1
|
Ezerzer Y, Frenkel-Pinter M, Kolodny R, Ben-Tal N. A building blocks perspective on protein emergence and evolution. Curr Opin Struct Biol 2025; 91:102996. [PMID: 39919321 DOI: 10.1016/j.sbi.2025.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
Recent findings increasingly suggest the emergence of proteins by mix and match of short peptides, or 'building blocks'. What are these building blocks, and how did they evolve into contemporary proteins? We review two complementary approaches to tackling these questions. First, a bottom-up approach that involves identifying putative components of primordial peptides, and the synthetic routes through which these peptides may have emerged. Second, searches in protein space to reveal building blocks that make up the contemporary protein repertoire; proteins that are not closely related to one another may nevertheless have certain parts in common, suggesting common ancestry. Identifying such shared building blocks, and characterizing their functions, can shed light on the ancient molecules from which proteins emerged, and hint at the mechanisms that govern their evolution. A key challenge lies in merging these two approaches to create a cohesive narrative of how proteins emerged and continue to evolve.
Collapse
Affiliation(s)
- Yishi Ezerzer
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Israel
| | - Moran Frenkel-Pinter
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 9190401, Israel.
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel.
| | - Nir Ben-Tal
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Caetano-Anollés G, Mughal F, Aziz MF, Caetano-Anollés K. Tracing the birth and intrinsic disorder of loops and domains in protein evolution. Biophys Rev 2024; 16:723-735. [PMID: 39830125 PMCID: PMC11735766 DOI: 10.1007/s12551-024-01251-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
Protein loops and structural domains are building blocks of molecular structure. They hold evolutionary memory and are largely responsible for the many functions and processes that drive the living world. Here, we briefly review two decades of phylogenomic data-driven research focusing on the emergence and evolution of these elemental architects of protein structure. Phylogenetic trees of domains reconstructed from the proteomes of organisms belonging to all three superkingdoms and viruses were used to build chronological timelines describing the origin of each domain and its embedded loops at different levels of structural abstraction. These timelines consistently recovered six distinct evolutionary phases and a most parsimonious evolutionary progression of cellular life. The timelines also traced the birth of domain structures from loops, which allowed to model their growth ab initio with AlphaFold2. Accretion decreased the disorder of the growing molecules, suggesting disorder is molecular size-dependent. A phylogenomic survey of disorder revealed that loops and domains evolved differently. Loops were highly disordered, disorder increased early in evolution, and ordered and moderate disordered structures were derived. Gradual replacement of loops with α-helix and β-strand bracing structures over time paved the way for the dominance of more disordered loop types. In contrast, ancient domains were ordered, with disorder evolving as a benefit acquired later in evolution. These evolutionary patterns explain inverse correlations between disorder and sequence length of loops and domains. Our findings provide a deep evolutionary view of the link between structure, disorder, flexibility, and function.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - M. Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kelsey Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Callout Biotech, Albuquerque, NM 87112 USA
| |
Collapse
|
3
|
Zhang Z, Wayment-Steele HK, Brixi G, Wang H, Kern D, Ovchinnikov S. Protein language models learn evolutionary statistics of interacting sequence motifs. Proc Natl Acad Sci U S A 2024; 121:e2406285121. [PMID: 39467119 PMCID: PMC11551344 DOI: 10.1073/pnas.2406285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Protein language models (pLMs) have emerged as potent tools for predicting and designing protein structure and function, and the degree to which these models fundamentally understand the inherent biophysics of protein structure stands as an open question. Motivated by a finding that pLM-based structure predictors erroneously predict nonphysical structures for protein isoforms, we investigated the nature of sequence context needed for contact predictions in the pLM Evolutionary Scale Modeling (ESM-2). We demonstrate by use of a "categorical Jacobian" calculation that ESM-2 stores statistics of coevolving residues, analogously to simpler modeling approaches like Markov Random Fields and Multivariate Gaussian models. We further investigated how ESM-2 "stores" information needed to predict contacts by comparing sequence masking strategies, and found that providing local windows of sequence information allowed ESM-2 to best recover predicted contacts. This suggests that pLMs predict contacts by storing motifs of pairwise contacts. Our investigation highlights the limitations of current pLMs and underscores the importance of understanding the underlying mechanisms of these models.
Collapse
Affiliation(s)
- Zhidian Zhang
- Harvard University, Cambridge, MA02138
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute of Bioengineering, School of Life Sciences, Ecole polytechnique fédérale de Lausanne, LausanneVD 1015, Switzerland
| | - Hannah K. Wayment-Steele
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Garyk Brixi
- Harvard College, Harvard University, Cambridge, MA02138
| | | | - Dorothee Kern
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Sergey Ovchinnikov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- John Harvard Distinguished Science Fellowship, Harvard University, Cambridge, MA02138
| |
Collapse
|
4
|
Min X, Liao Y, Chen X, Yang Q, Ying J, Zou J, Yang C, Zhang J, Ge S, Xia N. PB-GPT: An innovative GPT-based model for protein backbone generation. Structure 2024; 32:1820-1833.e5. [PMID: 39173620 DOI: 10.1016/j.str.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/02/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.
Collapse
Affiliation(s)
- Xiaoping Min
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Yiyang Liao
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Xiao Chen
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Qianli Yang
- Institute of Artificial Intelligence, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Junjie Ying
- Institute of Artificial Intelligence, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Jiajun Zou
- School of Informatics, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Chongzhou Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; Institute of Artificial Intelligence, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; School of Public Health, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; School of Public Health, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, State Key, No. 422 Siming South Rd, Xiamen 361005, China; School of Public Health, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, No. 422 Siming South Rd, Xiamen 361005, China.
| |
Collapse
|
5
|
Caetano-Anollés K, Aziz MF, Mughal F, Caetano-Anollés G. On Protein Loops, Prior Molecular States and Common Ancestors of Life. J Mol Evol 2024; 92:624-646. [PMID: 38652291 PMCID: PMC11458777 DOI: 10.1007/s00239-024-10167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
The principle of continuity demands the existence of prior molecular states and common ancestors responsible for extant macromolecular structure. Here, we focus on the emergence and evolution of loop prototypes - the elemental architects of protein domain structure. Phylogenomic reconstruction spanning superkingdoms and viruses generated an evolutionary chronology of prototypes with six distinct evolutionary phases defining a most parsimonious evolutionary progression of cellular life. Each phase was marked by strategic prototype accumulation shaping the structures and functions of common ancestors. The last universal common ancestor (LUCA) of cells and viruses and the last universal cellular ancestor (LUCellA) defined stem lines that were structurally and functionally complex. The evolutionary saga highlighted transformative forces. LUCA lacked biosynthetic ribosomal machinery, while the pivotal LUCellA lacked essential DNA biosynthesis and modern transcription. Early proteins therefore relied on RNA for genetic information storage but appeared initially decoupled from it, hinting at transformative shifts of genetic processing. Urancestral loop types suggest advanced folding designs were present at an early evolutionary stage. An exploration of loop geometric properties revealed gradual replacement of prototypes with α-helix and β-strand bracing structures over time, paving the way for the dominance of other loop types. AlphFold2-generated atomic models of prototype accretion described patterns of fold emergence. Our findings favor a ‛processual' model of evolving stem lines aligned with Woese's vision of a communal world. This model prompts discussing the 'problem of ancestors' and the challenges that lie ahead for research in taxonomy, evolution and complexity.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Callout Biotech, Albuquerque, NM, 87112, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Draizen EJ, Veretnik S, Mura C, Bourne PE. Deep generative models of protein structure uncover distant relationships across a continuous fold space. Nat Commun 2024; 15:8094. [PMID: 39294145 PMCID: PMC11410806 DOI: 10.1038/s41467-024-52020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Our views of fold space implicitly rest upon many assumptions that impact how we analyze, interpret and understand protein structure, function and evolution. For instance, is there an optimal granularity in viewing protein structural similarities (e.g., architecture, topology or some other level)? Similarly, the discrete/continuous dichotomy of fold space is central, but remains unresolved. Discrete views of fold space bin similar folds into distinct, non-overlapping groups; unfortunately, such binning can miss remote relationships. While hierarchical systems like CATH are indispensable resources, less heuristic and more conceptually flexible approaches could enable more nuanced explorations of fold space. Building upon an Urfold model of protein structure, here we present a deep generative modeling framework, termed DeepUrfold, for analyzing protein relationships at scale. DeepUrfold's learned embeddings occupy high-dimensional latent spaces that can be distilled for a given protein in terms of an amalgamated representation uniting sequence, structure and biophysical properties. This approach is structure-guided, versus being purely structure-based, and DeepUrfold learns representations that, in a sense, define superfamilies. Deploying DeepUrfold with CATH reveals evolutionarily-remote relationships that evade existing methodologies, and suggests a mostly-continuous view of fold space-a view that extends beyond simple geometric similarity, towards the realm of integrated sequence ↔ structure ↔ function properties.
