1
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Jordano-Raya M, Schrader CE, Ariza RR, Roldán-Arjona T, Córdoba-Cañero D. Divergent evolution of opposite base specificity and single-stranded DNA activity in animal and plant AP endonucleases. Nucleic Acids Res 2025; 53:gkae1297. [PMID: 39778867 PMCID: PMC11707538 DOI: 10.1093/nar/gkae1297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases are key enzymes responsible for the repair of base-less nucleotides generated by spontaneous hydrolysis or as DNA repair intermediates. APE1, the major human AP endonuclease, is a druggable target in cancer and its biological function has been extensively studied. However, the molecular features responsible for its substrate specificity are poorly understood. We show here that, in contrast to APE1, its Arabidopsis ortholog ARP (apurinic endonuclease-redox protein) exhibits orphan base-dependent activity on double-stranded DNA and very poor AP cleavage capacity on single-stranded DNA (ssDNA). We found that these differences are largely a consequence of the variation at two DNA intercalating amino acids that have undergone divergent changes in the metazoan and plant lineages. Swapping the identity of the residue invading the minor groove is sufficient to switch the orphan base specificities of APE1 and ARP. The affinity for ssDNA is largely determined by the major groove invading residue, and swapping its identity switches the ability of APE1 and ARP to cleave AP sites in ssDNA. Importantly, we show that the critical residue for ssDNA cleavage is crucial for mammalian APE1 function in antibody class switch recombination, suggesting an evolutionary advantage for ssDNA activity. These findings provide new molecular insights into the evolution of AP endonucleases.
Collapse
Affiliation(s)
- Marina Jordano-Raya
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Microbiology, UMass Chan Medical School, University of Massachusetts, 55 Lake Avenue North, Worcester 01655, MA, USA
| | - Carol E Schrader
- Department of Microbiology, UMass Chan Medical School, University of Massachusetts, 55 Lake Avenue North, Worcester 01655, MA, USA
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
- Department of Genetics, University of Córdoba, Ctra. N-IVa, Km. 396, Córdoba 14014, Spain
- Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, Córdoba 14004, Spain
| |
Collapse
|
3
|
Guo W, Wu W, Wen Y, Gao Y, Zhuang S, Meng C, Chen H, Zhao Z, Hu K, Wu B. Structural insights into the catalytic mechanism of the AP endonuclease AtARP. Structure 2024; 32:780-794.e5. [PMID: 38503293 DOI: 10.1016/j.str.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Base excision repair (BER) is a critical genome defense pathway that copes with a broad range of DNA lesions induced by endogenous or exogenous genotoxic agents. AP endonucleases in the BER pathway are responsible for removing the damaged bases and nicking the abasic sites. In plants, the BER pathway plays a critical role in the active demethylation of 5-methylcytosine (5mC) DNA modification. Here, we have determined the crystal structures of Arabidopsis AP endonuclease AtARP in complex with the double-stranded DNA containing tetrahydrofuran (THF) that mimics the abasic site. We identified the critical residues in AtARP for binding and removing the abasic site and the unique residues for interacting with the orphan base. Additionally, we investigated the differences among the three plant AP endonucleases and evaluated the general DNA repair capacity of AtARP in a mammalian cell line. Our studies provide further mechanistic insights into the BER pathway in plants.
Collapse
Affiliation(s)
- Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuan Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shuting Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhipeng Zhao
- Department of Basic Medical Sciences, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
4
|
Kim DV, Diatlova EA, Zharkov TD, Melentyev VS, Yudkina AV, Endutkin AV, Zharkov DO. Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1. Int J Mol Sci 2023; 25:64. [PMID: 38203235 PMCID: PMC10778768 DOI: 10.3390/ijms25010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.
Collapse
Affiliation(s)
- Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Vasily S. Melentyev
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Brouckaert M, Peng M, Höfer R, El Houari I, Darrah C, Storme V, Saeys Y, Vanholme R, Goeminne G, Timokhin VI, Ralph J, Morreel K, Boerjan W. QT-GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits. MOLECULAR PLANT 2023; 16:1212-1227. [PMID: 37349988 PMCID: PMC7614782 DOI: 10.1016/j.molp.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits.
