1
|
Værøy H, Skar-Fröding R, Hareton E, Fetissov SO. Possible roles of neuropeptide/transmitter and autoantibody modulation in emotional problems and aggression. Front Psychiatry 2024; 15:1419574. [PMID: 39381606 PMCID: PMC11458397 DOI: 10.3389/fpsyt.2024.1419574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
The theoretical foundations of understanding psychiatric disorders are undergoing changes. Explaining behaviour and neuroendocrine cell communication leaning towards immunology represents a different approach compared to previous models for understanding complex central nervous system processes. One such approach is the study of immunoglobulins or autoantibodies, and their effect on peptide hormones in the neuro-endocrine system. In the present review, we provide an overview of the literature on neuropeptide/transmitter and autoantibody modulation in psychiatric disorders featuring emotional problems and aggression, including associated illness behaviour. Finally, we discuss the role of psycho-immunology as a growing field in the understanding of psychiatric disorders, and that modulation and regulation by IgG autoAbs represent a relatively new subcategory in psycho-immunology, where studies are currently being conducted.
Collapse
Affiliation(s)
- Henning Værøy
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Regina Skar-Fröding
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Elin Hareton
- Department of Multidiciplinary Laboratory Medicine and Medical Biochemistry, (TLMB), Akershus University Hospital, Lørenskog, Norway
| | - Sergueï O. Fetissov
- Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| |
Collapse
|
2
|
Zhang Z, Dong X, Liu Z, Liu N. Social status predicts physiological and behavioral responses to chronic stress in rhesus monkeys. iScience 2024; 27:110073. [PMID: 38883834 PMCID: PMC11176666 DOI: 10.1016/j.isci.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Investigating the underlying factors that cause differential individual responses to chronic stress is crucial for developing personalized therapies, especially in the face of pandemics such as COVID-19. However, this question remains elusive, particularly in primates. In the present study, we aimed to address this question by utilizing monkeys as a model to examine the impacts of social rank on stress levels and physiological and behavioral responses to chronic stress primarily caused by social isolation at both the individual and group levels. Our results showed that high-ranking animals were more susceptible to chronic stress. After exposure to chronic stress, although social hierarchies remained the same, the colonies exhibited more harmonious group relationships (e.g., more prosocial behaviors), with notable contributions from low-ranking animals. Overall, this study deepens our understanding of how social status shapes responses to chronic stress and sheds light on developing tailored and personalized therapies for coping with chronic stress.
Collapse
Affiliation(s)
- Zhiyi Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueda Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Værøy H, Lahaye E, Dubessy C, Benard M, Nicol M, Cherifi Y, Takhlidjt S, do Rego JL, do Rego JC, Chartrel N, Fetissov SO. Immunoglobulin G is a natural oxytocin carrier which modulates oxytocin receptor signaling: relevance to aggressive behavior in humans. DISCOVER MENTAL HEALTH 2023; 3:21. [PMID: 37983005 PMCID: PMC10587035 DOI: 10.1007/s44192-023-00048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Oxytocin is a neuropeptide produced mainly in the hypothalamus and secreted in the CNS and blood. In the brain, it plays a major role in promoting social interactions. Here we show that in human plasma about 60% of oxytocin is naturally bound to IgG which modulates oxytocin receptor signaling. Further, we found that IgG of violent aggressive inmates were characterized by lower affinity for oxytocin, causing decreased oxytocin carrier capacity and reduced receptor activation as compared to men from the general population. Moreover, peripheral administration of oxytocin together with human oxytocin-reactive IgG to resident mice in a resident-intruder test, reduced c-fos activation in several brain regions involved in the regulation of aggressive/defensive behavior correlating with the attack number and duration. We conclude that IgG is a natural oxytocin carrier protein modulating oxytocin receptor signaling which can be relevant to the biological mechanisms of aggressive behavior.
