critical regions for reading-related processes. Overall, the findings provide some evidence for a dual-stream neurobiological model of reading, in which a dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, and a ventral stream (left occipito-temporal and inferior frontal areas, with assistance from the angular gyrus and the anterior temporal lobe) processes known words. However, individual differences in reading abilities and strategies, as well as differences in stimulation parameters, may impact the neuromodulatory effects induced by NIBS. We emphasize the need to investigate task-specific network interactions in future studies by combining NIBS with neuroimaging.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
8
|
Rice GE, Kerry SJ, Robotham RJ, Leff AP, Lambon Ralph MA, Starrfelt R. Category-selective deficits are the exception and not the rule: Evidence from a case-series of 64 patients with ventral occipito-temporal cortex damage. Cortex 2021; 138:266-281. [PMID: 33770511 PMCID: PMC8064027 DOI: 10.1016/j.cortex.2021.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The organisational principles of the visual ventral stream are still highly debated, particularly the relative association/dissociation between word and face recognition and the degree of lateralisation of the underlying processes. Reports of dissociations between word and face recognition stem from single case-studies of category selective impairments, and neuroimaging investigations of healthy participants. Despite the historical reliance on single case-studies, more recent group studies have highlighted a greater commonality between word and face recognition. Studying individual patients with rare selective deficits misses (a) important variability between patients, (b) systematic associations between task performance, and (c) patients with mild, severe and/or non-selective impairments; meaning that the full spectrum of deficits is unknown. The Back of the Brain project assessed the range and specificity of visual perceptual impairment in 64 patients with posterior cerebral artery stroke recruited based on lesion localization and not behavioural performance. Word, object, and face processing were measured with comparable tests across different levels of processing to investigate associations and dissociations across domains. We present two complementary analyses of the extensive behavioural battery: (1) a data-driven analysis of the whole patient group, and (2) a single-subject case-series analysis testing for deficits and dissociations in each individual patient. In both analyses, the general organisational principle was of associations between words, objects, and faces even following unilateral lesions. The majority of patients either showed deficits across all domains or in no domain, suggesting a spectrum of visuo-perceptual deficits post stroke. Dissociations were observed, but they were the exception and not the rule: Category-selective impairments were found in only a minority of patients, all of whom showed disproportionate deficits for words. Interestingly, such selective word impairments were found following both left and right hemisphere lesions. This large-scale investigation of posterior cerebral artery stroke patients highlights the bilateral representation of visual perceptual function.
Collapse
Affiliation(s)
- Grace E Rice
- MRC Cognition and Brain Sciences Unit (CBU), University of Cambridge, UK
| | - Sheila J Kerry
- University College London Queen Square Institute of Neurology, UK
| | - Ro J Robotham
- Department of Psychology, University of Copenhagen, Denmark
| | - Alex P Leff
- University College London Queen Square Institute of Neurology, UK
| | | | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Chen L, Wassermann D, Abrams DA, Kochalka J, Gallardo-Diez G, Menon V. The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 2019; 10:5601. [PMID: 31811149 PMCID: PMC6898452 DOI: 10.1038/s41467-019-13634-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
While predominant models of visual word form area (VWFA) function argue for its specific role in decoding written language, other accounts propose a more general role of VWFA in complex visual processing. However, a comprehensive examination of structural and functional VWFA circuits and their relationship to behavior has been missing. Here, using high-resolution multimodal imaging data from a large Human Connectome Project cohort (N = 313), we demonstrate robust patterns of VWFA connectivity with both canonical language and attentional networks. Brain-behavior relationships revealed a striking pattern of double dissociation: structural connectivity of VWFA with lateral temporal language network predicted language, but not visuo-spatial attention abilities, while VWFA connectivity with dorsal fronto-parietal attention network predicted visuo-spatial attention, but not language abilities. Our findings support a multiplex model of VWFA function characterized by distinct circuits for integrating language and attention, and point to connectivity-constrained cognition as a key principle of human brain organization.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA.
- Department of Psychology, Santa Clara University, Santa Clara, CA, 95053, USA.
- Neuroscience Program, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Demian Wassermann
- Parietal, Inria Saclay Île-de-France, CEA, Université Paris-Sud, 1 Rue Honoré d'Estienne d'Orves, 91120, Palaiseau, France
| | - Daniel A Abrams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA
| | - John Kochalka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA
| | - Guillermo Gallardo-Diez
- Athena Project Team, INRIA Sophia Antipolis-Méditerranée, 06902, Sophia Antipolis CEDEX, France
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94394, USA.
- Stanford Neuroscience Institute, Stanford University, Stanford, CA, 94394, USA.
| |
Collapse
|
10
|
The neural and neurocomputational bases of recovery from post-stroke aphasia. Nat Rev Neurol 2019; 16:43-55. [DOI: 10.1038/s41582-019-0282-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
11
|
Ueno T, Meteyard L, Hoffman P, Murayama K. The Ventral Anterior Temporal Lobe has a Necessary Role in Exception Word Reading. Cereb Cortex 2019; 28:3035-3045. [PMID: 29878073 PMCID: PMC6041960 DOI: 10.1093/cercor/bhy131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/13/2018] [Indexed: 11/14/2022] Open
Abstract
An influential account of reading holds that words with exceptional spelling-to-sound correspondences (e.g., PINT) are read via activation of their lexical-semantic representations, supported by the anterior temporal lobe (ATL). This account has been inconclusive because it is based on neuropsychological evidence, in which lesion-deficit relationships are difficult to localize precisely, and functional neuroimaging data, which is spatially precise but cannot demonstrate whether the ATL activity is necessary for exception word reading. To address these issues, we used a technique with good spatial specificity-repetitive transcranial magnetic stimulation (rTMS)-to demonstrate a necessary role of ATL in exception word reading. Following rTMS to left ventral ATL, healthy Japanese adults made more regularization errors in reading Japanese exception words. We successfully simulated these results in a computational model in which exception word reading was underpinned by semantic activations. The ATL is critically and selectively involved in reading exception words.
Collapse
Affiliation(s)
- Taiji Ueno
- School of Psychology & Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK.,Faculty of Human Sciences, Takachiho University, Tokyo, Japan.,Faculty of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Lotte Meteyard
- School of Psychology & Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK
| | - Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kou Murayama
- School of Psychology & Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK.,Kochi University of Technology, Kami, Japan.,Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Hartwigsen G. Flexible Redistribution in Cognitive Networks. Trends Cogn Sci 2018; 22:687-698. [DOI: 10.1016/j.tics.2018.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
|