Collapse
Affiliation(s)
- Marlies Brouckaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Meng Peng
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - René Höfer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ilias El Houari
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chiarina Darrah
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Véronique Storme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yvan Saeys
- Ghent University, Department of Applied Mathematics, Computer Science and Statistics, 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; VIB Metabolomics Core, 9052 Ghent, Belgium
| | - Vitaliy I Timokhin
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
7
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
8
|
Jha JS, Yin J, Haldar T, Wang Y, Gates KS. Reconsidering the Chemical Nature of Strand Breaks Derived from Abasic Sites in Cellular DNA: Evidence for 3'-Glutathionylation. J Am Chem Soc 2022; 144:10471-10482. [PMID: 35612610 DOI: 10.1021/jacs.2c02703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. The resulting abasic sites can undergo β-elimination of the 3'-phosphoryl group to generate a strand break with an electrophilic α,β-unsaturated aldehyde residue on the 3'-terminus. The work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione rapidly adds to the alkenal group on the 3'-terminus of an AP-derived strand break. The resulting glutathionylated adduct is the only major cleavage product observed when β-elimination occurs at an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is reversible, but in the presence of physiological concentrations of glutathione, the adduct persists for days. Biochemical experiments provided evidence that the 3'-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar remnant from an AP-derived strand break to generate the 3'OH residue required for repair via base excision or single-strand break repair pathways. The results suggest that a previously unrecognized 3'glutathionylated sugar remnant─and not the canonical α,β-unsaturated aldehyde end group─may be the true strand cleavage product arising from β-elimination at an abasic site in cellular DNA. This work introduces the 3'glutathionylated cleavage product as the major blocking group that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision repair or single-strand break repair pathways.
Collapse
|
9
|
Haldar T, Jha JS, Yang Z, Nel C, Housh K, Cassidy OJ, Gates KS. Unexpected Complexity in the Products Arising from NaOH-, Heat-, Amine-, and Glycosylase-Induced Strand Cleavage at an Abasic Site in DNA. Chem Res Toxicol 2022; 35:218-232. [PMID: 35129338 PMCID: PMC9482271 DOI: 10.1021/acs.chemrestox.1c00409] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrolytic loss of nucleobases from the deoxyribose backbone of DNA is one of the most common unavoidable types of damage in synthetic and cellular DNA. The reaction generates abasic sites in DNA, and it is important to understand the properties of these lesions. The acidic nature of the α-protons of the ring-opened abasic aldehyde residue facilitates the β-elimination of the 3'-phosphoryl group. This reaction is expected to generate a DNA strand break with a phosphoryl group on the 5'-terminus and a trans-α,β-unsaturated aldehyde residue on the 3'-terminus; however, a handful of studies have identified noncanonical sugar remnants on the 3'-terminus, suggesting that the products arising from strand cleavage at apurinic/apyrimidinic sites in DNA may be more complex than commonly thought. We characterized the strand cleavage induced by the treatment of an abasic site-containing DNA oligonucleotide with heat, NaOH, piperidine, spermine, and the base excision repair glycosylases Fpg and Endo III. The results showed that under multiple conditions, cleavage at an abasic site in a DNA oligomer generated noncanonical sugar remnants including cis-α,β-unsaturated aldehyde, 2-deoxyribose, and 3-thio-2,3-dideoxyribose products on the 3'-terminus of the strand break.
Collapse
Affiliation(s)
- Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Orla J. Cassidy
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Address correspondence to Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; ORCHID ID: 0000-0002-4218-7411; Phone: (573) 882-6763;
| |
Collapse
|
10
|
Li J, Liang W, Liu Y, Ren Z, Ci D, Chang J, Qian W. The Arabidopsis ATR-SOG1 signaling module regulates pleiotropic developmental adjustments in response to 3'-blocked DNA repair intermediates. THE PLANT CELL 2022; 34:852-866. [PMID: 34791445 PMCID: PMC8824664 DOI: 10.1093/plcell/koab282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Base excision repair and active DNA demethylation produce repair intermediates with DNA molecules blocked at the 3'-OH end by an aldehyde or phosphate group. However, both the physiological consequences of these accumulated single-strand DNAs break with 3'-blocked ends (DNA 3'-blocks) and the signaling pathways responding to unrepaired DNA 3'-blocks remain unclear in plants. Here, we investigated the effects of DNA 3'-blocks on plant development using the zinc finger DNA 3'-phosphoesterase (zdp) AP endonuclease2 (ape2) double mutant, in which 3'-blocking residues are poorly repaired. The accumulation of DNA 3'-blocked triggered diverse developmental defects that were dependent on the ATM and RAD3-related (ATR)-suppressor of gamma response 1 (SOG1) signaling module. SOG1 mutation rescued the developmental defects of zdp ape2 leaves by preventing cell endoreplication and promoting cell proliferation. However, SOG1 mutation caused intensive meristematic cell death in the radicle of zdp ape2 following germination, resulting in rapid termination of radicle growth. Notably, mutating FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE (FPG) in zdp ape2 sog1 partially recovered its radicle growth, demonstrating that DNA 3'-blocks generated by FPG caused the meristematic defects. Surprisingly, despite lacking a functional radicle, zdp ape2 sog1 mutants compensated the lack of root growth by generating anchor roots having low levels of DNA damage response. Our results reveal dual roles of SOG1 in regulating root establishment when seeds germinate with excess DNA 3'-blocks.