Collapse
Affiliation(s)
- Henning Værøy
- Department of Psychiatric Research, Akershus University Hospital, 1478, Nordbyhagen, Norway.
| | - Emilie Lahaye
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Christophe Dubessy
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Magalie Benard
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Marion Nicol
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Yamina Cherifi
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Saloua Takhlidjt
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Luc do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Claude do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Nicolas Chartrel
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Sergueï O Fetissov
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France.
| |
Collapse
|
4
|
Klimova NV, Chadaeva IV, Shichevich SG, Kozhemyakina RV. Differential expression of 10 genes in the hypothalamus of two generations of rats selected for a reaction to humans. Vavilovskii Zhurnal Genet Selektsii 2022; 25:208-215. [PMID: 35083397 PMCID: PMC8698098 DOI: 10.18699/vj21.50-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
Individual behavioral differences are due to an interaction of the genotype and the environment. Phenotypic manifestation of aggressive behavior depends on the coordinated expression of gene ensembles. Nonetheless,
the identification of these genes and of combinations of their mutual influence on expression remains a difficult
task. Using animal models of aggressive behavior (gray rats that were selected for a reaction to humans; tame and
aggressive rat strains), we evaluated the expression of 10 genes potentially associated with aggressiveness according
to the literature: Cacna1b, Cacna2d3, Drd2, Egr1, Gad2, Gria2, Mapk1, Nos1, Pomc, and Syn1. To identify the genes most
important for the manifestation of aggressiveness, we analyzed the expression of these genes in two generations of
rats: 88th and 90th. Assessment of gene expression levels was carried out by real-time PCR in the hypothalamus of
tame and aggressive rats. This analysis confirmed that 4 out of the 10 genes differ in expression levels between aggressive rats and tame rats in both generations. Specifically, it was shown that the expression of the Cacna1b, Drd2,
Egr1, and Gad2 genes does not differ between the two generations (88th vs 90th) within each strain, but significantly
differs between the strains: in the tame rats of both generations, the expression levels of these genes are significantly
lower as compared to those in the aggressive rats. Therefore, these genes hold promise for further studies on behavioral characteristics. Thus, we confirmed polygenic causes of phenotypic manifestation of aggressive reactions.
Collapse
Affiliation(s)
- N V Klimova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Chadaeva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S G Shichevich
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R V Kozhemyakina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Roubalova R, Prochazkova P, Dvorak J, Hill M, Papezova H, Kreisinger J, Bulant J, Lambertova A, Holanova P, Bilej M, Tlaskalova-Hogenova H. Altered Serum Immunological and Biochemical Parameters and Microbiota Composition in Patients With AN During Realimentation. Front Nutr 2021; 8:680870. [PMID: 34409061 PMCID: PMC8365021 DOI: 10.3389/fnut.2021.680870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Anorexia nervosa (AN) is a life-threatening psychiatric disorder with not well-described pathogenesis. Besides the genetic and sociological factors, autoimmunity is also considered to take part in AN pathogenesis. We evaluated general serological factors showing the physiological state of 59 patients with AN at hospital admission and their discharge. We detected the altered levels of some general biochemical and immunological parameters. We also detected decreased levels of appetite-regulating alpha-melanocyte stimulating hormone (α-MSH) in patients at hospital admission. Moreover, elevated anti-α-MSH IgM levels and decreased anti-α-MSH IgA levels were observed in patients with AN. Therefore, we analyzed the gut microbiota composition with special focus on α-MSH antigen-mimetic containing microbes from the Enterobacteriaceae family. We correlated gut bacterial composition with anti-α-MSH Ig levels and detected decreasing IgG levels with increasing alpha diversity. The upregulation of pro-inflammatory cytokines IL-6, IL-17, and TNF-α were detected in patients with AN both prior and after hospitalization. We also evaluated the treatment outcome and improvement was observed in the majority of patients with AN. We provide new data about various serum biochemical parameters and their changes during the patients' hospitalization, with emphasis on the immune system, and its possible participation in AN pathogenesis.