Collapse
Affiliation(s)
- Eli J Draizen
- School of Data Science, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Stella Veretnik
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Cameron Mura
- School of Data Science, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Kutlu Y, Axel G, Kolodny R, Ben-Tal N, Haliloglu T. Reused Protein Segments Linked to Functional Dynamics. Mol Biol Evol 2024; 41:msae184. [PMID: 39226145 PMCID: PMC11412252 DOI: 10.1093/molbev/msae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Protein space is characterized by extensive recurrence, or "reuse," of parts, suggesting that new proteins and domains can evolve by mixing-and-matching of existing segments. From an evolutionary perspective, for a given combination to persist, the protein segments should presumably not only match geometrically but also dynamically communicate with each other to allow concerted motions that are key to function. Evidence from protein space supports the premise that domains indeed combine in this manner; we explore whether a similar phenomenon can be observed at the sub-domain level. To this end, we use Gaussian Network Models (GNMs) to calculate the so-called soft modes, or low-frequency modes of motion for a dataset of 150 protein domains. Modes of motion can be used to decompose a domain into segments of consecutive amino acids that we call "dynamic elements", each of which belongs to one of two parts that move in opposite senses. We find that, in many cases, the dynamic elements, detected based on GNM analysis, correspond to established "themes": Sub-domain-level segments that have been shown to recur in protein space, and which were detected in previous research using sequence similarity alone (i.e. completely independently of the GNM analysis). This statistically significant correlation hints at the importance of dynamics in evolution. Overall, the results are consistent with an evolutionary scenario where proteins have emerged from themes that need to match each other both geometrically and dynamically, e.g. to facilitate allosteric regulation.
Collapse
Affiliation(s)
- Yiğit Kutlu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Gabriel Axel
- School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Nir Ben-Tal
- School of Neurobiology, Biochemistry & Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| |
Collapse
|
8
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Jones AA, Snow CD. Porous protein crystals: synthesis and applications. Chem Commun (Camb) 2024; 60:5790-5803. [PMID: 38756076 DOI: 10.1039/d4cc00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.
Collapse
Affiliation(s)
- Alec Arthur Jones
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
| | - Christopher D Snow
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA
| |
Collapse
|
10
|
Zheng Z, Goncearenco A, Berezovsky IN. Back in time to the Gly-rich prototype of the phosphate binding elementary function. Curr Res Struct Biol 2024; 7:100142. [PMID: 38655428 PMCID: PMC11035071 DOI: 10.1016/j.crstbi.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Binding of nucleotides and their derivatives is one of the most ancient elementary functions dating back to the Origin of Life. We review here the works considering one of the key elements in binding of (di)nucleotide-containing ligands - phosphate binding. We start from a brief discussion of major participants, conditions, and events in prebiotic evolution that resulted in the Origin of Life. Tracing back to the basic functions, including metal and phosphate binding, and, potentially, formation of primitive protein-protein interactions, we focus here on the phosphate binding. Critically assessing works on the structural, functional, and evolutionary aspects of phosphate binding, we perform a simple computational experiment reconstructing its most ancient and generic sequence prototype. The profiles of the phosphate binding signatures have been derived in form of position-specific scoring matrices (PSSMs), their peculiarities depending on the type of the ligands have been analyzed, and evolutionary connections between them have been delineated. Then, the apparent prototype that gave rise to all relevant phosphate-binding signatures had also been reconstructed. We show that two major signatures of the phosphate binding that discriminate between the binding of dinucleotide- and nucleotide-containing ligands are GxGxxG and GxxGxG, respectively. It appears that the signature archetypal for dinucleotide-containing ligands is more generic, and it can frequently bind phosphate groups in nucleotide-containing ligands as well. The reconstructed prototype's key signature GxGGxG underlies the role of glycine residues in providing flexibility and interactions necessary for binding the phosphate groups. The prototype also contains other ancient amino acids, valine, and alanine, showing versatility towards evolutionary design and functional diversification.
Collapse
Affiliation(s)
- Zejun Zheng
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | | | - Igor N. Berezovsky
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore
| |
Collapse
|
11
|
Michel F, Romero‐Romero S, Höcker B. Retracing the evolution of a modern periplasmic binding protein. Protein Sci 2023; 32:e4793. [PMID: 37788980 PMCID: PMC10601554 DOI: 10.1002/pro.4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.
Collapse
Affiliation(s)
- Florian Michel
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| | | | - Birte Höcker
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
12
|
Aziz MF, Mughal F, Caetano-Anollés G. Tracing the birth of structural domains from loops during protein evolution. Sci Rep 2023; 13:14688. [PMID: 37673948 PMCID: PMC10482863 DOI: 10.1038/s41598-023-41556-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
The structures and functions of proteins are embedded into the loop scaffolds of structural domains. Their origin and evolution remain mysterious. Here, we use a novel graph-theoretical approach to describe how modular and non-modular loop prototypes combine to form folded structures in protein domain evolution. Phylogenomic data-driven chronologies reoriented a bipartite network of loops and domains (and its projections) into 'waterfalls' depicting an evolving 'elementary functionome' (EF). Two primordial waves of functional innovation involving founder 'p-loop' and 'winged-helix' domains were accompanied by an ongoing emergence and reuse of structural and functional novelty. Metabolic pathways expanded before translation functionalities. A dual hourglass recruitment pattern transferred scale-free properties from loop to domain components of the EF network in generative cycles of hierarchical modularity. Modeling the evolutionary emergence of the oldest P-loop and winged-helix domains with AlphFold2 uncovered rapid convergence towards folded structure, suggesting that a folding vocabulary exists in loops for protein fold repurposing and design.
Collapse
Affiliation(s)
- M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Porter LL. Fluid protein fold space and its implications. Bioessays 2023; 45:e2300057. [PMID: 37431685 PMCID: PMC10529699 DOI: 10.1002/bies.202300057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold-switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert between folds with distinct secondary structures, (2) some naturally occurring sequences have switched folds by stepwise mutation, and (3) fold switching is evolutionarily selected and likely confers advantage. These observations indicate that minor amino acid sequence modifications can transform protein structure and function. Consequently, proteomic structural and functional diversity may be expanded by alternative splicing, small nucleotide polymorphisms, post-translational modifications, and modified translation rates.
Collapse
Affiliation(s)
- Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Chakravarty D, Sreenivasan S, Swint-Kruse L, Porter LL. Identification of a covert evolutionary pathway between two protein folds. Nat Commun 2023; 14:3177. [PMID: 37264049 PMCID: PMC10235069 DOI: 10.1038/s41467-023-38519-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Although homologous protein sequences are expected to adopt similar structures, some amino acid substitutions can interconvert α-helices and β-sheets. Such fold switching may have occurred over evolutionary history, but supporting evidence has been limited by the: (1) abundance and diversity of sequenced genes, (2) quantity of experimentally determined protein structures, and (3) assumptions underlying the statistical methods used to infer homology. Here, we overcome these barriers by applying multiple statistical methods to a family of ~600,000 bacterial response regulator proteins. We find that their homologous DNA-binding subunits assume divergent structures: helix-turn-helix versus α-helix + β-sheet (winged helix). Phylogenetic analyses, ancestral sequence reconstruction, and AlphaFold2 models indicate that amino acid substitutions facilitated a switch from helix-turn-helix into winged helix. This structural transformation likely expanded DNA-binding specificity. Our approach uncovers an evolutionary pathway between two protein folds and provides a methodology to identify secondary structure switching in other protein families.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Abstract
Mechanisms of emergence and divergence of protein folds pose central questions in biological sciences. Incremental mutation and stepwise adaptation explain relationships between topologically similar protein folds. However, the universe of folds is diverse and riotous, suggesting more potent and creative forces are at play. Sequence and structure similarity are observed between distinct folds, indicating that proteins with distinct folds may share common ancestry. We found evidence of common ancestry between three distinct β-barrel folds: Scr kinase family homology (SH3), oligonucleotide/oligosaccharide-binding (OB), and cradle loop barrel (CLB). The data suggest a mechanism of fold evolution that interconverts SH3, OB, and CLB. This mechanism, which we call creative destruction, can be generalized to explain many examples of fold evolution including circular permutation. In creative destruction, an open reading frame duplicates or otherwise merges with another to produce a fused polypeptide. A merger forces two ancestral domains into a new sequence and spatial context. The fused polypeptide can explore folding landscapes that are inaccessible to either of the independent ancestral domains. However, the folding landscapes of the fused polypeptide are not fully independent of those of the ancestral domains. Creative destruction is thus partially conservative; a daughter fold inherits some motifs from ancestral folds. After merger and refolding, adaptive processes such as mutation and loss of extraneous segments optimize the new daughter fold. This model has application in disease states characterized by genetic instability. Fused proteins observed in cancer cells are likely to experience remodeled folding landscapes and realize altered folds, conferring new or altered functions.