Collapse
Affiliation(s)
- Jinchao Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhitong Ren
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Ci
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinjie Chang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Complementary Functions of Plant AP Endonucleases and AP Lyases during DNA Repair of Abasic Sites Arising from C:G Base Pairs. Int J Mol Sci 2021; 22:ijms22168763. [PMID: 34445469 PMCID: PMC8395712 DOI: 10.3390/ijms22168763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Abasic (apurinic/apyrimidinic, AP) sites are ubiquitous DNA lesions arising from spontaneous base loss and excision of damaged bases. They may be processed either by AP endonucleases or AP lyases, but the relative roles of these two classes of enzymes are not well understood. We hypothesized that endonucleases and lyases may be differentially influenced by the sequence surrounding the AP site and/or the identity of the orphan base. To test this idea, we analysed the activity of plant and human AP endonucleases and AP lyases on DNA substrates containing an abasic site opposite either G or C in different sequence contexts. AP sites opposite G are common intermediates during the repair of deaminated cytosines, whereas AP sites opposite C frequently arise from oxidized guanines. We found that the major Arabidopsis AP endonuclease (ARP) exhibited a higher efficiency on AP sites opposite G. In contrast, the main plant AP lyase (FPG) showed a greater preference for AP sites opposite C. The major human AP endonuclease (APE1) preferred G as the orphan base, but only in some sequence contexts. We propose that plant AP endonucleases and AP lyases play complementary DNA repair functions on abasic sites arising at C:G pairs, neutralizing the potential mutagenic consequences of C deamination and G oxidation, respectively.
Collapse
|
12
|
Peralta-Castro A, García-Medel PL, Baruch-Torres N, Trasviña-Arenas CH, Juarez-Quintero V, Morales-Vazquez CM, Brieba LG. Plant Organellar DNA Polymerases Evolved Multifunctionality through the Acquisition of Novel Amino Acid Insertions. Genes (Basel) 2020; 11:genes11111370. [PMID: 33228188 PMCID: PMC7699545 DOI: 10.3390/genes11111370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.
Collapse
Affiliation(s)
- Antolín Peralta-Castro
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Paola L. García-Medel
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Víctor Juarez-Quintero
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos M. Morales-Vazquez
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Luis G. Brieba
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Correspondence: ; Tel.: +52-462-1663007
| |
Collapse
|
13
|
Witte CP, Herde M. Nucleotide Metabolism in Plants. PLANT PHYSIOLOGY 2020; 182:63-78. [PMID: 31641078 PMCID: PMC6945853 DOI: 10.1104/pp.19.00955] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 05/14/2023]
Abstract
Nucleotide metabolism is an essential function in plants.
Collapse
Affiliation(s)
- Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
14
|
Parrilla-Doblas JT, Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. Active DNA Demethylation in Plants. Int J Mol Sci 2019; 20:E4683. [PMID: 31546611 PMCID: PMC6801703 DOI: 10.3390/ijms20194683] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.
Collapse
Affiliation(s)
- Jara Teresa Parrilla-Doblas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| |
Collapse
|
15
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
16
|
Njuma OJ, Su Y, Guengerich FP. The abundant DNA adduct N 7-methyl deoxyguanosine contributes to miscoding during replication by human DNA polymerase η. J Biol Chem 2019; 294:10253-10265. [PMID: 31101656 DOI: 10.1074/jbc.ra119.008986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Aside from abasic sites and ribonucleotides, the DNA adduct N 7-methyl deoxyguanosine (N7 -CH3 dG) is one of the most abundant lesions in mammalian DNA. Because N7 -CH3 dG is unstable, leading to deglycosylation and ring-opening, its miscoding potential is not well-understood. Here, we employed a 2'-fluoro isostere approach to synthesize an oligonucleotide containing an analog of this lesion (N7 -CH3 2'-F dG) and examined its miscoding potential with four Y-family translesion synthesis DNA polymerases (pols): human pol (hpol) η, hpol κ, and hpol ι and Dpo4 from the archaeal thermophile Sulfolobus solfataricus We found that hpol η and Dpo4 can bypass the N7 -CH3 2'-F dG adduct, albeit with some stalling, but hpol κ is strongly blocked at this lesion site, whereas hpol ι showed no distinction with the lesion and the control templates. hpol η yielded the highest level of misincorporation opposite the adduct by inserting dATP or dTTP. Moreover, hpol η did not extend well past an N 7-CH3 2'-F dG:dT mispair. MS-based sequence analysis confirmed that hpol η catalyzes mainly error-free incorporation of dC, with misincorporation of dA and dG in 5-10% of products. We conclude that N 7-CH3 2'-F dG and, by inference, N 7-CH3 dG have miscoding and mutagenic potential. The level of misincorporation arising from this abundant adduct can be considered as potentially mutagenic as a highly miscoding but rare lesion.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Yan Su
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|