Collapse
Affiliation(s)
- Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Hill
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czechia
| | - Hana Papezova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Josef Bulant
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Alena Lambertova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Petra Holanova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Qing L, Gao C, Ji A, Lü X, Zhou L, Nie S. Association of mineralocorticoid receptor gene (NR3C2) hypermethylation in adult males with aggressive behavior. Behav Brain Res 2020; 398:112980. [PMID: 33250445 DOI: 10.1016/j.bbr.2020.112980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022]
Abstract
Aggressive behavior may have adaptive value under some environmental conditions. However, when it is extreme or improper, it may also lead to maladaptive results, seriously threatening human and social well-being. Aggressive behavior is a multifactorial disease, and the etiology is largely unknown. The stress-related hypothalamic-pituitary-adrenal (HPA) axis is a crucial system in the stress response that has emerged as a potential mechanism of aggressive behavior. The NR3C2 gene is an important regulator of the HPA axis: it is involved in regulating HPA axis activity and behavioral adaptation to stressors. Moreover, the epigenetic mechanism of DNA methylation has been suggested to mediate the development of aggressive behavior. However, the association between NR3C2 methylation and aggressive behavior has not been studied. In the present study, we assessed NR3C2 methylation (including three regions: promoter P1, exon 1α, and the sequence downstream of exon 1α) in peripheral blood DNA of adult males with aggressive behavior (n = 106) and healthy controls (n = 104). We found the NR3C2 gene to be associated with aggressive behavior, with hypermethylation detected in the entire aggressive behavior group as well as in the robbery subgroup compared to controls. In addition, analysis of methylation at 75 CpG sites revealed that some important CpG sites are associated with aggressive behavior. Our results suggest that HPA axis-related gene NR3C2 methylation is associated with aggressive behavior. These results lend support for using NR3C2 DNA methylation as a potential biomarker of aggressive behavior.
Collapse
Affiliation(s)
- Lili Qing
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Changqing Gao
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Aicen Ji
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xin Lü
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Li Zhou
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
7
|
Dimitrov JD, Lacroix-Desmazes S. Noncanonical Functions of Antibodies. Trends Immunol 2020; 41:379-393. [PMID: 32273170 DOI: 10.1016/j.it.2020.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
The typical functions of antibodies are based on linking the process of antigen recognition with initiation of innate immune reactions. With the introduction of modern research technologies and the use of sophisticated model systems, recent years have witnessed the discovery of a number of noncanonical functions of antibodies. These functions encompass either untypical strategies for neutralization of pathogens or exertion of activities that are characteristic for other proteins (cytokines, chaperones, or enzymes). Here, we provide an overview of the noncanonical functions of antibodies and discuss their mechanisms and implications in immune regulation and defense. A better comprehension of these functions will enrich our knowledge of the adaptive immune response and shall inspire the development of novel therapeutics.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| |
Collapse
|
8
|
On the origin of eating disorders: altered signaling between gut microbiota, adaptive immunity and the brain melanocortin system regulating feeding behavior. Curr Opin Pharmacol 2019; 48:82-91. [PMID: 31430598 DOI: 10.1016/j.coph.2019.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
Abstract
Research in the field of gut microbiota - brain axis may contribute to clarifying the origin of anorexia nervosa and bulimia, the two principal forms of eating disorders (ED). The initial key findings in ED patients of plasma immunoglobulins (Ig) that react with α-melanocyte-stimulating hormone (α-MSH), a neuropeptide in the brain signaling satiety, have initiated further studies leading to the discovery of the origin of such autoantibodies and to the understanding their possible functional role. An anorexigenic bacterial protein Escherichia coli caseinolytic protease B was recently found to be responsible for the production of α-MSH-cross-reactive autoantibodies and this protein was also detected in human plasma. Another recent study revealed enhanced activation of appetite-regulating the melanocortin type 4 receptor by immune complexes withα-MSH. Taken together, these data serve to build a pathophysiological model of ED presented in this article.