Collapse
|
16
|
Schütze K, Heinzinger M, Steinegger M, Rost B. Nearest neighbor search on embeddings rapidly identifies distant protein relations. FRONTIERS IN BIOINFORMATICS 2022; 2:1033775. [PMID: 36466147 PMCID: PMC9714024 DOI: 10.3389/fbinf.2022.1033775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2023] Open
Abstract
Since 1992, all state-of-the-art methods for fast and sensitive identification of evolutionary, structural, and functional relations between proteins (also referred to as "homology detection") use sequences and sequence-profiles (PSSMs). Protein Language Models (pLMs) generalize sequences, possibly capturing the same constraints as PSSMs, e.g., through embeddings. Here, we explored how to use such embeddings for nearest neighbor searches to identify relations between protein pairs with diverged sequences (remote homology detection for levels of <20% pairwise sequence identity, PIDE). While this approach excelled for proteins with single domains, we demonstrated the current challenges applying this to multi-domain proteins and presented some ideas how to overcome existing limitations, in principle. We observed that sufficiently challenging data set separations were crucial to provide deeply relevant insights into the behavior of nearest neighbor search when applied to the protein embedding space, and made all our methods readily available for others.
Collapse
Affiliation(s)
- Konstantin Schütze
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology—i12, Munich, Germany
| | - Michael Heinzinger
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology—i12, Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Garching, Germany
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
| | - Burkhard Rost
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology—i12, Munich, Germany
- Institute for Advanced Study (TUM-IAS), Germany & TUM School of Life Sciences Weihenstephan (WZW), Freising, Germany
| |
Collapse
|
17
|
Ercolano MR, D’Esposito D, Andolfo G, Frusciante L. Multilevel evolution shapes the function of NB-LRR encoding genes in plant innate immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1007288. [PMID: 36388554 PMCID: PMC9647133 DOI: 10.3389/fpls.2022.1007288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A sophisticated innate immune system based on diverse pathogen receptor genes (PRGs) evolved in the history of plant life. To reconstruct the direction and magnitude of evolutionary trajectories of a given gene family, it is critical to detect the ancestral signatures. The rearrangement of functional domains made up the diversification found in PRG repertoires. Structural rearrangement of ancient domains mediated the NB-LRR evolutionary path from an initial set of modular proteins. Events such as domain acquisition, sequence modification and temporary or stable associations are prominent among rapidly evolving innate immune receptors. Over time PRGs are continuously shaped by different forces to find their optimal arrangement along the genome. The immune system is controlled by a robust regulatory system that works at different scales. It is important to understand how the PRG interaction network can be adjusted to meet specific needs. The high plasticity of the innate immune system is based on a sophisticated functional architecture and multi-level control. Due to the complexity of interacting with diverse pathogens, multiple defense lines have been organized into interconnected groups. Genomic architecture, gene expression regulation and functional arrangement of PRGs allow the deployment of an appropriate innate immunity response.
Collapse
|
18
|
Qiu K, Ben‐Tal N, Kolodny R. Similar protein segments shared between domains of different evolutionary lineages. Protein Sci 2022; 31:e4407. [PMID: 36040261 PMCID: PMC9387206 DOI: 10.1002/pro.4407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
The emergence of novel proteins, beyond these that can be readily made by duplication and recombination of preexisting domains, is elusive. De novo emergence from random sequences is unlikely because the vast majority of random chains would not even fold, let alone function. An alternative explanation is that novel proteins emerge by duplication and fusion of pre-existing polypeptide segments. In this case, traces of such ancient events may remain within contemporary proteins in the form of reused segments. Together with the late Dan Tawfik, we detected such similar segments, far shorter than intact protein domains, which are found in different environments. The detection of these, "bridging themes," was based on a unique search strategy, where in addition to searching for similarity of shared fragments, so-called "themes," we also explicitly searched for cases in which the sequence segments before and after the theme are dissimilar (both in sequence and structure). Here, using a similar strategy, we further expanded the search and discovered almost 500 additional "bridging themes," linking domains that are often from ancient folds. The themes, of 20 residues or more (average 53), do not retain their structure despite sharing 37% sequence identity on average. Indeed, conformation flexibility may confer an evolutionary advantage, in that it fits in multiple environments. We elaborate on two interesting themes, shared between Rossmann/Trefoil-Plexin-like domains and a β-propeller-like domain. FOR A BROAD AUDIENCE: A fundamental question in molecular evolution is how protein domains emerged. Similar segments shared between domains of seemingly distinct origins, may offer clues, as these may be remnants of the evolutionary process through which these domains emerged. However, finding such cases is difficult. Here, we expand the set of such cases which we curated previously, adding segments shared between domains that are considered ancient.
Collapse
Affiliation(s)
- Kaiyu Qiu
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Nir Ben‐Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Rachel Kolodny
- Department of Computer ScienceUniversity of HaifaHaifaIsrael
| |
Collapse
|
19
|
Yang H, Xiong Z, Zonta F. Construction of a Deep Neural Network Energy Function for Protein Physics. J Chem Theory Comput 2022; 18:5649-5658. [PMID: 35939398 PMCID: PMC9476656 DOI: 10.1021/acs.jctc.2c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The traditional approach of computational biology consists of calculating molecule properties by using approximate classical potentials. Interactions between atoms are described by an energy function derived from physical principles or fitted to experimental data. Their functional form is usually limited to pairwise interactions between atoms and does not consider complex multibody effects. More recently, neural networks have emerged as an alternative way of describing the interactions between biomolecules. In this approach, the energy function does not have an explicit functional form and is learned bottom-up from simulations at the atomistic or quantum level. In this study, we attempt a top-down approach and use deep learning methods to obtain an energy function by exploiting the large amount of experimental data acquired with years in the field of structural biology. The energy function is represented by a probability density model learned from a large repertoire of building blocks representing local clusters of amino acids paired with their sequence signature. We demonstrated the feasibility of this approach by generating a neural network energy function and testing its validity on several applications such as discriminating decoys, assessing qualities of structural models, sampling structural conformations, and designing new protein sequences. We foresee that, in the future, our methodology could exploit the continuously increasing availability of experimental data and simulations and provide a new method for the parametrization of protein energy functions.
Collapse
Affiliation(s)
- Huan Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhaoping Xiong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
20
|
Romei M, Sapriel G, Imbert P, Jamay T, Chomilier J, Lecointre G, Carpentier M. Protein folds as synapomorphies of the tree of life. Evolution 2022; 76:1706-1719. [PMID: 35765784 PMCID: PMC9541633 DOI: 10.1111/evo.14550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 01/22/2023]
Abstract
Several studies showed that folds (topology of protein secondary structures) distribution in proteomes may be a global proxy to build phylogeny. Then, some folds should be synapomorphies (derived characters exclusively shared among taxa). However, previous studies used methods that did not allow synapomorphy identification, which requires congruence analysis of folds as individual characters. Here, we map SCOP folds onto a sample of 210 species across the tree of life (TOL). Congruence is assessed using retention index of each fold for the TOL, and principal component analysis for deeper branches. Using a bicluster mapping approach, we define synapomorphic blocks of folds (SBF) sharing similar presence/absence patterns. Among the 1232 folds, 20% are universally present in our TOL, whereas 54% are reliable synapomorphies. These results are similar with CATH and ECOD databases. Eukaryotes are characterized by a large number of them, and several SBFs clearly support nested eukaryotic clades (divergence times from 1100 to 380 mya). Although clearly separated, the three superkingdoms reveal a strong mosaic pattern. This pattern is consistent with the dual origin of eukaryotes and witness secondary endosymbiosis in their phothosynthetic clades. Our study unveils direct analysis of folds synapomorphies as key characters to unravel evolutionary history of species.
