1
|
Tinker J, Anees P, Krishnan Y. Quantitative Chemical Imaging of Organelles. Acc Chem Res 2024; 57:1906-1917. [PMID: 38916405 DOI: 10.1021/acs.accounts.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
DNA nanodevices are nanoscale assemblies, formed from a collection of synthetic DNA strands, that may perform artificial functions. The pioneering developments of a DNA cube by Nadrian Seeman in 1991 and a DNA nanomachine by Turberfield and Yurke in 2000 spawned an entire generation of DNA nanodevices ranging from minimalist to rococo architectures. Since our first demonstration in 2009 that a DNA nanodevice can function autonomously inside a living cell, it became clear that this molecular scaffold was well-placed to probe living systems. Its water solubility, biocompatibility, and engineerability to yield molecularly identical assemblies predisposed it to probe and program biology.Since DNA is a modular scaffold, one can integrate independent or interdependent functionalities onto a single assembly. Work from our group has established a new class of organelle-targeted, DNA-based fluorescent reporters. These reporters comprise three to four oligonucleotides that each display a specific motif or module with a specific function. Given the 1:1 stoichiometry of Watson-Crick-Franklin base pairing, all modules are present in a fixed ratio in every DNA nanodevice. These modules include an ion-sensitive dye or a detection module and a normalizing dye for ratiometry that along with detection module forms a "measuring module". The third module is an organelle-targeting module that engages a cognate protein so that the whole assembly is trafficked to the lumen of a target organelle. Together, these modules allow us to measure free ion concentrations with accuracies that were previously unattainable, in subcellular locations that were previously inaccessible, and at single organelle resolution. By revealing that organelles exist in different chemical states, DNA nanodevices are providing new insights into organelle biology. Further, the ability to deliver molecules with cell-type and organelle level precision in animal models is leading to biomedical applications.This Account outlines the development of DNA nanodevices as fluorescent reporters for chemically mapping or modulating organelle function in real time in living systems. We discuss the technical challenges of measuring ions within endomembrane organelles and show how the unique properties of DNA nanodevices enable organelle targeting and chemical mapping. Starting from the pioneering finding that an autonomous DNA nanodevice could map endolysosomal pH in cells, we chart the development of strategies to target organelles beyond the endolysosomal pathway and expanding chemical maps to include all the major ions in physiology, reactive species, enzyme activity, and voltage. We present a series of vignettes highlighting the new biology unlocked with each development, from the discovery of chemical heterogeneity in lysosomes to identifying the first protein importer of Ca2+ into lysosomes. Finally, we discuss the broader applicability of targeting DNA nanodevices organelle-specifically beyond just reporting ions, namely using DNA nanodevices to modulate organelle state, and thereby cell state, with potential therapeutic applications.
Collapse
Affiliation(s)
- JoAnn Tinker
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Musheyev D, Alayev A. Endocrine therapy resistance: what we know and future directions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:480-496. [PMID: 36071983 PMCID: PMC9446423 DOI: 10.37349/etat.2022.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Endocrine resistance is a major hurdle in the treatment of estrogen receptor (ER)-positive breast cancer. When abnormally regulated, molecular signals responsible for cellular proliferation, as well as ER itself, allow for cellular evasion of ER-dependent treatments. Therefore, pharmacological treatments that target these evasion mechanisms are beneficial for the treatment of endocrine-resistant breast cancers. This review summarizes currently understood molecular signals that contribute to endocrine resistance and their crosstalk that stem from mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase/protein kinase B (PI3K/AKT), mechanistic target of rapamycin (mTOR), cyclin-dependent kinases 4 and 6 (CDK4/6) and aberrant ER function. Recent clinical trials that target these molecular signals as a treatment strategy for endocrine-resistant breast cancer are also highlighted.