Collapse
|
9
|
Immunoglobulin G modulation of the melanocortin 4 receptor signaling in obesity and eating disorders. Transl Psychiatry 2019; 9:87. [PMID: 30755592 PMCID: PMC6372612 DOI: 10.1038/s41398-019-0422-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022] Open
Abstract
Melanocortin 4 receptor (MC4R) plays a key role in regulation of appetite activated by its main ligand α-melanocyte-stimulating hormone (α-MSH) in both central and peripheral targets. α-MSH also binds to circulating immunoglobulins (Igs) but the functional significance of such immune complexes (ICs) in MC4R signaling in normal and pathological conditions of altered appetite has remained unknown. To address this question, we analyzed plasma levels, affinity kinetics, and binding epitopes of α-MSH-reactive IgG extracted from plasma samples of female patients with hyperphagic obesity, anorexia nervosa, bulimia nervosa, binge-eating disorder, and healthy controls. Ability of α-MSH/IgG IC to bind and activate human MC4R were studied in vitro and to influence feeding behavior in vivo in rodents. We found that α-MSH-reactive IgG were low in obese but increased in anorectic and bulimic patients and displayed different epitope and kinetics of IC formation. Importantly, while α-MSH/IgG IC from all subjects were binding and activating MC4R, the receptor binding affinity was decreased in obesity. Additionally, α-MSH/IgG IC had lower MC4R-mediated cAMP activation threshold as compared with α-MSH alone in all but not obese subjects. Furthermore, the cellular internalization rate of α-MSH/IgG IC by MC4R-expressing cells was decreased in obese but increased in patients with anorexia nervosa. Moreover, IgG from obese patients prevented central anorexigenic effect of α-MSH. These findings reveal that MC4R is physiologically activated by IC formed by α-MSH/IgG and that different levels and molecular properties of α-MSH-reactive IgG underlie biological activity of such IC relevant to altered appetite in obesity and eating disorders.
Collapse
|
10
|
Neuropeptide-like signaling in the microbiota-gut-brain axis. Behav Brain Sci 2019. [DOI: 10.1017/s0140525x18002765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
For gut microbiota to influence behavior, microorganisms should be able to interfere with specific brain neurochemical circuitries. Understanding these molecular mechanisms is a key task in the new microbiota-gut-brain field. Recent studies have revealed that one major mechanistic link is the modulation of neuropeptide signaling by homologous bacterial proteins acting both directly and indirectly via production of neuropeptide-reactive immunoglobulins.
Collapse
|
11
|
Vaeroy H, Schneider F, Fetissov SO. Neurobiology of Aggressive Behavior-Role of Autoantibodies Reactive With Stress-Related Peptide Hormones. Front Psychiatry 2019; 10:872. [PMID: 31866881 PMCID: PMC6904880 DOI: 10.3389/fpsyt.2019.00872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Adrenocorticotropic hormone together with arginine vasopressin and oxytocin, the neuropeptides regulating the stress response and the hypothalamic-pituitary-adrenal axis activity, are known to modulate aggressive behavior. The functional role of the adrenocorticotropic hormone immunoglobulin G autoantibodies in peptidergic signaling and motivated behavior, including aggression, has been shown in experimental and in vitro models. This review summarizes some experimental data implicating autoantibodies reactive with stress-related peptides in aggressive behavior.
Collapse
Affiliation(s)
- Henning Vaeroy
- Department of Psychiatric Research, Akershus University Hospital, Nordbyhagen, Norway
| | - Frida Schneider
- Department of Psychiatric Research, Akershus University Hospital, Nordbyhagen, Norway
| | - Sergueï O Fetissov
- Inserm UMR1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Rouen Normandy, Rouen, France
| |
Collapse
|