Collapse
Affiliation(s)
- Martin Romei
- Institut Systématique Evolution Biodiversité (ISYEB UMR 7205)Sorbonne Université, MNHN, CNRS, EPHE, UAParisFrance,IMPMC (UMR 7590), BiBiP, Sorbonne Université, CNRS, MNHNParisFrance
| | - Guillaume Sapriel
- Institut Systématique Evolution Biodiversité (ISYEB UMR 7205)Sorbonne Université, MNHN, CNRS, EPHE, UAParisFrance,UFR des sciences de la santéUniversité Versailles‐St‐QuentinVersaillesFrance
| | - Pierre Imbert
- Institut Systématique Evolution Biodiversité (ISYEB UMR 7205)Sorbonne Université, MNHN, CNRS, EPHE, UAParisFrance
| | - Théo Jamay
- Institut Systématique Evolution Biodiversité (ISYEB UMR 7205)Sorbonne Université, MNHN, CNRS, EPHE, UAParisFrance
| | | | - Guillaume Lecointre
- Institut Systématique Evolution Biodiversité (ISYEB UMR 7205)Sorbonne Université, MNHN, CNRS, EPHE, UAParisFrance
| | - Mathilde Carpentier
- Institut Systématique Evolution Biodiversité (ISYEB UMR 7205)Sorbonne Université, MNHN, CNRS, EPHE, UAParisFrance
| |
Collapse
|
21
|
Sologova SS, Zavadskiy SP, Mokhosoev IM, Moldogazieva NT. Short Linear Motifs Orchestrate Functioning of Human Proteins during Embryonic Development, Redox Regulation, and Cancer. Metabolites 2022; 12:metabo12050464. [PMID: 35629968 PMCID: PMC9144484 DOI: 10.3390/metabo12050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins that represent amino acid stretches composed of 3 to 10 residues. The biological activities of two short peptide segments of human alpha-fetoprotein (AFP), a major embryo-specific and cancer-related protein, have been confirmed experimentally. This is a heptapeptide segment LDSYQCT in domain I designated as AFP14–20 and a nonapeptide segment EMTPVNPGV in domain III designated as GIP-9. In our work, we searched the UniprotKB database for human proteins that contain SLiMs with sequence similarity to the both segments of human AFP and undertook gene ontology (GO)-based functional categorization of retrieved proteins. Gene set enrichment analysis included GO terms for biological process, molecular function, metabolic pathway, KEGG pathway, and protein–protein interaction (PPI) categories. We identified the SLiMs of interest in a variety of non-homologous proteins involved in multiple cellular processes underlying embryonic development, cancer progression, and, unexpectedly, the regulation of redox homeostasis. These included transcription factors, cell adhesion proteins, ubiquitin-activating and conjugating enzymes, cell signaling proteins, and oxidoreductase enzymes. They function by regulating cell proliferation and differentiation, cell cycle, DNA replication/repair/recombination, metabolism, immune/inflammatory response, and apoptosis. In addition to the retrieved genes, new interacting genes were identified. Our data support the hypothesis that conserved SLiMs are incorporated into non-homologous proteins to serve as functional blocks for their orchestrated functioning.
Collapse
Affiliation(s)
- Susanna S. Sologova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, (Sechenov University), 119991 Moscow, Russia; (S.S.S.); (S.P.Z.)
| | - Sergey P. Zavadskiy
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, (Sechenov University), 119991 Moscow, Russia; (S.S.S.); (S.P.Z.)
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Nurbubu T. Moldogazieva
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, (Sechenov University), 119991 Moscow, Russia; (S.S.S.); (S.P.Z.)
- Correspondence:
| |
Collapse
|
22
|
Longo LM, Kolodny R, McGlynn SE. Evidence for the emergence of β-trefoils by 'Peptide Budding' from an IgG-like β-sandwich. PLoS Comput Biol 2022; 18:e1009833. [PMID: 35157697 PMCID: PMC8880906 DOI: 10.1371/journal.pcbi.1009833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
As sequence and structure comparison algorithms gain sensitivity, the intrinsic interconnectedness of the protein universe has become increasingly apparent. Despite this general trend, β-trefoils have emerged as an uncommon counterexample: They are an isolated protein lineage for which few, if any, sequence or structure associations to other lineages have been identified. If β-trefoils are, in fact, remote islands in sequence-structure space, it implies that the oligomerizing peptide that founded the β-trefoil lineage itself arose de novo. To better understand β-trefoil evolution, and to probe the limits of fragment sharing across the protein universe, we identified both 'β-trefoil bridging themes' (evolutionarily-related sequence segments) and 'β-trefoil-like motifs' (structure motifs with a hallmark feature of the β-trefoil architecture) in multiple, ostensibly unrelated, protein lineages. The success of the present approach stems, in part, from considering β-trefoil sequence segments or structure motifs rather than the β-trefoil architecture as a whole, as has been done previously. The newly uncovered inter-lineage connections presented here suggest a novel hypothesis about the origins of the β-trefoil fold itself-namely, that it is a derived fold formed by 'budding' from an Immunoglobulin-like β-sandwich protein. These results demonstrate how the evolution of a folded domain from a peptide need not be a signature of antiquity and underpin an emerging truth: few protein lineages escape nature's sewing table.
Collapse
Affiliation(s)
- Liam M. Longo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Shawn E. McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Papadopoulos C, Callebaut I, Gelly JC, Hatin I, Namy O, Renard M, Lespinet O, Lopes A. Intergenic ORFs as elementary structural modules of de novo gene birth and protein evolution. Genome Res 2021; 31:2303-2315. [PMID: 34810219 PMCID: PMC8647833 DOI: 10.1101/gr.275638.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
The noncoding genome plays an important role in de novo gene birth and in the emergence of genetic novelty. Nevertheless, how noncoding sequences' properties could promote the birth of novel genes and shape the evolution and the structural diversity of proteins remains unclear. Therefore, by combining different bioinformatic approaches, we characterized the fold potential diversity of the amino acid sequences encoded by all intergenic open reading frames (ORFs) of S. cerevisiae with the aim of (1) exploring whether the structural states' diversity of proteomes is already present in noncoding sequences, and (2) estimating the potential of the noncoding genome to produce novel protein bricks that could either give rise to novel genes or be integrated into pre-existing proteins, thus participating in protein structure diversity and evolution. We showed that amino acid sequences encoded by most yeast intergenic ORFs contain the elementary building blocks of protein structures. Moreover, they encompass the large structural state diversity of canonical proteins, with the majority predicted as foldable. Then, we investigated the early stages of de novo gene birth by reconstructing the ancestral sequences of 70 yeast de novo genes and characterized the sequence and structural properties of intergenic ORFs with a strong translation signal. This enabled us to highlight sequence and structural factors determining de novo gene emergence. Finally, we showed a strong correlation between the fold potential of de novo proteins and one of their ancestral amino acid sequences, reflecting the relationship between the noncoding genome and the protein structure universe.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Jean-Christophe Gelly
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015 Paris, France
- Laboratoire d'Excellence GR-Ex, 75015 Paris, France
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maxime Renard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Caetano-Anollés G, Aziz MF, Mughal F, Caetano-Anollés D. Tracing protein and proteome history with chronologies and networks: folding recapitulates evolution. Expert Rev Proteomics 2021; 18:863-880. [PMID: 34628994 DOI: 10.1080/14789450.2021.1992277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION While the origin and evolution of proteins remain mysterious, advances in evolutionary genomics and systems biology are facilitating the historical exploration of the structure, function and organization of proteins and proteomes. Molecular chronologies are series of time events describing the history of biological systems and subsystems and the rise of biological innovations. Together with time-varying networks, these chronologies provide a window into the past. AREAS COVERED Here, we review molecular chronologies and networks built with modern methods of phylogeny reconstruction. We discuss how chronologies of structural domain families uncover the explosive emergence of metabolism, the late rise of translation, the co-evolution of ribosomal proteins and rRNA, and the late development of the ribosomal exit tunnel; events that coincided with a tendency to shorten folding time. Evolving networks described the early emergence of domains and a late 'big bang' of domain combinations. EXPERT OPINION Two processes, folding and recruitment appear central to the evolutionary progression. The former increases protein persistence. The later fosters diversity. Chronologically, protein evolution mirrors folding by combining supersecondary structures into domains, developing translation machinery to facilitate folding speed and stability, and enhancing structural complexity by establishing long-distance interactions in novel structural and architectural designs.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA.,C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Derek Caetano-Anollés
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Zhao VY, Rodrigues JV, Lozovsky ER, Hartl DL, Shakhnovich EI. Switching an active site helix in dihydrofolate reductase reveals limits to subdomain modularity. Biophys J 2021; 120:4738-4750. [PMID: 34571014 PMCID: PMC8595743 DOI: 10.1016/j.bpj.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
To what degree are individual structural elements within proteins modular such that similar structures from unrelated proteins can be interchanged? We study subdomain modularity by creating 20 chimeras of an enzyme, Escherichia coli dihydrofolate reductase (DHFR), in which a catalytically important, 10-residue α-helical sequence is replaced by α-helical sequences from a diverse set of proteins. The chimeras stably fold but have a range of diminished thermal stabilities and catalytic activities. Evolutionary coupling analysis indicates that the residues of this α-helix are under selection pressure to maintain catalytic activity in DHFR. Reversion to phenylalanine at key position 31 was found to partially restore catalytic activity, which could be explained by evolutionary coupling values. We performed molecular dynamics simulations using replica exchange with solute tempering. Chimeras with low catalytic activity exhibit nonhelical conformations that block the binding site and disrupt the positioning of the catalytically essential residue D27. Simulation observables and in vitro measurements of thermal stability and substrate-binding affinity are strongly correlated. Several E. coli strains with chromosomally integrated chimeric DHFRs can grow, with growth rates that follow predictions from a kinetic flux model that depends on the intracellular abundance and catalytic activity of DHFR. Our findings show that although α-helices are not universally substitutable, the molecular and fitness effects of modular segments can be predicted by the biophysical compatibility of the replacement segment.