Collapse
Affiliation(s)
- David Musheyev
- Alayev Lab, Stern College for Women, Biology Department, Yeshiva University, New York, NY 10174, USA
| | - Anya Alayev
- Alayev Lab, Stern College for Women, Biology Department, Yeshiva University, New York, NY 10174, USA
| |
Collapse
|
3
|
Tang D, Fan W, Xiong M, Li M, Xiong B, Zhang XB. Topological DNA Tetrahedron Encapsulated Gold Nanoparticle Enables Precise Ligand Engineering for Targeted Cell Imaging. Anal Chem 2021; 93:17036-17042. [PMID: 34910458 DOI: 10.1021/acs.analchem.1c03682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ligand-functionalized plasmonic nanoparticles have been widely used for targeted imaging in living systems. However, ligand presentation and encoding on the nanoparticle's surface in a stoichiometrically controllable manner remains a great challenge. Herein, we propose a method to construct ligand-engineered plasmonic nanoprobes by using nanoparticle encapsulation with topological DNA tetrahedrons, which enables the programmed ligand loading for precise regulation of targeting efficiency of nanoprobes in biorelated applications. With this method, we demonstrated the preparation of functionalized plasmonic nanoprobes by programmed loading of RGD peptides and aptamers onto the DNA tetrahedron encapsulated gold nanoparticles with controllable stoichiometric ratios. The cell imaging and particle counting assays suggested that the targeting efficiency of the nanoprobes could be readily modulated by tailoring the number and stoichiometric ratios of the loaded ligands, respectively. It can be anticipated that this robust strategy could provide new opportunities for the construction of efficacious nanoprobes and delivery systems for versatile bioapplications.
Collapse
Affiliation(s)
- Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wenjun Fan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Mili Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bin Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
4
|
Abstract
Over the past decade, DNA nanotechnology has spawned a broad variety of functional nanostructures tailored toward the enabled state at which applications are coming increasingly in view. One of the branches of these applications is in synthetic biology, where the intrinsic programmability of the DNA nanostructures may pave the way for smart task-specific molecular robotics. In brief, the synthesis of the user-defined artificial DNA nano-objects is based on employing DNA molecules with custom lengths and sequences as building materials that predictably assemble together by obeying Watson-Crick base pairing rules. The general workflow of creating DNA nanoshapes is getting more and more straightforward, and some objects can be designed automatically from the top down. The versatile DNA nano-objects can serve as synthetic tools at the interface with biology, for example, in therapeutics and diagnostics as dynamic logic-gated nanopills, light-, pH-, and thermally driven devices. Such diverse apparatuses can also serve as optical polarizers, sensors and capsules, autonomous cargo-sorting robots, rotary machines, precision measurement tools, as well as electric and magnetic-field directed robotic arms. In this review, we summarize the recent progress in robotic DNA nanostructures, mechanics, and their various implementations.
Collapse
Affiliation(s)
- Sami Nummelin
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Petteri Piskunen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Qing Liu
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- HYBER
Centre, Department of Applied Physics, Aalto
University, 00076 Aalto, Finland
| |
Collapse
|
5
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
6
|
Jani MS, Zou J, Veetil AT, Krishnan Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat Chem Biol 2020; 16:660-666. [PMID: 32152543 DOI: 10.1038/s41589-020-0491-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Nitric oxide synthase 3 (NOS3) produces the gasotransmitter nitric oxide (NO), which drives critical cellular signaling pathways by S-nitrosylating target proteins. Endogenous NOS3 resides at two distinct subcellular locations: the plasma membrane and the trans-Golgi network (TGN). However, NO generation arising from the activities of both these pools of NOS3 and its relative contribution to physiology or disease is not yet resolvable. We describe a fluorescent DNA-based probe technology, NOckout, that can be targeted either to the plasma membrane or the TGN, where it can quantitatively map the activities of endogenous NOS3 at these locations in live cells. We found that, although NOS3 at the Golgi is tenfold less active than at the plasma membrane, its activity is essential for the structural integrity of the Golgi. The newfound ability to spatially map NOS3 activity provides a platform to discover selective regulators of the distinct pools of NOS3.