Collapse
Affiliation(s)
- Victor Y Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Elena R Lozovsky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
26
|
TwinCons: Conservation score for uncovering deep sequence similarity and divergence. PLoS Comput Biol 2021; 17:e1009541. [PMID: 34714829 PMCID: PMC8580257 DOI: 10.1371/journal.pcbi.1009541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/10/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
We have developed the program TwinCons, to detect noisy signals of deep ancestry of proteins or nucleic acids. As input, the program uses a composite alignment containing pre-defined groups, and mathematically determines a 'cost' of transforming one group to the other at each position of the alignment. The output distinguishes conserved, variable and signature positions. A signature is conserved within groups but differs between groups. The method automatically detects continuous characteristic stretches (segments) within alignments. TwinCons provides a convenient representation of conserved, variable and signature positions as a single score, enabling the structural mapping and visualization of these characteristics. Structure is more conserved than sequence. TwinCons highlights alternative sequences of conserved structures. Using TwinCons, we detected highly similar segments between proteins from the translation and transcription systems. TwinCons detects conserved residues within regions of high functional importance for the ribosomal RNA (rRNA) and demonstrates that signatures are not confined to specific regions but are distributed across the rRNA structure. The ability to evaluate both nucleic acid and protein alignments allows TwinCons to be used in combined sequence and structural analysis of signatures and conservation in rRNA and in ribosomal proteins (rProteins). TwinCons detects a strong sequence conservation signal between bacterial and archaeal rProteins related by circular permutation. This conserved sequence is structurally colocalized with conserved rRNA, indicated by TwinCons scores of rRNA alignments of bacterial and archaeal groups. This combined analysis revealed deep co-evolution of rRNA and rProtein buried within the deepest branching points in the tree of life.
Collapse
|
27
|
Alvarez-Carreño C, Penev PI, Petrov AS, Williams LD. Fold Evolution before LUCA: Common Ancestry of SH3 Domains and OB Domains. Mol Biol Evol 2021; 38:5134-5143. [PMID: 34383917 PMCID: PMC8557408 DOI: 10.1093/molbev/msab240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SH3 and OB are the simplest, oldest, and most common protein domains within the translation system. SH3 and OB domains are β-barrels that are structurally similar but are topologically distinct. To transform an OB domain to a SH3 domain, β-strands must be permuted in a multistep and evolutionarily implausible mechanism. Here, we explored relationships between SH3 and OB domains of ribosomal proteins, initiation, and elongation factors using a combined sequence- and structure-based approach. We detect a common core of SH3 and OB domains, as a region of significant structure and sequence similarity. The common core contains four β-strands and a loop, but omits the fifth β-strand, which is variable and is absent from some OB and SH3 domain proteins. The structure of the common core immediately suggests a simple permutation mechanism for interconversion between SH3 and OB domains, which appear to share an ancestor. The OB domain was formed by duplication and adaptation of the SH3 domain core, or vice versa, in a simple and probable transformation. By employing the folding algorithm AlphaFold2, we demonstrated that an ancestral reconstruction of a permuted SH3 sequence folds into an OB structure, and an ancestral reconstruction of a permuted OB sequence folds into a SH3 structure. The tandem SH3 and OB domains in the universal ribosomal protein uL2 share a common ancestor, suggesting that the divergence of these two domains occurred before the last universal common ancestor.
Collapse
Affiliation(s)
- Claudia Alvarez-Carreño
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Petar I Penev
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anton S Petrov
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Loren Dean Williams
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
28
|
Ferruz N, Michel F, Lobos F, Schmidt S, Höcker B. Fuzzle 2.0: Ligand Binding in Natural Protein Building Blocks. Front Mol Biosci 2021; 8:715972. [PMID: 34485385 PMCID: PMC8416435 DOI: 10.3389/fmolb.2021.715972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Modern proteins have been shown to share evolutionary relationships via subdomain-sized fragments. The assembly of such fragments through duplication and recombination events led to the complex structures and functions we observe today. We previously implemented a pipeline that identified more than 1,000 of these fragments that are shared by different protein folds and developed a web interface to analyze and search for them. This resource named Fuzzle helps structural and evolutionary biologists to identify and analyze conserved parts of a protein but it also provides protein engineers with building blocks for example to design proteins by fragment combination. Here, we describe a new version of this web resource that was extended to include ligand information. This addition is a significant asset to the database since now protein fragments that bind specific ligands can be identified and analyzed. Often the mode of ligand binding is conserved in proteins thereby supporting a common evolutionary origin. The same can now be explored for subdomain-sized fragments within this database. This ligand binding information can also be used in protein engineering to graft binding pockets into other protein scaffolds or to transfer functional sites via recombination of a specific fragment. Fuzzle 2.0 is freely available at https://fuzzle.uni-bayreuth.de/2.0.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Florian Michel
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Steffen Schmidt
- Computational Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
29
|
Romero-Romero S, Kordes S, Michel F, Höcker B. Evolution, folding, and design of TIM barrels and related proteins. Curr Opin Struct Biol 2021; 68:94-104. [PMID: 33453500 PMCID: PMC8250049 DOI: 10.1016/j.sbi.2020.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Proteins are chief actors in life that perform a myriad of exquisite functions. This diversity has been enabled through the evolution and diversification of protein folds. Analysis of sequences and structures strongly suggest that numerous protein pieces have been reused as building blocks and propagated to many modern folds. This information can be traced to understand how the protein world has diversified. In this review, we discuss the latest advances in the analysis of protein evolutionary units, and we use as a model system one of the most abundant and versatile topologies, the TIM-barrel fold, to highlight the existing common principles that interconnect protein evolution, structure, folding, function, and design.
Collapse
Affiliation(s)
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Florian Michel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
30
|
Koubek J, Schmitt J, Galmozzi CV, Kramer G. Mechanisms of Cotranslational Protein Maturation in Bacteria. Front Mol Biosci 2021; 8:689755. [PMID: 34113653 PMCID: PMC8185961 DOI: 10.3389/fmolb.2021.689755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Growing cells invest a significant part of their biosynthetic capacity into the production of proteins. To become functional, newly-synthesized proteins must be N-terminally processed, folded and often translocated to other cellular compartments. A general strategy is to integrate these protein maturation processes with translation, by cotranslationally engaging processing enzymes, chaperones and targeting factors with the nascent polypeptide. Precise coordination of all factors involved is critical for the efficiency and accuracy of protein synthesis and cellular homeostasis. This review provides an overview of the current knowledge on cotranslational protein maturation, with a focus on the production of cytosolic proteins in bacteria. We describe the role of the ribosome and the chaperone network in protein folding and how the dynamic interplay of all cotranslationally acting factors guides the sequence of cotranslational events. Finally, we discuss recent data demonstrating the coupling of protein synthesis with the assembly of protein complexes and end with a brief discussion of outstanding questions and emerging concepts in the field of cotranslational protein maturation.
Collapse
Affiliation(s)
- Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jaro Schmitt
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carla Veronica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
31
|
Kolodny R, Nepomnyachiy S, Tawfik DS, Ben-Tal N. Bridging Themes: Short Protein Segments Found in Different Architectures. Mol Biol Evol 2021; 38:2191-2208. [PMID: 33502503 PMCID: PMC8136508 DOI: 10.1093/molbev/msab017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vast majority of theoretically possible polypeptide chains do not fold, let alone confer function. Hence, protein evolution from preexisting building blocks has clear potential advantages over ab initio emergence from random sequences. In support of this view, sequence similarities between different proteins is generally indicative of common ancestry, and we collectively refer to such homologous sequences as "themes." At the domain level, sequence homology is routinely detected. However, short themes which are segments, or fragments of intact domains, are particularly interesting because they may provide hints about the emergence of domains, as opposed to divergence of preexisting domains, or their mixing-and-matching to form multi-domain proteins. Here we identified 525 representative short themes, comprising 20-80 residues that are unexpectedly shared between domains considered to have emerged independently. Among these "bridging themes" are ones shared between the most ancient domains, for example, Rossmann, P-loop NTPase, TIM-barrel, flavodoxin, and ferredoxin-like. We elaborate on several particularly interesting cases, where the bridging themes mediate ligand binding. Ligand binding may have contributed to the stability and the plasticity of these building blocks, and to their ability to invade preexisting domains or serve as starting points for completely new domains.
Collapse
Affiliation(s)
- Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | | | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Ben-Tal
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Heizinger L, Merkl R. Evidence for the preferential reuse of sub-domain motifs in primordial protein folds. Proteins 2021; 89:1167-1179. [PMID: 33957009 DOI: 10.1002/prot.26089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
A comparison of protein backbones makes clear that not more than approximately 1400 different folds exist, each specifying the three-dimensional topology of a protein domain. Large proteins are composed of specific domain combinations and many domains can accommodate different functions. These findings confirm that the reuse of domains is key for the evolution of multi-domain proteins. If reuse was also the driving force for domain evolution, ancestral fragments of sub-domain size exist that are shared between domains possessing significantly different topologies. For the fully automated detection of putatively ancestral motifs, we developed the algorithm Fragstatt that compares proteins pairwise to identify fragments, that is, instantiations of the same motif. To reach maximal sensitivity, Fragstatt compares sequences by means of cascaded alignments of profile Hidden Markov Models. If the fragment sequences are sufficiently similar, the program determines and scores the structural concordance of the fragments. By analyzing a comprehensive set of proteins from the CATH database, Fragstatt identified 12 532 partially overlapping and structurally similar motifs that clustered to 134 unique motifs. The dissemination of these motifs is limited: We found only two domain topologies that contain two different motifs and generally, these motifs occur in not more than 18% of the CATH topologies. Interestingly, motifs are enriched in topologies that are considered ancestral. Thus, our findings suggest that the reuse of sub-domain sized fragments was relevant in early phases of protein evolution and became less important later on.
Collapse
Affiliation(s)
- Leonhard Heizinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Konagurthu AS, Subramanian R, Allison L, Abramson D, Stuckey PJ, Garcia de la Banda M, Lesk AM. Universal Architectural Concepts Underlying Protein Folding Patterns. Front Mol Biosci 2021; 7:612920. [PMID: 33996891 PMCID: PMC8120156 DOI: 10.3389/fmolb.2020.612920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022] Open
Abstract
What is the architectural “basis set” of the observed universe of protein structures? Using information-theoretic inference, we answer this question with a dictionary of 1,493 substructures—called concepts—typically at a subdomain level, based on an unbiased subset of known protein structures. Each concept represents a topologically conserved assembly of helices and strands that make contact. Any protein structure can be dissected into instances of concepts from this dictionary. We dissected the Protein Data Bank and completely inventoried all the concept instances. This yields many insights, including correlations between concepts and catalytic activities or binding sites, useful for rational drug design; local amino-acid sequence–structure correlations, useful for ab initio structure prediction methods; and information supporting the recognition and exploration of evolutionary relationships, useful for structural studies. An interactive site, Proçodic, at http://lcb.infotech.monash.edu.au/prosodic (click), provides access to and navigation of the entire dictionary of concepts and their usages, and all associated information. This report is part of a continuing programme with the goal of elucidating fundamental principles of protein architecture, in the spirit of the work of Cyrus Chothia.
Collapse
Affiliation(s)
- Arun S Konagurthu
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Ramanan Subramanian
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Lloyd Allison
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - David Abramson
- Research Computing Center, University of Queensland, Brisbane, QLD, Australia
| | - Peter J Stuckey
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Garcia de la Banda
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States.,MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
34
|
Røgen P. Quantifying steric hindrance and topological obstruction to protein structure superposition. Algorithms Mol Biol 2021; 16:1. [PMID: 33639968 PMCID: PMC7913338 DOI: 10.1186/s13015-020-00180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In computational structural biology, structure comparison is fundamental for our understanding of proteins. Structure comparison is, e.g., algorithmically the starting point for computational studies of structural evolution and it guides our efforts to predict protein structures from their amino acid sequences. Most methods for structural alignment of protein structures optimize the distances between aligned and superimposed residue pairs, i.e., the distances traveled by the aligned and superimposed residues during linear interpolation. Considering such a linear interpolation, these methods do not differentiate if there is room for the interpolation, if it causes steric clashes, or more severely, if it changes the topology of the compared protein backbone curves. RESULTS To distinguish such cases, we analyze the linear interpolation between two aligned and superimposed backbones. We quantify the amount of steric clashes and find all self-intersections in a linear backbone interpolation. To determine if the self-intersections alter the protein's backbone curve significantly or not, we present a path-finding algorithm that checks if there exists a self-avoiding path in a neighborhood of the linear interpolation. A new path is constructed by altering the linear interpolation using a novel interpretation of Reidemeister moves from knot theory working on three-dimensional curves rather than on knot diagrams. Either the algorithm finds a self-avoiding path or it returns a smallest set of essential self-intersections. Each of these indicates a significant difference between the folds of the aligned protein structures. As expected, we find at least one essential self-intersection separating most unknotted structures from a knotted structure, and we find even larger motions in proteins connected by obstruction free linear interpolations. We also find examples of homologous proteins that are differently threaded, and we find many distinct folds connected by longer but simple deformations. TM-align is one of the most restrictive alignment programs. With standard parameters, it only aligns residues superimposed within 5 Ångström distance. We find 42165 topological obstructions between aligned parts in 142068 TM-alignments. Thus, this restrictive alignment procedure still allows topological dissimilarity of the aligned parts. CONCLUSIONS Based on the data we conclude that our program ProteinAlignmentObstruction provides significant additional information to alignment scores based solely on distances between aligned and superimposed residue pairs.
Collapse
|
35
|
Searching protein space for ancient sub-domain segments. Curr Opin Struct Biol 2021; 68:105-112. [PMID: 33476896 DOI: 10.1016/j.sbi.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
Evolutionary processes that formed the current protein universe left their traces, among them homologous segments that recur, or are 'reused,' in multiple proteins. These reused segments, called 'themes,' can be found at various scales, the best known of which is the domain. Yet, recent studies have begun to focus on the evolutionary insights that can be derived from sub-domain-scale themes, which are candidates for traces of more ancient events. Characterizing these may provide clues to the emergence of domains. Particularly interesting are themes that are reused across dissimilar contexts, that is, where the rest of the protein domain differs. We survey computational studies identifying reused themes within different contexts at the sub-domain level.