Collapse
Affiliation(s)
- Maulik S Jani
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Aneesh T Veetil
- Department of Chemistry, University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, IL, USA. .,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Shen Q, Grome MW, Yang Y, Lin C. Engineering Lipid Membranes with Programmable DNA Nanostructures. ADVANCED BIOSYSTEMS 2020; 4:1900215. [PMID: 31934608 PMCID: PMC6957268 DOI: 10.1002/adbi.201900215] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/18/2022]
Abstract
Lipid and DNA are abundant biomolecules with critical functions in cells. The water-insoluble, amphipathic lipid molecules are best known for their roles in energy storage (e.g. as triglyceride), signaling (e.g. as sphingolipid), and compartmentalization (e.g. by forming membrane-enclosed bodies). The soluble, highly negatively charged DNA, which stores cells' genetic information, has proven to be an excellent material for constructing programmable nanostructures in vitro thanks to its self-assembling capabilities. These two seemingly distant molecules make contact within cell nuclei, often via lipidated proteins, with proposed functions of modulating chromatin structures. Carefully formulated lipid/DNA complexes are promising reagents for gene therapy. The past few years saw an emerging research field of interfacing DNA nanostructures with lipid membranes, with an overarching goal of generating DNA/lipid hybrid materials that possess novel and controllable structure, dynamics, and function. An arsenal of DNA-based tools has been created to coat, mold, deform, and penetrate lipid bilayers, affording us the ability to manipulate membranes with nanoscopic precision. These membrane engineering methods not only enable quantitative biophysical studies, but also open new opportunities in synthetic biology (e.g. artificial cells) and therapeutics (e.g. drug delivery).
Collapse
Affiliation(s)
- Qi Shen
- Department of Cell Biology and Nanobiology Institute, Yale University
| | - Michael W Grome
- Department of Cell Biology and Nanobiology Institute, Yale University
| | - Yang Yang
- Department of Cell Biology and Nanobiology Institute, Yale University
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chenxiang Lin
- Department of Cell Biology and Nanobiology Institute, Yale University
| |
Collapse
|
8
|
Dan K, Veetil AT, Chakraborty K, Krishnan Y. DNA nanodevices map enzymatic activity in organelles. NATURE NANOTECHNOLOGY 2019; 14:252-259. [PMID: 30742135 PMCID: PMC6859052 DOI: 10.1038/s41565-019-0365-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2018] [Indexed: 05/18/2023]
Abstract
Cellular reporters of enzyme activity are based on either fluorescent proteins or small molecules. Such reporters provide information corresponding to wherever inside cells the enzyme is maximally active and preclude minor populations present in subcellular compartments. Here we describe a chemical imaging strategy to selectively interrogate minor, subcellular pools of enzymatic activity. This new technology confines the detection chemistry to a designated organelle, enabling imaging of enzymatic cleavage exclusively within the organelle. We have thus quantitatively mapped disulfide reduction exclusively in endosomes in Caenorhabditis elegans and identified that exchange is mediated by minor populations of the enzymes PDI-3 and TRX-1 resident in endosomes. Impeding intra-endosomal disulfide reduction by knocking down TRX-1 protects nematodes from infection by Corynebacterium diphtheriae, revealing the importance of this minor pool of endosomal TRX-1. TRX-1 also mediates endosomal disulfide reduction in human cells. A range of enzymatic cleavage reactions in organelles are amenable to analysis by this new reporter strategy.
Collapse
Affiliation(s)
- Krishna Dan
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA
| | - Aneesh T Veetil
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA
| | - Kasturi Chakraborty
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat Chem Biol 2018; 15:1165-1172. [PMID: 30531966 DOI: 10.1038/s41589-018-0176-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
Phagocytes destroy pathogens by trapping them in a transient organelle called the phagosome, where they are bombarded with reactive oxygen species (ROS) and reactive nitrogen species (RNS). Imaging reactive species within the phagosome would directly reveal the chemical dynamics underlying pathogen destruction. Here we introduce a fluorescent, DNA-based combination reporter, cHOClate, which simultaneously images hypochlorous acid (HOCl) and pH quantitatively. Using cHOClate targeted to phagosomes in live cells, we successfully map phagosomal production of a specific ROS, HOCl, as a function of phagosome maturation. We found that phagosomal acidification was gradual in macrophages and upon completion, HOCl was released in a burst. This revealed that phagosome-lysosome fusion was essential not only for phagosome acidification, but also for providing the chloride necessary for myeloperoxidase activity. This method can be expanded to image several kinds of ROS and RNS and be readily applied to identify how resistant pathogens evade phagosomal killing.
Collapse
|
10
|
|