Collapse
|
36
|
Mylemans B, Voet AR, Tame JR. The Taming of the Screw: the natural and artificial development of β-propeller proteins. Curr Opin Struct Biol 2020; 68:48-54. [PMID: 33373773 DOI: 10.1016/j.sbi.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Many proteins are found to possess repeated structural elements, which hint at ancient evolutionary origins and ongoing evolutionary processes. β-propeller proteins are a large family of such proteins, and a popular focus of structural analysis. This review highlights recent work to understand how they arose, and how they have developed into one of the most successful of all protein folds.
Collapse
Affiliation(s)
- Bram Mylemans
- Laboraotry for biomolecular modelling and design, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Arnout Rd Voet
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan
| | - Jeremy Rh Tame
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
37
|
Longo LM, Jabłońska J, Vyas P, Kanade M, Kolodny R, Ben-Tal N, Tawfik DS. On the emergence of P-Loop NTPase and Rossmann enzymes from a Beta-Alpha-Beta ancestral fragment. eLife 2020; 9:e64415. [PMID: 33295875 PMCID: PMC7758060 DOI: 10.7554/elife.64415] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
This article is dedicated to the memory of Michael G. Rossmann. Dating back to the last universal common ancestor, P-loop NTPases and Rossmanns comprise the most ubiquitous and diverse enzyme lineages. Despite similarities in their overall architecture and phosphate binding motif, a lack of sequence identity and some fundamental structural differences currently designates them as independent emergences. We systematically searched for structure and sequence elements shared by both lineages. We detected homologous segments that span the first βαβ motif of both lineages, including the phosphate binding loop and a conserved aspartate at the tip of β2. The latter ligates the catalytic metal in P-loop NTPases, while in Rossmanns it binds the nucleotide's ribose moiety. Tubulin, a Rossmann GTPase, demonstrates the potential of the β2-Asp to take either one of these two roles. While convergence cannot be completely ruled out, we show that both lineages likely emerged from a common βαβ segment that comprises the core of these enzyme families to this very day.
Collapse
Affiliation(s)
- Liam M Longo
- Weizmann Institute of Science, Department of Biomolecular SciencesRehovotIsrael
| | - Jagoda Jabłońska
- Weizmann Institute of Science, Department of Biomolecular SciencesRehovotIsrael
| | - Pratik Vyas
- Weizmann Institute of Science, Department of Biomolecular SciencesRehovotIsrael
| | - Manil Kanade
- Weizmann Institute of Science, Department of Biomolecular SciencesRehovotIsrael
| | - Rachel Kolodny
- University of Haifa, Department of Computer ScienceHaifaIsrael
| | - Nir Ben-Tal
- Tel Aviv University, George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular BiologyTel AvivIsrael
| | - Dan S Tawfik
- Weizmann Institute of Science, Department of Biomolecular SciencesRehovotIsrael
| |
Collapse
|
38
|
Vrancken JPM, Tame JRH, Voet ARD. Development and applications of artificial symmetrical proteins. Comput Struct Biotechnol J 2020; 18:3959-3968. [PMID: 33335692 PMCID: PMC7734218 DOI: 10.1016/j.csbj.2020.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/28/2022] Open
Abstract
Since the determination of the first molecular models of proteins there has been interest in creating proteins artificially, but such methods have only become widely successful in the last decade. Gradual improvements over a long period of time have now yielded numerous examples of non-natural proteins, many of which are built from repeated elements. In this review we discuss the design of such symmetrical proteins and their various applications in chemistry and medicine.
Collapse
Affiliation(s)
- Jeroen P M Vrancken
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Arnout R D Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| |
Collapse
|
39
|
Lipsh-Sokolik R, Listov D, Fleishman SJ. The AbDesign computational pipeline for modular backbone assembly and design of binders and enzymes. Protein Sci 2020; 30:151-159. [PMID: 33040418 PMCID: PMC7737780 DOI: 10.1002/pro.3970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The functional sites of many protein families are dominated by diverse backbone regions that lack secondary structure (loops) but fold stably into their functionally competent state. Nevertheless, the design of structured loop regions from scratch, especially in functional sites, has met with great difficulty. We therefore developed an approach, called AbDesign, to exploit the natural modularity of many protein families and computationally assemble a large number of new backbones by combining naturally occurring modular fragments. This strategy yielded large, atomically accurate, and highly efficient proteins, including antibodies and enzymes exhibiting dozens of mutations from any natural protein. The combinatorial backbone‐conformation space that can be accessed by AbDesign even for a modestly sized family of homologs may exceed the diversity in the entire PDB, providing the sub‐Ångstrom level of control over the positioning of active‐site groups that is necessary for obtaining highly active proteins. This manuscript describes how to implement the pipeline using code that is freely available at https://github.com/Fleishman‐Lab/AbDesign_for_enzymes.
Collapse
Affiliation(s)
| | - Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Skolnick J, Gao M. The role of local versus nonlocal physicochemical restraints in determining protein native structure. Curr Opin Struct Biol 2020; 68:1-8. [PMID: 33129066 DOI: 10.1016/j.sbi.2020.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
The tertiary structure of a native protein is dictated by the interplay of local secondary structure propensities, hydrogen bonding, and tertiary interactions. It is argued that the space of known protein topologies covers all single domain folds and results from the compactness of the native structure and excluded volume. Protein compactness combined with the chirality of the protein's side chains also yields native-like Ramachandran plots. It is the many-body, tertiary interactions among residues that collectively select for the global structure that a particular protein sequence adopts. This explains why the recent advances in deep-learning approaches that predict protein side-chain contacts, the distance matrix between residues, and sequence alignments are successful. They succeed because they implicitly learned the many-body interactions among protein residues.
Collapse
Affiliation(s)
- Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA 30332, United States.
| | - Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA 30332, United States.
| |
Collapse
|
41
|
Carpentier M, Chomilier J. Protein multiple alignments: sequence-based versus structure-based programs. Bioinformatics 2020; 35:3970-3980. [PMID: 30942864 DOI: 10.1093/bioinformatics/btz236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Multiple sequence alignment programs have proved to be very useful and have already been evaluated in the literature yet not alignment programs based on structure or both sequence and structure. In the present article we wish to evaluate the added value provided through considering structures. RESULTS We compared the multiple alignments resulting from 25 programs either based on sequence, structure or both, to reference alignments deposited in five databases (BALIBASE 2 and 3, HOMSTRAD, OXBENCH and SISYPHUS). On the whole, the structure-based methods compute more reliable alignments than the sequence-based ones, and even than the sequence+structure-based programs whatever the databases. Two programs lead, MAMMOTH and MATRAS, nevertheless the performances of MUSTANG, MATT, 3DCOMB, TCOFFEE+TM_ALIGN and TCOFFEE+SAP are better for some alignments. The advantage of structure-based methods increases at low levels of sequence identity, or for residues in regular secondary structures or buried ones. Concerning gap management, sequence-based programs set less gaps than structure-based programs. Concerning the databases, the alignments of the manually built databases are more challenging for the programs. AVAILABILITY AND IMPLEMENTATION All data and results presented in this study are available at: http://wwwabi.snv.jussieu.fr/people/mathilde/download/AliMulComp/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mathilde Carpentier
- Institut Systématique Evolution Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Jacques Chomilier
- Sorbonne Université, MNHN, CNRS, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), BiBiP, Paris, France
| |
Collapse
|
42
|
Lapenta F, Jerala R. Design of novel protein building modules and modular architectures. Curr Opin Struct Biol 2020; 63:90-96. [PMID: 32505942 DOI: 10.1016/j.sbi.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022]
Abstract
Nature uses only a limited number of protein topologies and while several folds have evolved independently over time, there are clearly many possible topologies that have not been explored by evolution. With recent advances of protein design concepts, computational modeling tools, high resolution and high-throughput experimental methods it is now possible to design new protein architectures. The collection of building blocks and design principles widened both in size and complexity, offering an expanded toolset for building new modular folds and functional protein structures. Here we review and discuss recent achievements of protein design, focusing in particular on the use and prospects of modular approaches for assembling new protein folds.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
43
|
Ferruz N, Lobos F, Lemm D, Toledo-Patino S, Farías-Rico JA, Schmidt S, Höcker B. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design. J Mol Biol 2020; 432:3898-3914. [PMID: 32330481 PMCID: PMC7322520 DOI: 10.1016/j.jmb.2020.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Natural evolution has generated an impressively diverse protein universe via duplication and recombination from a set of protein fragments that served as building blocks. The application of these concepts to the design of new proteins using subdomain-sized fragments from different folds has proven to be experimentally successful. To better understand how evolution has shaped our protein universe, we performed an all-against-all comparison of protein domains representing all naturally existing folds and identified conserved homologous protein fragments. Overall, we found more than 1000 protein fragments of various lengths among different folds through similarity network analysis. These fragments are present in very different protein environments and represent versatile building blocks for protein design. These data are available in our web server called F(old P)uzzle (fuzzle.uni-bayreuth.de), which allows to individually filter the dataset and create customized networks for folds of interest. We believe that our results serve as an invaluable resource for structural and evolutionary biologists and as raw material for the design of custom-made proteins.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dominik Lemm
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Saacnicteh Toledo-Patino
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Steffen Schmidt
- Max Planck Institute for Developmental Biology, Tübingen, Germany; Computational Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
44
|
Narunsky A, Kessel A, Solan R, Alva V, Kolodny R, Ben-Tal N. On the evolution of protein-adenine binding. Proc Natl Acad Sci U S A 2020; 117:4701-4709. [PMID: 32079721 PMCID: PMC7060716 DOI: 10.1073/pnas.1911349117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins' interactions with ancient ligands may reveal how molecular recognition emerged and evolved. We explore how proteins recognize adenine: a planar rigid fragment found in the most common and ancient ligands. We have developed a computational pipeline that extracts protein-adenine complexes from the Protein Data Bank, structurally superimposes their adenine fragments, and detects the hydrogen bonds mediating the interaction. Our analysis extends the known motifs of protein-adenine interactions in the Watson-Crick edge of adenine and shows that all of adenine's edges may contribute to molecular recognition. We further show that, on the proteins' side, binding is often mediated by specific amino acid segments ("themes") that recur across different proteins, such that different proteins use the same themes when binding the same adenine-containing ligands. We identify numerous proteins that feature these themes and are thus likely to bind adenine-containing ligands. Our analysis suggests that adenine binding has emerged multiple times in evolution.
Collapse
Affiliation(s)
- Aya Narunsky
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Ron Solan
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Mount Carmel, 3498838 Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel;
| |
Collapse
|
45
|
Buchan DWA, Jones DT. Learning a functional grammar of protein domains using natural language word embedding techniques. Proteins 2019; 88:616-624. [PMID: 31703152 DOI: 10.1002/prot.25842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 11/03/2019] [Indexed: 11/10/2022]
Abstract
In this paper, using Word2vec, a widely-used natural language processing method, we demonstrate that protein domains may have a learnable implicit semantic "meaning" in the context of their functional contributions to the multi-domain proteins in which they are found. Word2vec is a group of models which can be used to produce semantically meaningful embeddings of words or tokens in a fixed-dimension vector space. In this work, we treat multi-domain proteins as "sentences" where domain identifiers are tokens which may be considered as "words." Using all InterPro (Finn et al. 2017) pfam domain assignments we observe that the embedding could be used to suggest putative GO assignments for Pfam (Finn et al. 2016) domains of unknown function.
Collapse
Affiliation(s)
- Daniel W A Buchan
- Department of Computer Science, University College London, London, UK
| | - David T Jones
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
46
|
Mura C, Veretnik S, Bourne PE. The Urfold: Structural similarity just above the superfold level? Protein Sci 2019; 28:2119-2126. [PMID: 31599042 PMCID: PMC6863707 DOI: 10.1002/pro.3742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023]
Abstract
We suspect that there is a level of granularity of protein structure intermediate between the classical levels of "architecture" and "topology," as reflected in such phenomena as extensive three-dimensional structural similarity above the level of (super)folds. Here, we examine this notion of architectural identity despite topological variability, starting with a concept that we call the "Urfold." We believe that this model could offer a new conceptual approach for protein structural analysis and classification: indeed, the Urfold concept may help reconcile various phenomena that have been frequently recognized or debated for years, such as the precise meaning of "significant" structural overlap and the degree of continuity of fold space. More broadly, the role of structural similarity in sequence↔structure↔function evolution has been studied via many models over the years; by addressing a conceptual gap that we believe exists between the architecture and topology levels of structural classification schemes, the Urfold eventually may help synthesize these models into a generalized, consistent framework. Here, we begin by qualitatively introducing the concept.
Collapse
Affiliation(s)
- Cameron Mura
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Stella Veretnik
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Philip E Bourne
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.,School of Data Science, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
47
|
Afanasieva E, Chaudhuri I, Martin J, Hertle E, Ursinus A, Alva V, Hartmann MD, Lupas AN. Structural diversity of oligomeric β-propellers with different numbers of identical blades. eLife 2019; 8:49853. [PMID: 31613220 PMCID: PMC6805158 DOI: 10.7554/elife.49853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
β-Propellers arise through the amplification of a supersecondary structure element called a blade. This process produces toroids of between four and twelve repeats, which are almost always arranged sequentially in a single polypeptide chain. We found that new propellers evolve continuously by amplification from single blades. We therefore investigated whether such nascent propellers can fold as homo-oligomers before they have been fully amplified within a single chain. One- to six-bladed building blocks derived from two seven-bladed WD40 propellers yielded stable homo-oligomers with six to nine blades, depending on the size of the building block. High-resolution structures for tetramers of two blades, trimers of three blades, and dimers of four and five blades, respectively, show structurally diverse propellers and include a novel fold, highlighting the inherent flexibility of the WD40 blade. Our data support the hypothesis that subdomain-sized fragments can provide structural versatility in the evolution of new proteins.
Collapse
Affiliation(s)
- Evgenia Afanasieva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Indronil Chaudhuri
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eva Hertle
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Astrid Ursinus
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
48
|
Berezovsky IN. Towards descriptor of elementary functions for protein design. Curr Opin Struct Biol 2019; 58:159-165. [PMID: 31352188 DOI: 10.1016/j.sbi.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
Abstract
We review studies of the protein evolution that help to formulate rules for protein design. Acknowledging the fundamental importance of Dayhoff's provision on the emergence of functional proteins from short peptides, we discuss multiple evidences of the omnipresent partitioning of protein globules into structural/functional units, using which greatly facilitates the engineering and design efforts. Closed loops and elementary functional loops, which are descendants of ancient ring-like peptides that formed fist protein domains in agreement with Dayhoff's hypothesis, can be considered as basic units of protein structure and function. We argue that future developments in protein design approaches should consider descriptors of the elementary functions, which will help to complement designed scaffolds with functional signatures and flexibility necessary for their functions.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), 30 Biopolis Street, #07-01, Matrix 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
49
|
Trevizani R, Custódio FL. Supersecondary Structures and Fragment Libraries. Methods Mol Biol 2019; 1958:283-295. [PMID: 30945224 DOI: 10.1007/978-1-4939-9161-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of smotifs and fragment libraries has proven useful to both simplify and increase the quality of protein models. Here, we present Profrager, a tool that automatically generates putative structural fragments to reproduce local motifs of proteins given a target sequence. Profrager is highly customizable, allowing the user to select the number of fragments per library, the ranking method is able to generate fragments of all sizes, and it was recently modified to include the possibility of output exclusively smotifs.
Collapse
|
50
|
Stratmann D, Pathmanathan JS, Postic G, Rey J, Chomilier J. TEF 2.0: a graph-based method for decomposing protein structures into closed loops. J Biomol Struct Dyn 2018; 37:4140-4150. [PMID: 30585105 DOI: 10.1080/07391102.2018.1546230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dirk Stratmann
- Sorbonne Université, UMR 7590 CNRS, MNHN, IRD, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC) , Paris , France
| | - Jananan S Pathmanathan
- Sorbonne Université, UMR 7590 CNRS, MNHN, IRD, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC) , Paris , France
| | - Guillaume Postic
- Sorbonne Université, UMR 7590 CNRS, MNHN, IRD, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC) , Paris , France
| | - Julien Rey
- Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Jacques Chomilier
- Sorbonne Université, UMR 7590 CNRS, MNHN, IRD, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC) , Paris , France
| |
Collapse
|